/usr/share/pyshared/ncepgrib2.py is in python-grib 1.9.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 | __version__ = '1.9.3'
import g2clib
import struct
import string
import math
import warnings
import operator
from datetime import datetime
try:
from StringIO import StringIO
except ImportError:
from io import BytesIO as StringIO
import numpy as np
from numpy import ma
try:
import pyproj
except ImportError:
try:
from mpl_toolkits.basemap import pyproj
except:
raise ImportError("either pyproj or basemap required")
# Code Table 3.2: Shape of the Earth.
_earthparams={0:6367470.0,
1:'Spherical - radius specified in m by data producer',
2:(6378160.0,6356775.0),
3:'OblateSpheroid - major and minor axes specified in km by data producer',
4:(6378137.0,6356752.314),
5:'WGS84',
6:6371229.0,
7:'OblateSpheroid - major and minor axes specified in m by data producer',
8:6371200.0,
255:'Missing'}
for _n in range(192):
if not _n in _earthparams: _earthparams[_n]='Reserved'
for _n in range(192,255):
_earthparams[_n] = 'Reserved for local use'
_table0={1:('Melbourne (WMC)','ammc'),
2:('Melbourne - BMRC (WMC)',None),
3:('Melbourne (WMC)',None),
4:('Moscow (WMC)',None),
5:('Moscow (WMC)',None),
6:('Moscow (WMC)',None),
7:('US National Weather Service - NCEP (WMC)','kwbc'),
8:('US National Weather Service - NWSTG (WMC)',None),
9:('US National Weather Service - Other (WMC)',None),
10:('Cairo (RSMC/RAFC)',None),
11:('Cairo (RSMC/RAFC)',None),
12:('Dakar (RSMC/RAFC)',None),
13:('Dakar (RSMC/RAFC)',None),
14:('Nairobi (RSMC/RAFC)',None),
15:('Nairobi (RSMC/RAFC)',None),
16:('Casablanca',None),
17:('Tunis (RSMC)',None),
18:('Tunis-Casablanca (RSMC)',None),
19:('Tunis-Casablanca (RSMC)',None),
20:('Las Palmas (RAFC)',None),
21:('Algiers (RSMC)',None),
22:('ACMAD',None),
23:('Mozambique (NMC)',None),
24:('Pretoria (RSMC)',None),
25:('La Reunion (RSMC)',None),
26:('Khabarovsk (RSMC)',None),
27:('Khabarovsk (RSMC)',None),
28:('New Delhi (RSMC/RAFC)',None),
29:('New Delhi (RSMC/RAFC)',None),
30:('Novosibirsk (RSMC)',None),
31:('Novosibirsk (RSMC)',None),
32:('Tashkent (RSMC)',None),
33:('Jeddah (RSMC)',None),
34:('Japanese Meteorological Agency - Tokyo (RSMC)','rjtd'),
35:('Japanese Meteorological Agency - Tokyo (RSMC)',None),
36:('Bankok',None),
37:('Ulan Bator',None),
38:('Beijing (RSMC)','babj'),
39:('Beijing (RSMC)',None),
40:('Korean Meteorological Administration - Seoul','rksl'),
41:('Buenos Aires (RSMC/RAFC)',None),
42:('Buenos Aires (RSMC/RAFC)',None),
43:('Brasilia (RSMC/RAFC)',None),
44:('Brasilia (RSMC/RAFC)',None),
45:('Santiago',None),
46:('Brazilian Space Agency - INPE','sbsj'),
47:('Columbia (NMC)',None),
48:('Ecuador (NMC)',None),
49:('Peru (NMC)',None),
50:('Venezuela (NMC)',None),
51:('Miami (RSMC/RAFC)',None),
52:('Tropical Prediction Center (NHC), Miami (RSMC)',None),
53:('Canadian Meteorological Service - Montreal (RSMC)',None),
54:('Canadian Meteorological Service - Montreal (RSMC)','cwao'),
55:('San Francisco',None),
56:('ARINC Center',None),
57:('U.S. Air Force - Global Weather Center',None),
58:('US Navy - Fleet Numerical Oceanography Center','fnmo'),
59:('NOAA Forecast Systems Lab, Boulder CO',None),
60:('National Center for Atmospheric Research (NCAR), Boulder, CO',None),
61:('Service ARGOS - Landover, MD, USA',None),
62:('US Naval Oceanographic Office',None),
63:('Reserved',None),
64:('Honolulu',None),
65:('Darwin (RSMC)',None),
66:('Darwin (RSMC)',None),
67:('Melbourne (RSMC)',None),
68:('Reserved',None),
69:('Wellington (RSMC/RAFC)',None),
70:('Wellington (RSMC/RAFC)',None),
71:('Nadi (RSMC)',None),
72:('Singapore',None),
73:('Malaysia (NMC)',None),
74:('U.K. Met Office - Exeter (RSMC)','egrr'),
75:('U.K. Met Office - Exeter (RSMC)',None),
76:('Moscow (RSMC/RAFC)',None),
77:('Reserved',None),
78:('Offenbach (RSMC)','edzw'),
79:('Offenbach (RSMC)',None),
80:('Rome (RSMC)','cnmc'),
81:('Rome (RSMC)',None),
82:('Norrkoping',None),
83:('Norrkoping',None),
84:('French Weather Service - Toulouse','lfpw'),
85:('French Weather Service - Toulouse','lfpw'),
86:('Helsinki',None),
87:('Belgrade',None),
88:('Oslo',None),
89:('Prague',None),
90:('Episkopi',None),
91:('Ankara',None),
92:('Frankfurt/Main (RAFC)',None),
93:('London (WAFC)',None),
94:('Copenhagen',None),
95:('Rota',None),
96:('Athens',None),
97:('European Space Agency (ESA)',None),
98:('European Center for Medium-Range Weather Forecasts (RSMC)','ecmf'),
99:('De BiltNone), Netherlands',None),
100:('Brazzaville',None),
101:('Abidjan',None),
102:('Libyan Arab Jamahiriya (NMC)',None),
103:('Madagascar (NMC)',None),
104:('Mauritius (NMC)',None),
105:('Niger (NMC)',None),
106:('Seychelles (NMC)',None),
107:('Uganda (NMC)',None),
108:('Tanzania (NMC)',None),
109:('Zimbabwe (NMC)',None),
110:('Hong-Kong',None),
111:('Afghanistan (NMC)',None),
112:('Bahrain (NMC)',None),
113:('Bangladesh (NMC)',None),
114:('Bhutan (NMC)',None),
115:('Cambodia (NMC)',None),
116:("Democratic People's Republic of Korea (NMC)",None),
117:('Islamic Republic of Iran (NMC)',None),
118:('Iraq (NMC)',None),
119:('Kazakhstan (NMC)',None),
120:('Kuwait (NMC)',None),
121:('Kyrgyz Republic (NMC)',None),
122:("Lao People's Democratic Republic (NMC)",None),
123:('MacaoNone), China',None),
124:('Maldives (NMC)',None),
125:('Myanmar (NMC)',None),
126:('Nepal (NMC)',None),
127:('Oman (NMC)',None),
128:('Pakistan (NMC)',None),
129:('Qatar (NMC)',None),
130:('Republic of Yemen (NMC)',None),
131:('Sri Lanka (NMC)',None),
132:('Tajikistan (NMC)',None),
133:('Turkmenistan (NMC)',None),
134:('United Arab Emirates (NMC)',None),
135:('Uzbekistan (NMC)',None),
136:('Socialist Republic of Viet Nam (NMC)',None),
137:('Reserved',None),
138:('Reserved',None),
139:('Reserved',None),
140:('Bolivia (NMC)',None),
141:('Guyana (NMC)',None),
142:('Paraguay (NMC)',None),
143:('Suriname (NMC)',None),
144:('Uruguay (NMC)',None),
145:('French Guyana',None),
146:('Brazilian Navy Hydrographic Center',None),
147:('Reserved',None),
148:('Reserved',None),
149:('Reserved',None),
150:('Antigua and Barbuda (NMC)',None),
151:('Bahamas (NMC)',None),
152:('Barbados (NMC)',None),
153:('Belize (NMC)',None),
154:('British Caribbean Territories Center',None),
155:('San Jose',None),
156:('Cuba (NMC)',None),
157:('Dominica (NMC)',None),
158:('Dominican Republic (NMC)',None),
159:('El Salvador (NMC)',None),
