/usr/share/pyshared/chaco/ticks.py is in python-chaco 4.1.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 | #-------------------------------------------------------------------------------
#
#
# Written by: David C. Morrill (based on similar routines written by Eric Jones)
#
# Date: 2007-05-01
#
# (c) Copyright 2002-7 by Enthought, Inc.
#
#-------------------------------------------------------------------------------
""" Tick generator classes and helper functions for calculating axis
tick-related values (i.e., bounds and intervals).
"""
# Major library imports
from numpy import arange, argsort, array, ceil, concatenate, equal, finfo, \
float64, floor, linspace, log10, minimum, ndarray, newaxis, \
putmask, shape
# Enthought library imports
from traits.api import HasTraits, Any
class AbstractTickGenerator(HasTraits):
""" Abstract class for tick generators.
"""
def get_ticks(self, data_low, data_high, bounds_low, bounds_high, interval,
use_endpoints=False, scale='linear'):
""" Returns a list of ticks points in data space.
Parameters
----------
data_low, data_high : float
The actual minimum and maximum of index values of the entire
dataset.
bounds_low, bounds_high : "auto", "fit", float
The range for which ticks should be generated.
interval : "auto", float
If the value is a positive number, it specifies the length
of the tick interval; a negative integer specifies the
number of tick intervals; 'auto' specifies that the number and
length of the tick intervals are automatically calculated, based
on the range of the axis.
use_endpoints : Boolean
If True, the lower and upper bounds of the data are used as the
lower and upper end points of the axis. If False, the end points
might not fall exactly on the bounds.
scale : 'linear' or 'log'
The type of scale the ticks are for.
Returns
-------
tick_list : array of floats
Where ticks are to be placed.
Example
-------
If the range of x-values in a line plot span from -15.0 to +15.0, but
the plot is currently displaying only the region from 3.1 to 6.83, and
the user wants the interval to be automatically computed to be some
nice value, then call get_ticks() thusly::
get_ticks(-15.0, 15.0, 3.1, 6.83, "auto")
A reasonable return value in this case would be::
[3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5]
"""
raise NotImplementedError
class DefaultTickGenerator(AbstractTickGenerator):
""" An implementation of AbstractTickGenerator that simply uses the
auto_ticks() and log_auto_ticks() functions.
"""
def get_ticks(self, data_low, data_high, bounds_low,
bounds_high, interval, use_endpoints=False,
scale='linear'):
if scale == 'linear':
return array(auto_ticks(data_low, data_high, bounds_low, bounds_high,
interval, use_endpoints=False), float64)
elif scale == 'log':
return array(log_auto_ticks(data_low, data_high, bounds_low, bounds_high,
interval, use_endpoints=False), float64)
class ShowAllTickGenerator(AbstractTickGenerator):
""" Uses the abstract interface, but returns all "positions" instead
of decimating the ticks.
You must provide a sequence of values as a *positions* keyword argument
to the constructor.
"""
# A sequence of positions for ticks.
positions = Any
def get_ticks(self, data_low, data_high, bounds_low, bounds_high, interval,
use_endpoints=False, scale='linear'):
""" Returns an array based on **positions**.
"""
# ignore all the high, low, etc. data and just return every position
return array(self.positions, float64)
#-------------------------------------------------------------------------------
# Code imported from plt/plot_utility.py:
#-------------------------------------------------------------------------------
def auto_ticks ( data_low, data_high, bound_low, bound_high, tick_interval,
use_endpoints = True):
""" Finds locations for axis tick marks.
Calculates the locations for tick marks on an axis. The *bound_low*,
*bound_high*, and *tick_interval* parameters specify how the axis end
points and tick interval are calculated.
Parameters
----------
data_low, data_high : number
The minimum and maximum values of the data along this axis.
If any of the bound settings are 'auto' or 'fit', the axis
traits are calculated automatically from these values.
bound_low, bound_high : 'auto', 'fit', or a number.
