/usr/share/pyshared/pywt/multidim.py is in python-pywt 0.2.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 | # -*- coding: utf-8 -*-
# Copyright (c) 2006-2010 Filip Wasilewski <http://filipwasilewski.pl/>
# See COPYING for license details.
# $Id: multidim.py 154 2010-03-13 13:18:59Z filipw $
"""
2D Discrete Wavelet Transform and Inverse Discrete Wavelet Transform.
"""
__all__ = ['dwt2', 'idwt2', 'swt2', 'dwtn']
from itertools import izip, cycle
from _pywt import Wavelet, MODES
from _pywt import dwt, idwt, swt, downcoef
from numerix import transpose, array, as_float_array, default_dtype, apply_along_axis
def dwt2(data, wavelet, mode='sym'):
"""
2D Discrete Wavelet Transform.
data - 2D array with input data
wavelet - wavelet to use (Wavelet object or name string)
mode - signal extension mode, see MODES
Returns approximaion and three details 2D coefficients arrays.
The result form four 2D coefficients arrays organized in tuples:
(approximation,
(horizontal details,
vertical details,
diagonal details)
)
which sometimes is also interpreted as layed out in one 2D array
of coefficients, where:
-----------------
| | |
| A(LL) | H(LH) |
| | |
(A, (H, V, D)) <---> -----------------
| | |
| V(HL) | D(HH) |
| | |
-----------------
"""
data = as_float_array(data)
if len(data.shape) != 2:
raise ValueError("Expected 2D data array")
if not isinstance(wavelet, Wavelet):
wavelet = Wavelet(wavelet)
mode = MODES.from_object(mode)
# filter rows
H, L = [], []
append_L = L.append; append_H = H.append
for row in data:
cA, cD = dwt(row, wavelet, mode)
append_L(cA)
append_H(cD)
del data
# filter columns
H = transpose(H)
L = transpose(L)
LL, LH = [], []
append_LL = LL.append; append_LH = LH.append
for row in L:
cA, cD = dwt(array(row, default_dtype), wavelet, mode)
append_LL(cA)
append_LH(cD)
del L
HL, HH = [], []
append_HL = HL.append; append_HH = HH.append
for row in H:
cA, cD = dwt(array(row, default_dtype), wavelet, mode)
append_HL(cA)
append_HH(cD)
del H
# build result structure
# (approx., (horizontal, vertical, diagonal))
ret = (transpose(LL), (transpose(LH), transpose(HL), transpose(HH)))
return ret
def idwt2(coeffs, wavelet, mode='sym'):
"""
2D Inverse Discrete Wavelet Transform. Reconstruct data from coefficients
arrays.
coeffs - four 2D coefficients arrays arranged as follows (in the same way
as dwt2 output -- see dwt2 description for details):
(approximation,
(horizontal details,
vertical details,
diagonal details)
)
wavelet - wavelet to use (Wavelet object or name string)
mode - signal extension mode, see MODES
"""
if len(coeffs) != 2 or len(coeffs[1]) != 3:
raise ValueError("Invalid coeffs param")
# L -low-pass data, H - high-pass data
LL, (LH, HL, HH) = coeffs
if not LL is None: LL = transpose(LL)
if not LH is None: LH = transpose(LH)
if not HL is None: HL = transpose(HL)
if not HH is None: HH = transpose(HH)
all_none = True
for arr in (LL, LH, HL, HH):
if arr is not None:
all_none = False
if len(arr.shape) != 2:
raise TypeError("All input coefficients arrays must be 2D.")
del arr
if all_none:
raise ValueError("At least one input coefficients array must not be None.")