160:('US NOAA/NESDIS',None),
161:('US NOAA Office of Oceanic and Atmospheric Research',None),
162:('Guatemala (NMC)',None),
163:('Haiti (NMC)',None),
164:('Honduras (NMC)',None),
165:('Jamaica (NMC)',None),
166:('Mexico',None),
167:('Netherlands Antilles and Aruba (NMC)',None),
168:('Nicaragua (NMC)',None),
169:('Panama (NMC)',None),
170:('Saint Lucia (NMC)',None),
171:('Trinidad and Tobago (NMC)',None),
172:('French Departments',None),
173:('Reserved',None),
174:('Reserved',None),
175:('Reserved',None),
176:('Reserved',None),
177:('Reserved',None),
178:('Reserved',None),
179:('Reserved',None),
180:('Reserved',None),
181:('Reserved',None),
182:('Reserved',None),
183:('Reserved',None),
184:('Reserved',None),
185:('Reserved',None),
186:('Reserved',None),
187:('Reserved',None),
188:('Reserved',None),
189:('Reserved',None),
190:('Cook Islands (NMC)',None),
191:('French Polynesia (NMC)',None),
192:('Tonga (NMC)',None),
193:('Vanuatu (NMC)',None),
194:('Brunei (NMC)',None),
195:('Indonesia (NMC)',None),
196:('Kiribati (NMC)',None),
197:('Federated States of Micronesia (NMC)',None),
198:('New Caledonia (NMC)',None),
199:('Niue',None),
200:('Papua New Guinea (NMC)',None),
201:('Philippines (NMC)',None),
202:('Samoa (NMC)',None),
203:('Solomon Islands (NMC)',None),
204:('Reserved',None),
205:('Reserved',None),
206:('Reserved',None),
207:('Reserved',None),
208:('Reserved',None),
209:('Reserved',None),
210:('Frascati',None),
211:('Lanion',None),
212:('Lisboa',None),
213:('Reykjavik',None),
214:('Madrid','lemm'),
215:('Zurich',None),
216:('Service ARGOS - ToulouseNone), FR',None),
217:('Bratislava',None),
218:('Budapest',None),
219:('Ljubljana',None),
220:('Warsaw',None),
221:('Zagreb',None),
222:('Albania (NMC)',None),
223:('Armenia (NMC)',None),
224:('Austria (NMC)',None),
225:('Azerbaijan (NMC)',None),
226:('Belarus (NMC)',None),
227:('Belgium (NMC)',None),
228:('Bosnia and Herzegovina (NMC)',None),
229:('Bulgaria (NMC)',None),
230:('Cyprus (NMC)',None),
231:('Estonia (NMC)',None),
232:('Georgia (NMC)',None),
233:('Dublin',None),
234:('Israel (NMC)',None),
235:('Jordan (NMC)',None),
236:('Latvia (NMC)',None),
237:('Lebanon (NMC)',None),
238:('Lithuania (NMC)',None),
239:('Luxembourg',None),
240:('Malta (NMC)',None),
241:('Monaco',None),
242:('Romania (NMC)',None),
243:('Syrian Arab Republic (NMC)',None),
244:('The former Yugoslav Republic of Macedonia (NMC)',None),
245:('Ukraine (NMC)',None),
246:('Republic of Moldova',None),
247:('Reserved',None),
248:('Reserved',None),
249:('Reserved',None),
250:('Reserved',None),
251:('Reserved',None),
252:('Reserved',None),
253:('Reserved',None),
254:('EUMETSAT Operations Center',None),
255:('Missing Value',None)}
def _dec2bin(val, maxbits = 8):
"""
A decimal to binary converter. Returns bits in a list.
"""
retval = []
for i in range(maxbits - 1, -1, -1):
bit = int(val / (2 ** i))
val = (val % (2 ** i))
retval.append(bit)
return retval
def _putieeeint(r):
"""convert a float to a IEEE format 32 bit integer"""
ra = np.array([r],'f')
ia = np.empty(1,'i')
g2clib.rtoi_ieee(ra,ia)
return ia[0]
def _getieeeint(i):
"""convert an IEEE format 32 bit integer to a float"""
ia = np.array([i],'i')
ra = np.empty(1,'f')
g2clib.itor_ieee(ia,ra)
return ra[0]
def _isString(string):
"""Test if string is a string like object if not return 0 """
try: string + ''
except: return 0
else: return 1
class Grib2Message:
"""
Class for accessing data in a GRIB Edition 2 message.
The L{Grib2Decode} function returns a list of these class instances,
one for each grib message in the file.
When a class instance is created, metadata in the GRIB2 file
is decoded and used to set various instance variables.
@ivar bitmap_indicator_flag: flag to indicate whether a bit-map is used (0 for yes, 255 for no).
@ivar data_representation_template: data representation template from section 5.
@ivar data_representation_template_number: data representation template number
from section 5
(U{Table 5.0
<http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table5-0.shtml>})
@ivar has_local_use_section: True if grib message contains a local use
section. If True the actual local use section is contained in the
C{_local_use_section} instance variable, as a raw byte string.
@ivar discipline_code: product discipline code for grib message
(U{Table 0.0
<http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table0-0.shtml>}).
@ivar earthRmajor: major (equatorial) earth radius.
@ivar earthRminor: minor (polar) earth radius.
@ivar grid_definition_info: grid definition section information from section 3.
See L{Grib2Encode.addgrid} for details.
@ivar grid_definition_template: grid definition template from section 3.
@ivar grid_definition_template_number: grid definition template number from section 3
(U{Table 3.1
<http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table3-1.shtml>}).
@ivar gridlength_in_x_direction: x (or longitudinal) direction grid length.
@ivar gridlength_in_y_direction: y (or latitudinal) direction grid length.
@ivar identification_section: data from identification section (section 1).
See L{Grib2Encode.__init__} for details.
@ivar latitude_first_gridpoint: latitude of first grid point on grid.
@ivar latitude_last_gridpoint: latitude of last grid point on grid.
@ivar longitude_first_gridpoint: longitude of first grid point on grid.
@ivar longitude_last_gridpoint: longitude of last grid point on grid.
@ivar originating_center: name of national/international originating center.
@ivar center_wmo_code: 4 character wmo code for originating center.
@ivar scanmodeflags: scanning mode flags from Table 3.4
(U{Table 3.4
<http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table3-4.shtml>}).
- bit 1:
0 - Points in the first row or column scan in the +i (+x) direction
1 - Points in the first row or column scan in the -i (-x) direction
- bit 2:
0 - Points in the first row or column scan in the -j (-y) direction
1 - Points in the first row or column scan in the +j (+y) direction
- bit 3:
0 - Adjacent points in the i (x) direction are consecutive (row-major order).
1 - Adjacent points in the j (y) direction are consecutive (column-major order).
- bit 4:
0 - All rows scan in the same direction
1 - Adjacent rows scan in the opposite direction
@ivar number_of_data_points_to_unpack: total number of data points in grib message.