The lower and upper bounds of the axis. If the value is a number,
that value is used for the corresponding end point. If the value is
'auto', then the end point is calculated automatically. If the
value is 'fit', then the axis bound is set to the corresponding
*data_low* or *data_high* value.
tick_interval : can be 'auto' or a number
If the value is a positive number, it specifies the length
of the tick interval; a negative integer specifies the
number of tick intervals; 'auto' specifies that the number and
length of the tick intervals are automatically calculated, based
on the range of the axis.
use_endpoints : Boolean
If True, the lower and upper bounds of the data are used as the
lower and upper end points of the axis. If False, the end points
might not fall exactly on the bounds.
Returns
-------
An array of tick mark locations. The first and last tick entries are the
axis end points.
"""
is_auto_low = (bound_low == 'auto')
is_auto_high = (bound_high == 'auto')
if isinstance(bound_low, basestring):
lower = data_low
else:
lower = float( bound_low )
if isinstance(bound_high, basestring):
upper = data_high
else:
upper = float( bound_high )
if (tick_interval == 'auto') or (tick_interval == 0.0):
rng = abs( upper - lower )
if rng == 0.0:
tick_interval = 0.5
lower = data_low - 0.5
upper = data_high + 0.5
elif is_base2( rng ) and is_base2( upper ) and rng > 4:
if rng == 2:
tick_interval = 1
elif rng == 4:
tick_interval = 4
else:
tick_interval = rng / 4 # maybe we want it 8?
else:
tick_interval = auto_interval( lower, upper )
elif tick_interval < 0:
intervals = -tick_interval
tick_interval = tick_intervals( lower, upper, intervals )
if is_auto_low and is_auto_high:
is_auto_low = is_auto_high = False
lower = tick_interval * floor( lower / tick_interval )
while ((abs( lower ) >= tick_interval) and
((lower + tick_interval * (intervals - 1)) >= upper)):
lower -= tick_interval
upper = lower + tick_interval * intervals
# If the lower or upper bound are set to 'auto',
# calculate them based on the newly chosen tick_interval:
if is_auto_low or is_auto_high:
delta = 0.01 * tick_interval * (data_low == data_high)
auto_lower, auto_upper = auto_bounds( data_low - delta,
data_high + delta, tick_interval )
if is_auto_low:
lower = auto_lower
if is_auto_high:
upper = auto_upper
# Compute the range of ticks values:
start = floor( lower / tick_interval ) * tick_interval
end = floor( upper / tick_interval ) * tick_interval
# If we return the same value for the upper bound and lower bound, the
# layout code will not be able to lay out the tick marks (divide by zero).
if start == end:
lower = start = start - tick_interval
upper = end = start - tick_interval
if upper > end:
end += tick_interval
ticks = arange( start, end + (tick_interval / 2.0), tick_interval )
if len( ticks ) < 2:
ticks = array( ( ( lower - lower * 1.0e-7 ), lower ) )
if (not is_auto_low) and use_endpoints:
ticks[0] = lower
if (not is_auto_high) and use_endpoints:
ticks[-1] = upper
return [tick for tick in ticks if tick >= bound_low and tick <= bound_high]
#--------------------------------------------------------------------------------
# Determine if a number is a power of 2:
#--------------------------------------------------------------------------------
def is_base2 ( range ):
""" Returns True if *range* is a positive base-2 number (2, 4, 8, 16, ...).
"""
if range <= 0.0:
return False
else:
lg = log2( range )
return ((lg == floor( lg )) and (lg > 0.0))
#--------------------------------------------------------------------------------
# Compute n log 2:
#--------------------------------------------------------------------------------
def log2 ( num ):
""" Returns the base 2 logarithm of a number (or array).
