This file is indexed.

/usr/share/pyshared/pywt/multidim.py is in python-pywt 0.2.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# -*- coding: utf-8 -*-

# Copyright (c) 2006-2010 Filip Wasilewski <http://filipwasilewski.pl/>
# See COPYING for license details.

# $Id: multidim.py 154 2010-03-13 13:18:59Z filipw $

"""
2D Discrete Wavelet Transform and Inverse Discrete Wavelet Transform.
"""

__all__ = ['dwt2', 'idwt2', 'swt2', 'dwtn']

from itertools import izip, cycle

from _pywt import Wavelet, MODES
from _pywt import dwt, idwt, swt, downcoef
from numerix import transpose, array, as_float_array, default_dtype, apply_along_axis


def dwt2(data, wavelet, mode='sym'):
    """
    2D Discrete Wavelet Transform.

    data    - 2D array with input data
    wavelet - wavelet to use (Wavelet object or name string)
    mode    - signal extension mode, see MODES

    Returns approximaion and three details 2D coefficients arrays.

    The result form four 2D coefficients arrays organized in tuples:

        (approximation,
                (horizontal details,
                vertical details,
                diagonal details)
        )

    which sometimes is also interpreted as layed out in one 2D array
    of coefficients, where:

                                -----------------
                                |       |       |
                                | A(LL) | H(LH) |
                                |       |       |
        (A, (H, V, D))  <--->   -----------------
                                |       |       |
                                | V(HL) | D(HH) |
                                |       |       |
                                -----------------
    """

    data = as_float_array(data)
    if len(data.shape) != 2:
        raise ValueError("Expected 2D data array")

    if not isinstance(wavelet, Wavelet):
        wavelet = Wavelet(wavelet)

    mode = MODES.from_object(mode)

    # filter rows
    H, L = [], []
    append_L = L.append; append_H = H.append
    for row in data:
        cA, cD = dwt(row, wavelet, mode)
        append_L(cA)
        append_H(cD)
    del data

    # filter columns
    H = transpose(H)
    L = transpose(L)

    LL, LH = [], []
    append_LL = LL.append; append_LH = LH.append
    for row in L:
        cA, cD = dwt(array(row, default_dtype), wavelet, mode)
        append_LL(cA)
        append_LH(cD)
    del L

    HL, HH = [], []
    append_HL = HL.append; append_HH = HH.append
    for row in H:
        cA, cD = dwt(array(row, default_dtype), wavelet, mode)
        append_HL(cA)
        append_HH(cD)
    del H

    # build result structure
    #     (approx.,        (horizontal,    vertical,       diagonal))
    ret = (transpose(LL), (transpose(LH), transpose(HL), transpose(HH)))

    return ret

def idwt2(coeffs, wavelet, mode='sym'):
    """
    2D Inverse Discrete Wavelet Transform. Reconstruct data from coefficients
    arrays.

    coeffs  - four 2D coefficients arrays arranged as follows (in the same way
              as dwt2 output -- see dwt2 description for details):

        (approximation,
                (horizontal details,
                vertical details,
                diagonal details)
        )

    wavelet - wavelet to use (Wavelet object or name string)
    mode    - signal extension mode, see MODES
    """

    if len(coeffs) != 2 or len(coeffs[1]) != 3:
        raise ValueError("Invalid coeffs param")

    # L -low-pass data, H - high-pass data
    LL, (LH, HL, HH) = coeffs

    if not LL is None: LL = transpose(LL)
    if not LH is None: LH = transpose(LH)
    if not HL is None: HL = transpose(HL)
    if not HH is None: HH = transpose(HH)

    all_none = True
    for arr in (LL, LH, HL, HH):
        if arr is not None:
            all_none = False
            if len(arr.shape) != 2:
                raise TypeError("All input coefficients arrays must be 2D.")
    del arr
    if all_none:
        raise ValueError("At least one input coefficients array must not be None.")

    if not isinstance(wavelet, Wavelet):
        wavelet = Wavelet(wavelet)

    mode = MODES.from_object(mode)

    # idwt columns
    L = []; append_L = L.append
    if LL is None and LH is None:
        L = None
    else:
        if LL is None: LL = cycle([None]) # IDWT can handle None input values - equals to zero-array
        if LH is None: LH = cycle([None]) # IDWT can handle None input values - equals to zero-array
        for rowL, rowH in izip(LL, LH):
            append_L(idwt(rowL, rowH, wavelet, mode, 1))
    del LL, LH