@ivar points_in_x_direction: number of points in the x (longitudinal) direction.
@ivar points_in_y_direction: number of points in the y (latitudinal) direction.
@ivar product_definition_template: product definition template from section 4.
@ivar product_definition_template_number: product definition template number from section 4
(U{Table 4.0
<http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table4-0.shtml>}).
@ivar shape_of_earth: string describing the shape of the earth (e.g. 'Oblate Spheroid', 'Spheroid').
@ivar spectral_truncation_parameters: pentagonal truncation parameters that describe the
spherical harmonic truncation (only relevant for grid_definition_template_numbers 50-52).
For triangular truncation, all three of these numbers are the same.
@ivar latitude_of_southern_pole: the geographic latitude in degrees of the southern
pole of the coordinate system (for rotated lat/lon or gaussian grids).
@ivar longitude_of_southern_pole: the geographic longitude in degrees of the southern
pole of the coordinate system (for rotated lat/lon or gaussian grids).
@ivar angle_of_pole_rotation: The angle of rotation in degrees about the new
polar axis (measured clockwise when looking from the southern to the northern pole)
of the coordinate system. For rotated lat/lon or gaussian grids.
@ivar missing_value: primary missing value (for data_representation_template_numbers
2 and 3).
@ivar missing_value2: secondary missing value (for data_representation_template_numbers
2 and 3).
@ivar proj4_: instance variables with this prefix are used to set the map projection
parameters for U{PROJ.4<http://proj.maptools.org>}.
"""
def __init__(self,**kwargs):
"""
create a Grib2Decode class instance given a GRIB Edition 2 filename.
(used by L{Grib2Decode} function - not directly called by user)
"""
for k,v in kwargs.items():
setattr(self,k,v)
# grid information
gdsinfo = self.grid_definition_info
gdtnum = self.grid_definition_template_number
gdtmpl = self.grid_definition_template
reggrid = gdsinfo[2] == 0 # gdsinfo[2]=0 means regular 2-d grid
# shape of the earth.
if gdtnum not in [50,51,52,1200]:
earthR = _earthparams[gdtmpl[0]]
if earthR == 'Reserved': earthR = None
else:
earthR = None
if _isString(earthR) and (earthR.startswith('Reserved') or earthR=='Missing'):
self.shape_of_earth = earthR
self.earthRminor = None
self.earthRmajor = None
elif _isString(earthR) and earthR.startswith('Spherical'):
self.shape_of_earth = earthR
scaledearthR = gdtmpl[2]
earthRscale = gdtmpl[1]
self.earthRmajor = math.pow(10,-earthRscale)*scaledearthR
self.earthRminor = self.earthRmajor
elif _isString(earthR) and earthR.startswith('OblateSpheroid'):
self.shape_of_earth = earthR
scaledearthRmajor = gdtmpl[4]
earthRmajorscale = gdtmpl[3]
self.earthRmajor = math.pow(10,-earthRmajorscale)*scaledearthRmajor
self.earthRmajor = self.earthRmajor*1000. # convert to m from km
scaledearthRminor = gdtmpl[6]
earthRminorscale = gdtmpl[5]
self.earthRminor = math.pow(10,-earthRminorscale)*scaledearthRminor
self.earthRminor = self.earthRminor*1000. # convert to m from km
elif _isString(earthR) and earthR.startswith('WGS84'):
self.shape_of_earth = earthR
self.earthRmajor = 6378137.0
self.earthRminor = 6356752.3142
elif isinstance(earthR,tuple):
self.shape_of_earth = 'OblateSpheroid'
self.earthRmajor = earthR[0]
self.earthRminor = earthR[1]
else:
if earthR is not None:
self.shape_of_earth = 'Spherical'
self.earthRmajor = earthR
self.earthRminor = self.earthRmajor
if reggrid and gdtnum not in [50,51,52,53,100,120,1000,1200]:
self.points_in_x_direction = gdtmpl[7]
self.points_in_y_direction = gdtmpl[8]
if not reggrid and gdtnum == 40: # 'reduced' gaussian grid.
self.points_in_y_direction = gdtmpl[8]
if gdtnum in [0,1,203,205,32768]: # regular or rotated lat/lon grid
scalefact = float(gdtmpl[9])
divisor = float(gdtmpl[10])
if scalefact == 0: scalefact = 1.
if divisor <= 0: divisor = 1.e6
self.latitude_first_gridpoint = scalefact*gdtmpl[11]/divisor
self.longitude_first_gridpoint = scalefact*gdtmpl[12]/divisor
self.latitude_last_gridpoint = scalefact*gdtmpl[14]/divisor
self.longitude_last_gridpoint = scalefact*gdtmpl[15]/divisor
self.gridlength_in_x_direction = scalefact*gdtmpl[16]/divisor
self.gridlength_in_y_direction = scalefact*gdtmpl[17]/divisor
if self.latitude_first_gridpoint > self.latitude_last_gridpoint:
self.gridlength_in_y_direction = -self.gridlength_in_y_direction
if self.longitude_first_gridpoint > self.longitude_last_gridpoint:
self.gridlength_in_x_direction = -self.gridlength_in_x_direction
self.scanmodeflags = _dec2bin(gdtmpl[18])[0:4]
if gdtnum == 1:
self.latitude_of_southern_pole = scalefact*gdtmpl[19]/divisor
self.longitude_of_southern_pole = scalefact*gdtmpl[20]/divisor
self.angle_of_pole_rotation = gdtmpl[21]
elif gdtnum == 10: # mercator
self.latitude_first_gridpoint = gdtmpl[9]/1.e6
self.longitude_first_gridpoint = gdtmpl[10]/1.e6
self.latitude_last_gridpoint = gdtmpl[13]/1.e6
self.longitude_last_gridpoint = gdtmpl[14]/1.e6
self.gridlength_in_x_direction = gdtmpl[17]/1.e3
self.gridlength_in_y_direction= gdtmpl[18]/1.e3
self.proj4_lat_ts = gdtmpl[12]/1.e6
self.proj4_lon_0 = 0.5*(self.longitude_first_gridpoint+self.longitude_last_gridpoint)
self.proj4_proj = 'merc'
self.scanmodeflags = _dec2bin(gdtmpl[15])[0:4]
elif gdtnum == 20: # stereographic
projflag = _dec2bin(gdtmpl[16])[0]
self.latitude_first_gridpoint = gdtmpl[9]/1.e6
self.longitude_first_gridpoint = gdtmpl[10]/1.e6
self.proj4_lat_ts = gdtmpl[12]/1.e6
if projflag == 0:
self.proj4_lat_0 = 90
elif projflag == 1:
self.proj4_lat_0 = -90
else:
raise ValueError('Invalid projection center flag = %s'%projflag)
self.proj4_lon_0 = gdtmpl[13]/1.e6
self.gridlength_in_x_direction = gdtmpl[14]/1000.
self.gridlength_in_y_direction = gdtmpl[15]/1000.
self.proj4_proj = 'stere'
self.scanmodeflags = _dec2bin(gdtmpl[17])[0:4]
elif gdtnum == 30: # lambert conformal
self.latitude_first_gridpoint = gdtmpl[9]/1.e6
self.longitude_first_gridpoint = gdtmpl[10]/1.e6
self.gridlength_in_x_direction = gdtmpl[14]/1000.
self.gridlength_in_y_direction = gdtmpl[15]/1000.
self.proj4_lat_1 = gdtmpl[18]/1.e6
self.proj4_lat_2 = gdtmpl[19]/1.e6
self.proj4_lat_0 = gdtmpl[12]/1.e6
self.proj4_lon_0 = gdtmpl[13]/1.e6
self.proj4_proj = 'lcc'
self.scanmodeflags = _dec2bin(gdtmpl[17])[0:4]
elif gdtnum == 31: # albers equal area.