"""
# !! 1e-16 is here to prevent errors when log is 0
if num == 0.0:
num += 1.0e-16
elif type( num ) is ndarray:
putmask( num, equal( num, 0.0), 1.0e-16 )
return log10( num ) / log10( 2 )
#--------------------------------------------------------------------------------
# Compute the best tick interval for a specified data range:
#--------------------------------------------------------------------------------
def heckbert_interval(data_low, data_high, numticks=8):
"""
Returns a "nice" range and interval for a given data range and a preferred
number of ticks. From Paul Heckbert's algorithm in Graphics Gems.
"""
range = _nice(data_high - data_low)
d = _nice(range / (numticks-1), round=True)
graphmin = floor(data_low / d) * d
graphmax = ceil(data_high / d) * d
#nfrac = max(-floor(log10(d)), 0)
return graphmin, graphmax, d
def _nice(x, round=False):
""" if round is False, then use ceil(range) """
expv = floor(log10(x))
f = x / pow(10, expv)
if round:
if f < 1.5:
nf = 1.0
elif f < 3.0:
nf = 2.0
elif f < 7.0:
nf = 5.0;
else:
nf = 10.0
else:
if f <= 1.0:
nf = 1.0
elif f <= 2.0:
nf = 2.0
elif f <= 5.0:
nf = 5.0
else:
nf = 10.0
return nf * pow(10, expv)
def auto_interval ( data_low, data_high ):
""" Calculates the tick interval for a range.
The boundaries for the data to be plotted on the axis are::
data_bounds = (data_low,data_high)
The function chooses the number of tick marks, which can be between
3 and 9 marks (including end points), and chooses tick intervals at
1, 2, 2.5, 5, 10, 20, ...
Returns
-------
interval : float
tick mark interval for axis
"""
range = float( data_high ) - float( data_low )
# We'll choose from between 2 and 8 tick marks.
# Preference is given to more ticks:
# Note reverse order and see kludge below...
divisions = arange( 8.0, 2.0, -1.0 ) # ( 7, 6, ..., 3 )
# Calculate the intervals for the divisions:
candidate_intervals = range / divisions
# Get magnitudes and mantissas for each candidate:
magnitudes = 10.0 ** floor( log10( candidate_intervals ) )
mantissas = candidate_intervals / magnitudes
# List of "pleasing" intervals between ticks on graph.
# Only the first magnitude are listed, higher mags others are inferred:
magic_intervals = array( ( 1.0, 2.0, 2.5, 5.0, 10.0 ) )
# Calculate the absolute differences between the candidates
# (with magnitude removed) and the magic intervals:
differences = abs( magic_intervals[:,newaxis] - mantissas )
# Find the division and magic interval combo that produce the
# smallest differences:
# KLUDGE: 'argsort' doesn't preserve the order of equal values,
# so we subtract a small, index dependent amount from each difference
# to force correct ordering.
sh = shape( differences )
small = 2.2e-16 * arange( sh[1] ) * arange( sh[0] )[:,newaxis]
small = small[::-1,::-1] #reverse the order
differences = differences - small
# ? Numeric should allow keyword "axis" ? comment out for now
#best_mantissa = minimum.reduce(differences,axis=0)
#best_magic = minimum.reduce(differences,axis=-1)
best_mantissa = minimum.reduce( differences, 0 )
best_magic = minimum.reduce( differences, -1 )
magic_index = argsort( best_magic )[0]
mantissa_index = argsort( best_mantissa )[0]
# The best interval is the magic_interval multiplied by the magnitude
# of the best mantissa:
interval = magic_intervals[ magic_index ]
magnitude = magnitudes[ mantissa_index ]
result = interval * magnitude
if result == 0.0:
result = finfo(float).eps
return result
#--------------------------------------------------------------------------------
# Compute the best tick interval length to achieve a specified number of tick
# intervals:
#--------------------------------------------------------------------------------
def tick_intervals ( data_low, data_high, intervals ):
""" Computes the best tick interval length to achieve a specified number of
tick intervals.
Parameters
----------
data_low, data_high : number
The minimum and maximum values of the data along this axis.