if not isinstance(wavelet, Wavelet):
wavelet = Wavelet(wavelet)
mode = MODES.from_object(mode)
# idwt columns
L = []; append_L = L.append
if LL is None and LH is None:
L = None
else:
if LL is None: LL = cycle([None]) # IDWT can handle None input values - equals to zero-array
if LH is None: LH = cycle([None]) # IDWT can handle None input values - equals to zero-array
for rowL, rowH in izip(LL, LH):
append_L(idwt(rowL, rowH, wavelet, mode, 1))
del LL, LH
H = []
append_H = H.append
if HL is None and HH is None:
H = None
else:
if HL is None: HL = cycle([None]) # IDWT can handle None input values - equals to zero-array
if HH is None: HH = cycle([None]) # IDWT can handle None input values - equals to zero-array
for rowL, rowH in izip(HL, HH):
append_H(idwt(rowL, rowH, wavelet, mode, 1))
del HL, HH
if L is not None:
L = transpose(L)
if H is not None:
H = transpose(H)
# idwt rows
data = []
append_data = data.append
if L is None: L = cycle([None]) # IDWT can handle None input values - equals to zero-array
if H is None: H = cycle([None]) # IDWT can handle None input values - equals to zero-array
for rowL, rowH in izip(L, H):
append_data(idwt(rowL, rowH, wavelet, mode, 1))
return array(data, default_dtype)
def _downcoef(data, wavelet, mode, type):
"""Adapts pywt.downcoef call for apply_along_axis"""
return downcoef(type, data, wavelet, mode, level=1)
def dwtn(data, wavelet, mode='sym'):
"""
Single-level n-dimensional Discrete Wavelet Transform.
data - n-dimensional array
wavelet - wavelet to use (Wavelet object or name string)
mode - signal extension mode, see MODES
Results are arranged in a dictionary, where key specifies
the transform type on each dimension and value is a n-dimensional
coefficients array.
For example, for a 2D case the result will look something like this:
{
'aa': <coeffs> # A(LL) - approx. on 1st dim, approx. on 2nd dim
'ad': <coeffs> # H(LH) - approx. on 1st dim, det. on 2nd dim
'da': <coeffs> # V(HL) - det. on 1st dim, approx. on 2nd dim
'dd': <coeffs> # D(HH) - det. on 1st dim, det. on 2nd dim
}
"""
import warnings
warnings.warn("Name of this function and result format may change in the future.",
UserWarning)
data = as_float_array(data)
dim = len(data.shape)
coeffs = [('', data)]
for axis in range(dim):
new_coeffs = []
for subband, x in coeffs:
new_coeffs.extend([
(subband+'a', apply_along_axis(_downcoef, axis,
x, wavelet, mode, 'a')),
(subband+'d', apply_along_axis(_downcoef, axis,
x, wavelet, mode, 'd'))
])
coeffs = new_coeffs
return dict(coeffs)
def swt2(data, wavelet, level, start_level=0):
"""
2D Stationary Wavelet Transform.
data - 2D array with input data
wavelet - wavelet to use (Wavelet object or name string)
level - how many decomposition steps to perform
start_level - the level at which the decomposition will start
Returns list of approximation and details coefficients:
[
(cA_n,
(cH_n, cV_n, cD_n)
),
(cA_n+1,
(cH_n+1, cV_n+1, cD_n+1)
),
...,
(cA_n+level,
(cH_n+level, cV_n+level, cD_n+level)
)
]
where cA is approximation, cH is horizontal details, cV is
vertical details, cD is diagonal details and n is start_level.
"""
data = as_float_array(data)
if len(data.shape) != 2:
raise ValueError("Expected 2D data array")
if not isinstance(wavelet, Wavelet):
wavelet = Wavelet(wavelet)
ret = []
for i in range(start_level, start_level+level):
# filter rows
H, L = [], []
append_L = L.append; append_H = H.append
for row in data:
cA, cD = swt(row, wavelet, level=1, start_level=i)[0]
append_L(cA)
append_H(cD)
del data
# filter columns
H = transpose(H)
L = transpose(L)
LL, LH = [], []
append_LL = LL.append; append_LH = LH.append
for row in L:
cA, cD = swt(array(row, default_dtype), wavelet, level=1, start_level=i)[0]
append_LL(cA)
append_LH(cD)
del L
HL, HH = [], []
append_HL = HL.append; append_HH = HH.append
for row in H:
cA, cD = swt(array(row, default_dtype), wavelet, level=1, start_level=i)[0]
append_HL(cA)
append_HH(cD)
del H
# build result structure
# (approx., (horizontal, vertical, diagonal))
approx = transpose(LL)
ret.append((approx, (transpose(LH), transpose(HL), transpose(HH))))
data = approx # for next iteration
return ret
|