self.latitude_first_gridpoint = gdtmpl[9]/1.e6
self.longitude_first_gridpoint = gdtmpl[10]/1.e6
self.gridlength_in_x_direction = gdtmpl[14]/1000.
self.gridlength_in_y_direction = gdtmpl[15]/1000.
self.proj4_lat_1 = gdtmpl[18]/1.e6
self.proj4_lat_2 = gdtmpl[19]/1.e6
self.proj4_lat_0 = gdtmpl[12]/1.e6
self.proj4_lon_0 = gdtmpl[13]/1.e6
self.proj4_proj = 'aea'
self.scanmodeflags = _dec2bin(gdtmpl[17])[0:4]
elif gdtnum == 40 or gdtnum == 41: # gaussian grid.
scalefact = float(gdtmpl[9])
divisor = float(gdtmpl[10])
if scalefact == 0: scalefact = 1.
if divisor <= 0: divisor = 1.e6
self.points_between_pole_and_equator = gdtmpl[17]
self.latitude_first_gridpoint = scalefact*gdtmpl[11]/divisor
self.longitude_first_gridpoint = scalefact*gdtmpl[12]/divisor
self.latitude_last_gridpoint = scalefact*gdtmpl[14]/divisor
self.longitude_last_gridpoint = scalefact*gdtmpl[15]/divisor
if reggrid:
self.gridlength_in_x_direction = scalefact*gdtmpl[16]/divisor
if self.longitude_first_gridpoint > self.longitude_last_gridpoint:
self.gridlength_in_x_direction = -self.gridlength_in_x_direction
self.scanmodeflags = _dec2bin(gdtmpl[18])[0:4]
if gdtnum == 41:
self.latitude_of_southern_pole = scalefact*gdtmpl[19]/divisor
self.longitude_of_southern_pole = scalefact*gdtmpl[20]/divisor
self.angle_of_pole_rotation = gdtmpl[21]
elif gdtnum == 50: # spectral coefficients.
self.spectral_truncation_parameters = (gdtmpl[0],gdtmpl[1],gdtmpl[2])
self.scanmodeflags = [None,None,None,None] # doesn't apply
elif gdtnum == 90: # near-sided vertical perspective satellite projection
self.proj4_lat_0 = gdtmpl[9]/1.e6
self.proj4_lon_0 = gdtmpl[10]/1.e6
self.proj4_h = self.earthRmajor * (gdtmpl[18]/1.e6)
dx = gdtmpl[12]
dy = gdtmpl[13]
# if lat_0 is equator, it's a geostationary view.
if self.proj4_lat_0 == 0.: # if lat_0 is equator, it's a
self.proj4_proj = 'geos'
# general case of 'near-side perspective projection' (untested)
else:
self.proj4_proj = 'nsper'
msg = """
only geostationary perspective is supported.
lat/lon values returned by grid method may be incorrect."""
warnings.warn(msg)
# latitude of horizon on central meridian
lonmax = 90.-(180./np.pi)*np.arcsin(self.earthRmajor/self.proj4_h)
# longitude of horizon on equator
latmax = 90.-(180./np.pi)*np.arcsin(self.earthRminor/self.proj4_h)
# truncate to nearest thousandth of a degree (to make sure
# they aren't slightly over the horizon)
latmax = int(1000*latmax)/1000.
lonmax = int(1000*lonmax)/1000.
# h is measured from surface of earth at equator.
self.proj4_h = self.proj4_h - self.earthRmajor
# width and height of visible projection
P = pyproj.Proj(proj=self.proj4_proj,\
a=self.earthRmajor,b=self.earthRminor,\
lat_0=0,lon_0=0,h=self.proj4_h)
x1,y1 = P(0.,latmax); x2,y2 = P(lonmax,0.)
width = 2*x2; height = 2*y1
self.gridlength_in_x_direction = width/dx
self.gridlength_in_y_direction = height/dy
self.scanmodeflags = _dec2bin(gdtmpl[16])[0:4]
elif gdtnum == 110: # azimuthal equidistant.
self.proj4_lat_0 = gdtmpl[9]/1.e6
self.proj4_lon_0 = gdtmpl[10]/1.e6
self.gridlength_in_x_direction = gdtmpl[12]/1000.
self.gridlength_in_y_direction = gdtmpl[13]/1000.
self.proj4_proj = 'aeqd'
self.scanmodeflags = _dec2bin(gdtmpl[15])[0:4]
elif gdtnum == 204: # curvilinear orthogonal
self.scanmodeflags = _dec2bin(gdtmpl[18])[0:4]
# missing value.
drtnum = self.data_representation_template_number
drtmpl = self.data_representation_template
if (drtnum == 2 or drtnum == 3) and drtmpl[6] != 0:
self.missing_value = _getieeeint(drtmpl[7])
if drtmpl[6] == 2:
self.missing_value2 = _getieeeint(drtmpl[8])
def __repr__(self):
strings = []
keys = self.__dict__.keys()
keys.sort()
for k in keys:
if not k.startswith('_'):
strings.append('%s = %s\n'%(k,self.__dict__[k]))
return ''.join(strings)
def data(self,fill_value=9.9692099683868690e+36,masked_array=True,expand=True,order=None):
"""
returns an unpacked data grid. Can also be accomplished with L{values}
property.
@keyword fill_value: missing or masked data is filled with this value
(default 9.9692099683868690e+36).
@keyword masked_array: if True, return masked array if there is bitmap
for missing or masked data (default True).
@keyword expand: if True (default), ECMWF 'reduced' gaussian grids are
expanded to regular gaussian grids.
@keyword order: if 1, linear interpolation is used for expanding reduced
gaussian grids. if 0, nearest neighbor interpolation is used. Default
is 0 if grid has missing or bitmapped values, 1 otherwise.
@return: C{B{data}}, a float32 numpy regular or masked array
with shape (nlats,lons) containing the request grid.
"""
# make sure scan mode is supported.
# if there is no 'scanmodeflags', then grid is not supported.
from redtoreg import _redtoreg
if not hasattr(self,'scanmodeflags'):
raise ValueError('unsupported grid definition template number %s'%self.grid_definition_template_number)
else:
if self.scanmodeflags[2]:
storageorder='F'
else:
storageorder='C'
bitmapflag = self.bitmap_indicator_flag
drtnum = self.data_representation_template_number
drtmpl = self.data_representation_template
# default order=0 is missing values or bitmap exists.
if order is None:
if ((drtnum == 3 or drtnum == 2) and drtmpl[6] != 0) or bitmapflag == 0:
order = 0
else:
order = 1
try:
f = open(self._grib_filename,'rb')
except (TypeError,IOError):
f = StringIO(self._grib_filename)
f.seek(self._grib_message_byteoffset)
gribmsg = f.read(self._grib_message_length)
f.close()
gdtnum = self.grid_definition_template_number
gdtmpl = self.grid_definition_template
ndpts = self.number_of_data_points_to_unpack
gdsinfo = self.grid_definition_info
ngrdpts = gdsinfo[1]
ipos = self._section7_byte_offset
fld1=g2clib.unpack7(gribmsg,gdtnum,gdtmpl,drtnum,drtmpl,ndpts,ipos,np.empty,storageorder=storageorder)
# apply bitmap.
if bitmapflag == 0:
bitmap=self._bitmap
fld = fill_value*np.ones(ngrdpts,'f')
np.put(fld,np.nonzero(bitmap),fld1)
if masked_array:
fld = ma.masked_values(fld,fill_value)
# missing values instead of bitmap
elif masked_array and hasattr(self,'missing_value'):
if hasattr(self, 'missing_value2'):
mask = np.logical_or(fld1 == self.missing_value, fld1 == self.missing_value2)
else:
mask = fld1 == self.missing_value
fld = ma.array(fld1,mask=mask)
else:
fld = fld1
nx = None; ny = None
if hasattr(self,'points_in_x_direction'):
nx = self.points_in_x_direction
if hasattr(self,'points_in_y_direction'):
ny = self.points_in_y_direction
if nx is not None and ny is not None: # rectangular grid.