If any of the bound settings are 'auto' or 'fit', the axis
traits are calculated automatically from these values.
intervals : number
The desired number of intervals
Returns
-------
Returns a float indicating the tick interval length.
"""
range = float( data_high - data_low )
if range == 0.0:
range = 1.0
interval = range / intervals
factor = 10.0 ** floor( log10( interval ) )
interval /= factor
if interval < 2.0:
interval = 2.0
index = 0
elif interval < 2.5:
interval = 2.5
index = 1
elif interval < 5.0:
interval = 5.0
index = 2
else:
interval = 10.0
index = 3
while True:
result = interval * factor
if ((floor( data_low / result ) * result) + (intervals * result) >=
data_high):
return result
index = (index + 1) % 4
interval *= ( 2.0, 1.25, 2.0, 2.0 )[ index ]
def log_auto_ticks(data_low, data_high,
bound_low, bound_high,
tick_interval, use_endpoints = True):
"""Like auto_ticks(), but for log scales."""
tick_goal = 15
magic_numbers = [1, 2, 5]
explicit_ticks = False
if data_low<=0.0:
return []
if tick_interval != 'auto':
if tick_interval < 0:
tick_goal = -tick_interval
else:
magic_numbers = [tick_interval]
explicit_ticks = True
if data_low>data_high:
data_low, data_high = data_high, data_low
log_low = log10(data_low)
log_high = log10(data_high)
log_interval = log_high-log_low
if log_interval < 1.0:
# If less than a factor of 10 separates the data, just use the normal
# linear approach
return auto_ticks(data_low, data_high,
bound_low, bound_high,
tick_interval,
use_endpoints = False)
elif log_interval < (tick_goal+1)/2 or explicit_ticks:
# If there's enough space, try to put lines at the magic number multipliers
# inside each power of ten
# Try each interval to see how many ticks we get
for interval in magic_numbers:
ticklist = []
for exp in range(int(floor(log_low)), int(ceil(log_high))):
for multiplier in linspace(interval, 10.0, round(10.0/interval),
endpoint=1):
tick = 10**exp*multiplier
if tick >= data_low and tick <= data_high:
ticklist.append(tick)
if len(ticklist)<tick_goal+3 or explicit_ticks:
return ticklist
else:
# We put lines at every power of ten or less
startlog = ceil(log_low)
endlog = floor(log_high)
interval = ceil((endlog-startlog)/9.0)
expticks = arange(startlog, endlog, interval)
# There's no function that is like arange but inclusive, so
# we have to check whether the endpoint should be included.
if (endlog-startlog) % interval == 0.0:
expticks = concatenate([expticks, [endlog]])
return 10**expticks
#-------------------------------------------------------------------------------
# Compute the best lower and upper axis bounds for a range of data:
#-------------------------------------------------------------------------------
def auto_bounds ( data_low, data_high, tick_interval ):
""" Calculates appropriate upper and lower bounds for the axis from
the data bounds and the given axis interval.
The boundaries hit either exactly on the lower and upper values
or on the tick mark just beyond the lower and upper values.
"""
return ( calc_bound( data_low, tick_interval, False ),
calc_bound( data_high, tick_interval, True ) )
#-------------------------------------------------------------------------------
# Compute the best axis endpoint for a specified data value:
#-------------------------------------------------------------------------------
def calc_bound ( end_point, tick_interval, is_upper ):
""" Finds an axis end point that includes the value *end_point*.
If the tick mark interval results in a tick mark hitting directly on the
end point, *end_point* is returned. Otherwise, the location of the tick
mark just past *end_point* is returned. The *is_upper* parameter
specifies whether *end_point* is at the upper (True) or lower (False)
end of the axis.
"""
quotient, remainder = divmod( end_point, tick_interval )
if ((remainder == 0.0) or
(((tick_interval - remainder) / tick_interval) < 0.00001)):
return end_point
c1 = (quotient + 1.0) * tick_interval
c2 = quotient * tick_interval
if is_upper:
return max( c1, c2 )
return min( c1, c2 )
|