    H = []
    append_H = H.append
    if HL is None and HH is None:
        H = None
    else:
        if HL is None: HL = cycle([None]) # IDWT can handle None input values - equals to zero-array
        if HH is None: HH = cycle([None]) # IDWT can handle None input values - equals to zero-array
        for rowL, rowH in izip(HL, HH):
            append_H(idwt(rowL, rowH, wavelet, mode, 1))
    del HL, HH

    if L is not None:
        L = transpose(L)
    if H is not None:
        H = transpose(H)

    # idwt rows
    data = []
    append_data = data.append
    if L is None: L = cycle([None]) # IDWT can handle None input values - equals to zero-array
    if H is None: H = cycle([None]) # IDWT can handle None input values - equals to zero-array
    for rowL, rowH in izip(L, H):
        append_data(idwt(rowL, rowH, wavelet, mode, 1))

    return array(data, default_dtype)


def _downcoef(data, wavelet, mode, type):
   """Adapts pywt.downcoef call for apply_along_axis"""
   return downcoef(type, data, wavelet, mode, level=1)

def dwtn(data, wavelet, mode='sym'):
    """
    Single-level n-dimensional Discrete Wavelet Transform.

    data     - n-dimensional array
    wavelet - wavelet to use (Wavelet object or name string)
    mode    - signal extension mode, see MODES

    Results are arranged in a dictionary, where key specifies
    the transform type on each dimension and value is a n-dimensional
    coefficients array.
    
    For example, for a 2D case the result will look something like this:
        {
            'aa': <coeffs>  # A(LL) - approx. on 1st dim, approx. on 2nd dim
            'ad': <coeffs>  # H(LH) - approx. on 1st dim, det. on 2nd dim
            'da': <coeffs>  # V(HL) - det. on 1st dim, approx. on 2nd dim
            'dd': <coeffs>  # D(HH) - det. on 1st dim, det. on 2nd dim
        }
    """
    import warnings
    warnings.warn("Name of this function and result format may change in the future.",
                  UserWarning)

    data = as_float_array(data)
    dim = len(data.shape)
    coeffs = [('', data)]
    for axis in range(dim):
        new_coeffs = []
        for subband, x in coeffs:
            new_coeffs.extend([
                (subband+'a', apply_along_axis(_downcoef, axis,
                                               x, wavelet, mode, 'a')),
                (subband+'d', apply_along_axis(_downcoef, axis,
                                               x, wavelet, mode, 'd'))
            ])
        coeffs = new_coeffs
    return dict(coeffs)


def swt2(data, wavelet, level, start_level=0):
    """
    2D Stationary Wavelet Transform.

    data    - 2D array with input data
    wavelet - wavelet to use (Wavelet object or name string)
    level   - how many decomposition steps to perform
    start_level - the level at which the decomposition will start

    Returns list of approximation and details coefficients:

        [
            (cA_n,
                (cH_n, cV_n, cD_n)
            ),
            (cA_n+1,
                (cH_n+1, cV_n+1, cD_n+1)
            ),
            ...,
            (cA_n+level,
                (cH_n+level, cV_n+level, cD_n+level)
            )
        ]

    where cA is approximation, cH is horizontal details, cV is
    vertical details, cD is diagonal details and n is start_level.
    """

    data = as_float_array(data)
    if len(data.shape) != 2:
        raise ValueError("Expected 2D data array")

    if not isinstance(wavelet, Wavelet):
        wavelet = Wavelet(wavelet)

    ret = []
    for i in range(start_level, start_level+level):
        # filter rows
        H, L = [], []
        append_L = L.append; append_H = H.append
        for row in data:
            cA, cD = swt(row, wavelet, level=1, start_level=i)[0]
            append_L(cA)
            append_H(cD)
        del data

        # filter columns
        H = transpose(H)
        L = transpose(L)

        LL, LH = [], []
        append_LL = LL.append; append_LH = LH.append
        for row in L:
            cA, cD = swt(array(row, default_dtype), wavelet, level=1, start_level=i)[0]
            append_LL(cA)
            append_LH(cD)
        del L

        HL, HH = [], []
        append_HL = HL.append; append_HH = HH.append
        for row in H:
            cA, cD = swt(array(row, default_dtype), wavelet, level=1, start_level=i)[0]
            append_HL(cA)
            append_HH(cD)
        del H

        # build result structure
        #     (approx.,        (horizontal,    vertical,       diagonal))
        approx = transpose(LL)
        ret.append((approx, (transpose(LH), transpose(HL), transpose(HH))))

        data = approx # for next iteration

    return ret