if ma.isMA(fld):
fld = ma.reshape(fld,(ny,nx))
else:
fld = np.reshape(fld,(ny,nx))
else:
if gdsinfo[2] and gdtnum == 40: # ECMWF 'reduced' global gaussian grid.
if expand:
nx = 2*ny
lonsperlat = self.grid_definition_list
if ma.isMA(fld):
fld = ma.filled(fld)
fld = _redtoreg(nx, lonsperlat,\
fld.astype('f8'), fill_value)
fld = ma.masked_values(fld,fill_value)
else:
fld = _redtoreg(nx, lonsperlat, fld.astype('f8'),\
fill_value)
# check scan modes for rect grids.
if nx is not None and ny is not None:
# rows scan in the -x direction (so flip)
if self.scanmodeflags[0]:
fldsave = fld.astype('f') # casting makes a copy
fld[:,:] = fldsave[:,::-1]
# columns scan in the -y direction (so flip)
if not self.scanmodeflags[1]:
fldsave = fld.astype('f') # casting makes a copy
fld[:,:] = fldsave[::-1,:]
# adjacent rows scan in opposite direction.
# (flip every other row)
if self.scanmodeflags[3]:
fldsave = fld.astype('f') # casting makes a copy
fld[1::2,:] = fldsave[1::2,::-1]
return fld
values = property(data)
def latlons(self):
"""alias for L{grid}"""
return self.grid()
def grid(self):
"""
return lats,lons (in degrees) of grid.
currently can handle reg. lat/lon, global gaussian, mercator, stereographic,
lambert conformal, albers equal-area, space-view and azimuthal
equidistant grids. L{latlons} method does the same thing.
@return: C{B{lats},B{lons}}, float32 numpy arrays
containing latitudes and longitudes of grid (in degrees).
"""
from pygrib import gaulats
gdsinfo = self.grid_definition_info
gdtnum = self.grid_definition_template_number
gdtmpl = self.grid_definition_template
reggrid = gdsinfo[2] == 0 # gdsinfo[2]=0 means regular 2-d grid
projparams = {}
projparams['a']=self.earthRmajor
projparams['b']=self.earthRminor
if gdtnum == 0: # regular lat/lon grid
lon1, lat1 = self.longitude_first_gridpoint, self.latitude_first_gridpoint
lon2, lat2 = self.longitude_last_gridpoint, self.latitude_last_gridpoint
delon = self.gridlength_in_x_direction
delat = self.gridlength_in_y_direction
lats = np.arange(lat1,lat2+delat,delat)
lons = np.arange(lon1,lon2+delon,delon)
# flip if scan mode says to.
if self.scanmodeflags[0]:
lons = lons[::-1]
if not self.scanmodeflags[1]:
lats = lats[::-1]
projparams['proj'] = 'cyl'
lons,lats = np.meshgrid(lons,lats) # make 2-d arrays.
elif gdtnum == 40: # gaussian grid (only works for global!)
lon1, lat1 = self.longitude_first_gridpoint, self.latitude_first_gridpoint
lon2, lat2 = self.longitude_last_gridpoint, self.latitude_last_gridpoint
nlats = self.points_in_y_direction
if not reggrid: # ECMWF 'reduced' gaussian grid.
nlons = 2*nlats
delon = 360./nlons
else:
nlons = self.points_in_x_direction
delon = self.gridlength_in_x_direction
lons = np.arange(lon1,lon2+delon,delon)
# compute gaussian lats (north to south)
lats = gaulats(nlats)
if lat1 < lat2: # reverse them if necessary
lats = lats[::-1]
# flip if scan mode says to.
if self.scanmodeflags[0]:
lons = lons[::-1]
if not self.scanmodeflags[1]:
lats = lats[::-1]
projparams['proj'] = 'cyl'
lons,lats = np.meshgrid(lons,lats) # make 2-d arrays
# mercator, lambert conformal, stereographic, albers equal area, azimuthal equidistant
elif gdtnum in [10,20,30,31,110]:
nx = self.points_in_x_direction
ny = self.points_in_y_direction
dx = self.gridlength_in_x_direction
dy = self.gridlength_in_y_direction
lon1, lat1 = self.longitude_first_gridpoint, self.latitude_first_gridpoint
if gdtnum == 10: # mercator.
projparams['lat_ts']=self.proj4_lat_ts
projparams['proj']=self.proj4_proj
projparams['lon_0']=self.proj4_lon_0
pj = pyproj.Proj(projparams)
llcrnrx, llcrnry = pj(lon1,lat1)
x = llcrnrx+dx*np.arange(nx)
y = llcrnry+dy*np.arange(ny)
x, y = np.meshgrid(x, y)
lons, lats = pj(x, y, inverse=True)
elif gdtnum == 20: # stereographic
projparams['lat_ts']=self.proj4_lat_ts
projparams['proj']=self.proj4_proj
projparams['lat_0']=self.proj4_lat_0
projparams['lon_0']=self.proj4_lon_0
pj = pyproj.Proj(projparams)
llcrnrx, llcrnry = pj(lon1,lat1)
x = llcrnrx+dx*np.arange(nx)
y = llcrnry+dy*np.arange(ny)
x, y = np.meshgrid(x, y)
lons, lats = pj(x, y, inverse=True)
elif gdtnum in [30,31]: # lambert, albers
projparams['lat_1']=self.proj4_lat_1
projparams['lat_2']=self.proj4_lat_2
projparams['proj']=self.proj4_proj
projparams['lon_0']=self.proj4_lon_0
pj = pyproj.Proj(projparams)
llcrnrx, llcrnry = pj(lon1,lat1)
x = llcrnrx+dx*np.arange(nx)
y = llcrnry+dy*np.arange(ny)
x, y = np.meshgrid(x, y)
lons, lats = pj(x, y, inverse=True)
elif gdtnum == 110: # azimuthal equidistant
projparams['proj']=self.proj4_proj
projparams['lat_0']=self.proj4_lat_0
projparams['lon_0']=self.proj4_lon_0
pj = pyproj.Proj(projparams)
llcrnrx, llcrnry = pj(lon1,lat1)
x = llcrnrx+dx*np.arange(nx)
y = llcrnry+dy*np.arange(ny)
x, y = np.meshgrid(x, y)
lons, lats = pj(x, y, inverse=True)
elif gdtnum == 90: # satellite projection.
nx = self.points_in_x_direction
ny = self.points_in_y_direction
dx = self.gridlength_in_x_direction
dy = self.gridlength_in_y_direction
projparams['proj']=self.proj4_proj
projparams['lon_0']=self.proj4_lon_0
projparams['lat_0']=self.proj4_lat_0
projparams['h']=self.proj4_h
pj = pyproj.Proj(projparams)
x = dx*np.indices((ny,nx),'f')[1,:,:]
x = x - 0.5*x.max()
y = dy*np.indices((ny,nx),'f')[0,:,:]
y = y - 0.5*y.max()
lons, lats = pj(x,y,inverse=True)
# set lons,lats to 1.e30 where undefined
abslons = np.fabs(lons); abslats = np.fabs(lats)
lons = np.where(abslons < 1.e20, lons, 1.e30)
lats = np.where(abslats < 1.e20, lats, 1.e30)
else:
raise ValueError('unsupported grid')
self.projparams = projparams
return lats.astype('f'), lons.astype('f')
def Grib2Decode(filename,gribmsg=False):
"""
Read the contents of a GRIB2 file.
@param filename: name of GRIB2 file (default, gribmsg=False) or binary string
representing a grib message (if gribmsg=True).
@return: a list of L{Grib2Message} instances representing all of the
grib messages in the file. Messages with multiple fields are split
into separate messages (so that each L{Grib2Message} instance contains
just one data field). The metadata in each GRIB2 message can be
accessed via L{Grib2Message} instance variables, the actual data
can be read using L{Grib2Message.data}, and the lat/lon values of the grid
can be accesses using L{Grib2Message.grid}. If there is only one grib
message, just the L{Grib2Message} instance is returned, instead of a list
with one element.
"""
if gribmsg:
f = StringIO(filename)
else:
f = open(filename,'rb')
nmsg = 0
# loop over grib messages, read section 0, get entire grib message.
disciplines = []
startingpos = []
msglen = []
while 1:
# find next occurence of string 'GRIB' (or EOF).
nbyte = f.tell()
while 1:
f.seek(nbyte)
start = f.read(4).decode('ascii','ignore')
if start == '' or start == 'GRIB': break
nbyte = nbyte + 1
if start == '': break # at EOF
# otherwise, start (='GRIB') contains indicator message (section 0)
startpos = f.tell()-4
f.seek(2,1) # next two octets are reserved
# get discipline info.
disciplines.append(struct.unpack('>B',f.read(1))[0])
# check to see it's a grib edition 2 file.
vers = struct.unpack('>B',f.read(1))[0]
if vers != 2:
raise IOError('not a GRIB2 file (version number %d)' % vers)
lengrib = struct.unpack('>q',f.read(8))[0]
msglen.append(lengrib)
startingpos.append(startpos)
# read in entire grib message.
f.seek(startpos)
gribmsg = f.read(lengrib)
# make sure the message ends with '7777'
end = gribmsg[-4:lengrib].decode('ascii','ignore')
if end != '7777':
raise IOError('partial GRIB message (no "7777" at end)')
# do next message.
nmsg=nmsg+1
# if no grib messages found, nmsg is still 0 and it's not GRIB.
if nmsg==0:
raise IOError('not a GRIB file')
# now for each grib message, find number of fields.
numfields = []
f.seek(0) # rewind file.
for n in range(nmsg):
f.seek(startingpos[n])
gribmsg = f.read(msglen[n])
pos = 0
numflds = 0
while 1:
if gribmsg[pos:pos+4].decode('ascii','ignore') == 'GRIB':
sectnum = 0
lensect = 16
elif gribmsg[pos:pos+4].decode('ascii','ignore') == '7777':
break
else:
lensect = struct.unpack('>i',gribmsg[pos:pos+4])[0]
sectnum = struct.unpack('>B',gribmsg[pos+4:pos+5])[0]
if sectnum == 4: numflds=numflds+1
#if sectnum == 2: numlocal=numlocal+1
pos = pos + lensect
#print sectnum,lensect,pos
#print n+1,len(gribmsg),numfields,numlocal
numfields.append(numflds)
# decode each section in grib message (sections 1 and above).
gdtnum = [] # grid defn template number from sxn 3
gdtmpl = [] # grid defn template from sxn 3
gdeflist = [] # optional grid definition list from sxn 3
gdsinfo = [] # grid definition section info from sxn3
pdtmpl = [] # product defn template from sxn 4
pdtnum = [] # product defn template number from sxn 4
coordlist = [] # vertical coordinate info from sxn 4
drtmpl = [] # data representation template from sxn 5
drtnum = [] # data representation template number from sxn 5
ndpts = [] # number of data points to be unpacked (from sxn 5)
bitmapflag = [] # bit-map indicator flag from sxn 6
bitmap = [] # bitmap from sxn 6.
pos7 = [] # byte offset for section 7.
localsxn = [] # local use sections.
msgstart = [] # byte offset in file for message start.
msglength = [] # length of the message in bytes.
message = [] # the actual grib message.
identsect = [] # identification section (section 1).
discipline = [] # discipline code.
for n in range(nmsg):
spos = startingpos[n]
lengrib = msglen[n]
#gribmsg = gribmsgs[n]
f.seek(spos)
gribmsg = f.read(lengrib)
discipl = disciplines[n]
lensect0 = 16
# get length of section 1 and section number.
#lensect1 = struct.unpack('>i',gribmsg[lensect0:lensect0+4])[0]
#sectnum1 = struct.unpack('>B',gribmsg[lensect0+4])[0]
#print 'sectnum1, lensect1 = ',sectnum1,lensect1
# unpack section 1, octets 1-21 (13 parameters). This section
# can occur only once per grib message.
#idsect,pos = _unpack1(gribmsg,lensect0) # python version
idsect,pos = g2clib.unpack1(gribmsg,lensect0,np.empty) # c version
# loop over rest of sections in message.
gdtnums = []
gdtmpls = []
gdeflists = []
gdsinfos = []
pdtmpls = []
coordlists = []
pdtnums = []
drtmpls = []
drtnums = []
ndptslist = []
bitmapflags = []
bitmaps = []
sxn7pos = []
localsxns = []
while 1:
# check to see if this is the end of the message.
if gribmsg[pos:pos+4].decode('ascii','ignore') == '7777': break
lensect = struct.unpack('>i',gribmsg[pos:pos+4])[0]
sectnum = struct.unpack('>B',gribmsg[pos+4:pos+5])[0]
# section 2, local use section.
if sectnum == 2:
# "local use section", used by NDFD to store WX
# strings. This section is returned as a raw
# bytestring for further dataset-specific parsing,
# not as a numpy array.
localsxns.append(gribmsg[pos+5:pos+lensect])
pos = pos + lensect
# section 3, grid definition section.
elif sectnum == 3:
gds,gdtempl,deflist,pos = g2clib.unpack3(gribmsg,pos,np.empty)
gdtnums.append(gds[4])
gdtmpls.append(gdtempl)
gdeflists.append(deflist)
gdsinfos.append(gds)
# section, product definition section.
elif sectnum == 4:
pdtempl,pdtn,coordlst,pos = g2clib.unpack4(gribmsg,pos,np.empty)
pdtmpls.append(pdtempl)
coordlists.append(coordlst)
pdtnums.append(pdtn)
# section 5, data representation section.
elif sectnum == 5:
drtempl,drtn,npts,pos = g2clib.unpack5(gribmsg,pos,np.empty)
drtmpls.append(drtempl)
drtnums.append(drtn)
ndptslist.append(npts)
# section 6, bit-map section.
elif sectnum == 6:
bmap,bmapflag = g2clib.unpack6(gribmsg,gds[1],pos,np.empty)
#bitmapflag = struct.unpack('>B',gribmsg[pos+5])[0]
if bmapflag == 0:
bitmaps.append(bmap.astype('b'))
# use last defined bitmap.
elif bmapflag == 254:
bmapflag = 0
for bmp in bitmaps[::-1]:
if bmp is not None: bitmaps.append(bmp)
else:
bitmaps.append(None)
bitmapflags.append(bmapflag)
pos = pos + lensect
# section 7, data section (nothing done here,
# data unpacked when getfld method is invoked).
else:
if sectnum != 7:
msg = 'unknown section = %i' % sectnum
raise ValueError(msg)
sxn7pos.append(pos)
pos = pos + lensect
# extend by repeating last value for all remaining fields.
gdtnum.append(_repeatlast(numfields[n],gdtnums))
gdtmpl.append(_repeatlast(numfields[n],gdtmpls))
gdeflist.append(_repeatlast(numfields[n],gdeflists))
gdsinfo.append(_repeatlast(numfields[n],gdsinfos))
pdtmpl.append(_repeatlast(numfields[n],pdtmpls))
pdtnum.append(_repeatlast(numfields[n],pdtnums))
coordlist.append(_repeatlast(numfields[n],coordlists))
drtmpl.append(_repeatlast(numfields[n],drtmpls))
drtnum.append(_repeatlast(numfields[n],drtnums))
ndpts.append(_repeatlast(numfields[n],ndptslist))
bitmapflag.append(_repeatlast(numfields[n],bitmapflags))
bitmap.append(_repeatlast(numfields[n],bitmaps))
pos7.append(_repeatlast(numfields[n],sxn7pos))
if len(localsxns) == 0:
localsxns = [None]
localsxn.append(_repeatlast(numfields[n],localsxns))
msgstart.append(_repeatlast(numfields[n],[spos]))
msglength.append(_repeatlast(numfields[n],[lengrib]))
identsect.append(_repeatlast(numfields[n],[idsect]))
discipline.append(_repeatlast(numfields[n],[discipl]))
gdtnum = _flatten(gdtnum)
gdtmpl = _flatten(gdtmpl)
gdeflist = _flatten(gdeflist)
gdsinfo = _flatten(gdsinfo)
pdtmpl = _flatten(pdtmpl)
pdtnum = _flatten(pdtnum)
coordlist = _flatten(coordlist)
drtmpl = _flatten(drtmpl)
drtnum = _flatten(drtnum)
ndpts = _flatten(ndpts)
bitmapflag = _flatten(bitmapflag)
bitmap = _flatten(bitmap)
pos7 = _flatten(pos7)
localsxn = _flatten(localsxn)
msgstart = _flatten(msgstart)
msglength = _flatten(msglength)
identsect = _flatten(identsect)
discipline = _flatten(discipline)
gribs = []
for n in range(len(msgstart)):
kwargs = {}
kwargs['originating_center']=_table0[identsect[n][0]][0]
wmo_code = _table0[identsect[n][0]][1]
if wmo_code is not None:
kwargs['center_wmo_code']=wmo_code
kwargs['grid_definition_template_number']=gdtnum[n]
kwargs['grid_definition_template']=gdtmpl[n]
if gdeflist[n] != []:
kwargs['grid_definition_list']=gdeflist[n]
kwargs['grid_definition_info']=gdsinfo[n]
kwargs['discipline_code']=discipline[n]
kwargs['product_definition_template_number']=pdtnum[n]
kwargs['product_definition_template']=pdtmpl[n]
kwargs['data_representation_template_number']=drtnum[n]
kwargs['data_representation_template']=drtmpl[n]
if coordlist[n] != []:
kwargs['extra_vertical_coordinate_info']=coordlist[n]
kwargs['number_of_data_points_to_unpack']=ndpts[n]
kwargs['bitmap_indicator_flag']=bitmapflag[n]
if bitmap[n] is not []:
kwargs['_bitmap']=bitmap[n]
kwargs['_section7_byte_offset']=pos7[n]
kwargs['_grib_message_byteoffset']=msgstart[n]
kwargs['_grib_message_length']=msglength[n]
kwargs['_grib_filename']=filename
kwargs['identification_section']=identsect[n]
kwargs['_grib_message_number']=n+1
if localsxn[n] is not None:
kwargs['has_local_use_section'] = True
kwargs['_local_use_section']=localsxn[n]
else:
kwargs['has_local_use_section'] = False
gribs.append(Grib2Message(**kwargs))
f.close()
if len(gribs) == 1:
return gribs[0]
else:
return gribs
def dump(filename, grbs):
"""
write the given L{Grib2Message} instances to a grib file.
@param filename: file to write grib data to.
@param grbs: a list of L{Grib2Message} instances.
"""
gribfile = open(filename,'wb')
for grb in grbs:
try:
f = open(grb._grib_filename,'rb')
except TypeError:
f = StringIO(grb._grib_filename)
f.seek(grb._grib_message_byteoffset)
gribmsg = f.read(grb._grib_message_length)
f.close()
gribfile.write(gribmsg)
gribfile.close()
# private methods and functions below here.
def _getdate(idsect):
"""return yyyy,mm,dd,min,ss from section 1"""
yyyy=idsect[5]
mm=idsect[6]
dd=idsect[7]
hh=idsect[8]
min=idsect[9]
ss=idsect[10]
return yyyy,mm,dd,hh,min,ss
def _unpack1(gribmsg,pos):
"""unpack section 1 given starting point in bytes
used to test pyrex interface to g2_unpack1"""
idsect = []
pos = pos + 5
idsect.append(struct.unpack('>h',gribmsg[pos:pos+2])[0])
pos = pos + 2
idsect.append(struct.unpack('>h',gribmsg[pos:pos+2])[0])
pos = pos + 2
idsect.append(struct.unpack('>B',gribmsg[pos:pos+1])[0])
pos = pos + 1
idsect.append(struct.unpack('>B',gribmsg[pos:pos+1])[0])
pos = pos + 1
idsect.append(struct.unpack('>B',gribmsg[pos:pos+1])[0])
pos = pos + 1
idsect.append(struct.unpack('>h',gribmsg[pos:pos+2])[0])
pos = pos + 2
idsect.append(struct.unpack('>B',gribmsg[pos:pos+1])[0])
pos = pos + 1
idsect.append(struct.unpack('>B',gribmsg[pos:pos+1])[0])
pos = pos + 1
idsect.append(struct.unpack('>B',gribmsg[pos:pos+1])[0])
pos = pos + 1
idsect.append(struct.unpack('>B',gribmsg[pos:pos+1])[0])
pos = pos + 1
idsect.append(struct.unpack('>B',gribmsg[pos:pos+1])[0])
pos = pos + 1
idsect.append(struct.unpack('>B',gribmsg[pos:pos+1])[0])
pos = pos + 1
idsect.append(struct.unpack('>B',gribmsg[pos:pos+1])[0])
pos = pos + 1
return np.array(idsect,'i'),pos
def _repeatlast(numfields,listin):
"""repeat last item in listin, until len(listin) = numfields"""
if len(listin) < numfields:
last = listin[-1]
for n in range(len(listin),numfields):
listin.append(last)
return listin
def _flatten(lst):
try:
flist = functools.reduce(operator.add,lst)
except NameError: # no reduce in python 3.
import functools
flist = functools.reduce(operator.add,lst)
return flist
class Grib2Encode:
"""
Class for encoding data into a GRIB2 message.
- Creating a class instance (L{__init__}) initializes the message and adds
sections 0 and 1 (the indicator and identification sections),
- method L{addgrid} adds a grid definition (section 3) to the messsage.
- method L{addfield} adds sections 4-7 to the message (the product
definition, data representation, bitmap and data sections).
- method L{end} adds the end section (section 8) and terminates the message.
A GRIB Edition 2 message is a machine independent format for storing
one or more gridded data fields. Each GRIB2 message consists of the
following sections:
- SECTION 0: Indicator Section - only one per message
- SECTION 1: Identification Section - only one per message
- SECTION 2: (Local Use Section) - optional
- SECTION 3: Grid Definition Section
- SECTION 4: Product Definition Section
- SECTION 5: Data Representation Section
- SECTION 6: Bit-map Section
- SECTION 7: Data Section
- SECTION 8: End Section
Sequences of GRIB sections 2 to 7, 3 to 7, or sections 4 to 7 may be repeated
within a single GRIB message. All sections within such repeated sequences
must be present and shall appear in the numerical order noted above.
Unrepeated sections remain in effect until redefined.
Note: Writing section 2 (the 'local use section') is
not yet supported.
@ivar msg: A binary string containing the GRIB2 message.
After the message has been terminated by calling
the L{end} method, this string can be written to a file.
"""
def __init__(self, discipline, idsect):
"""
create a Grib2Enecode class instance given the GRIB2 discipline
parameter and the identification section (sections 0 and 1).
The GRIB2 message is stored as a binary string in instance variable L{msg}.
L{addgrid}, L{addfield} and L{end} class methods must be called to complete
the GRIB2 message.
@param discipline: Discipline or GRIB Master Table Number (Code Table 0.0).
(0 for meteorlogical, 1 for hydrological, 2 for land surface, 3 for space,
10 for oceanographic products).
@param idsect: Sequence containing identification section (section 1).
- idsect[0]=Id of orginating centre (Common Code
U{Table C-1<http://www.nws.noaa.gov/tg/GRIB_C1.htm>})
- idsect[1]=Id of orginating sub-centre (local table)
- idsect[2]=GRIB Master Tables Version Number (Code
U{Table 1.0
<http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table1-0.shtml>})
- idsect[3]=GRIB Local Tables Version Number (Code
U{Table 1.1
<http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table1-1.shtml>})
- idsect[4]=Significance of Reference Time (Code
U{Table 1.2
<http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table1-2.shtml>})
- idsect[5]=Reference Time - Year (4 digits)
- idsect[6]=Reference Time - Month
- idsect[7]=Reference Time - Day
- idsect[8]=Reference Time - Hour
- idsect[9]=Reference Time - Minute
- idsect[10]=Reference Time - Second
- idsect[11]=Production status of data (Code
U{Table 1.3
<http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table1-3.shtml>})
- idsect[12]=Type of processed data (Code
U{Table
1.4<http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table1-4.shtml>})
"""
self.msg,msglen=g2clib.grib2_create(np.array([discipline,2],np.int32),np.array(idsect,np.int32))
def addgrid(self,gdsinfo,gdtmpl,deflist=None):
"""
Add a grid definition section (section 3) to the GRIB2 message.
@param gdsinfo: Sequence containing information needed for the grid definition section.
- gdsinfo[0] = Source of grid definition (see Code
U{Table 3.0
<http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table3-0.shtml>})
- gdsinfo[1] = Number of grid points in the defined grid.
- gdsinfo[2] = Number of octets needed for each additional grid points defn.
Used to define number of points in each row for non-reg grids (=0 for
regular grid).
- gdsinfo[3] = Interp. of list for optional points defn (Code
U{Table 3.11
<http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table3-11.shtml>})
- gdsinfo[4] = Grid Definition Template Number (Code
U{Table 3.1
<http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table3-1.shtml>})
@param gdtmpl: Contains the data values for the specified Grid Definition
Template ( NN=gdsinfo[4] ). Each element of this integer
array contains an entry (in the order specified) of Grid
Definition Template 3.NN
@param deflist: (Used if gdsinfo[2] != 0) Sequence containing the
number of grid points contained in each row (or column)
of a non-regular grid.
"""
if deflist is not None:
dflist = np.array(deflist,'i')
else:
dflist = None
self.scanmodeflags = None
gdtnum = gdsinfo[4]
if gdtnum in [0,1,2,3,40,41,42,43,44,203,205,32768,32769]:
self.scanmodeflags = _dec2bin(gdtmpl[18])[0:4]
elif gdtnum == 10: # mercator
self.scanmodeflags = _dec2bin(gdtmpl[15])[0:4]
elif gdtnum == 20: # stereographic
self.scanmodeflags = _dec2bin(gdtmpl[17])[0:4]
elif gdtnum == 30: # lambert conformal
self.scanmodeflags = _dec2bin(gdtmpl[17])[0:4]
elif gdtnum == 31: # albers equal area.
self.scanmodeflags = _dec2bin(gdtmpl[17])[0:4]
elif gdtnum == 90: # near-sided vertical perspective satellite projection
self.scanmodeflags = _dec2bin(gdtmpl[16])[0:4]
elif gdtnum == 110: # azimuthal equidistant.
self.scanmodeflags = _dec2bin(gdtmpl[15])[0:4]
elif gdtnum == 120:
self.scanmodeflags = _dec2bin(gdtmpl[6])[0:4]
elif gdtnum == 204: # curvilinear orthogonal
self.scanmodeflags = _dec2bin(gdtmpl[18])[0:4]
elif gdtnum in [1000,1100]:
self.scanmodeflags = _dec2bin(gdtmpl[12])[0:4]
self.msg,msglen=g2clib.grib2_addgrid(self.msg,np.array(gdsinfo,'i'),np.array(gdtmpl,'i'),dflist)
def addfield(self,pdtnum,pdtmpl,drtnum,drtmpl,field,coordlist=None):
"""
Add a product definition section, data representation section,
bitmap section and data section to the GRIB2 message (sections 4-7).
Must be called after grid definition section is created with L{addgrid}.
@param pdtnum: Product Definition Template Number (see Code U{Table
4.0<http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table4-0.shtml>})
@param pdtmpl: Sequence with the data values for the specified Product Definition
Template (N=pdtnum). Each element of this integer
array contains an entry (in the order specified) of Product
Definition Template 4.N
@param drtnum: Data Representation Template Number (see Code
U{Table 5.0
<http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table5-0.shtml>})
@param drtmpl: Sequence with the data values for the specified Data Representation
Template (N=drtnum). Each element of this integer
array contains an entry (in the order specified) of Data
Representation Template 5.N
Note that some values in this template (eg. reference
values, number of bits, etc...) may be changed by the
data packing algorithms.
Use this to specify scaling factors and order of
spatial differencing, if desired.
@param field: numpy array of data points to pack.
If field is a masked array, then a bitmap is created from
the mask.
@param coordlist: Sequence containing floating point values intended to document
the vertical discretization with model data
on hybrid coordinate vertical levels. Default None.
"""
if not hasattr(self,'scanmodeflags'):
raise ValueError('addgrid must be called before addfield')
# reorder array to be consistent with
# specified scan order.
if self.scanmodeflags is not None:
if self.scanmodeflags[0]:
# rows scan in the -x direction (so flip)
fieldsave = field.astype('f') # casting makes a copy
field[:,:] = fieldsave[:,::-1]
# columns scan in the -y direction (so flip)
if not self.scanmodeflags[1]:
fieldsave = field.astype('f') # casting makes a copy
field[:,:] = fieldsave[::-1,:]
# adjacent rows scan in opposite direction.
# (flip every other row)
if self.scanmodeflags[3]:
fieldsave = field.astype('f') # casting makes a copy
field[1::2,:] = fieldsave[1::2,::-1]
fld = field.astype('f')
if ma.isMA(field):
bmap = 1 - np.ravel(field.mask.astype('i'))
bitmapflag = 0
else:
bitmapflag = 255
bmap = None
if coordlist is not None:
crdlist = np.array(coordlist,'f')
else:
crdlist = None
self.msg,msglen=g2clib.grib2_addfield(self.msg,pdtnum,np.array(pdtmpl,'i'),crdlist,drtnum,np.array(drtmpl,'i'),np.ravel(fld),bitmapflag,bmap)
def end(self):
"""
Add an end section (section 8) to the GRIB2 message.
A GRIB2 message is not complete without an end section.
Once an end section is added, the GRIB2 message can be
output to a file.
"""
self.msg,msglen=g2clib.grib2_end(self.msg)
|