This file is indexed.

/usr/lib/s9fes/s9.scm is in scheme9 2010.11.13-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
; DO NOT EDIT THIS FILE! EDIT "edoc/s9.scm.edoc" INSTEAD.

;;
;; Scheme 9 from Empty Space
;; By Nils M Holm, 2007-2010
;; < n m h  at  t 3 x . o r g >
;; See the LICENSE file of the S9fES package for terms of use
;;

;; Some obvious procedures first

(define (void) (if #f #f))

(define call-with-current-continuation call/cc)

;; Auxiliary definitions, will be redefined later

(define append append2)

; There is no LET or LETREC yet, so

(define-syntax (let bindings . exprs)
  ((lambda (split)
     ((lambda (tmp-split)
        (set! split tmp-split)
        (apply (lambda (vars args)
                 (append
                   (list (append
                           (list 'lambda)
                           (append (list vars)
                                   exprs)))
                   args))
               (split bindings '() '())))
      (lambda (bind* vars args)
        (if (null? bind*)
            (list vars args)
            (split (cdr bind*)
                   (cons (caar bind*) vars)
                   (cons (cadr (car bind*)) args))))))
   #f))

(define (map-car f a)
  (let ((mapcar1 #f))
    (let ((tmp-mapcar1
            (lambda (a)
              (if (null? a)
                  '()
                   (cons (f (car a))
                         (mapcar1 (cdr a)))))))
    (set! mapcar1 tmp-mapcar1)
    (mapcar1 a))))

(define (map f a b)
  (let ((map2 #f))
    (let ((tmp-map2
            (lambda (a b)
              (if (null? a)
                  '()
                   (cons (f (car a) (car b))
                         (map2 (cdr a) (cdr b)))))))
    (set! map2 tmp-map2)
    (map2 a b))))

(define-syntax (letrec bindings . exprs)
  (let ((append3
          (lambda (a b c)
            (append a (append b c))))
        (tmps (map-car (lambda (x) (gensym)) bindings))
        (vars (map-car car bindings))
        (args (map-car cadr bindings)))
    (let ((undefineds   (map-car (lambda (v) (list v #f))
                                 vars))
          (tmp-bindings (map list tmps args))
          (updates      (map (lambda (v t) (list 'set! v t))
                             vars
                             tmps)))
      (list 'let
            undefineds
            (append3 '(let)
                     (list tmp-bindings)
                     (append updates exprs))))))

;; Type predicates

(define number? integer?)

(define (port? x)
  (or (input-port? x)
      (output-port? x)))

;; Equivalence predicates

(define (equal? a b)
  (cond ((eq? a b)
          #t)
        ((and (pair? a)
              (pair? b))
          (and (equal? (car a) (car b))
               (equal? (cdr a) (cdr b))))
        ((string? a)
          (and (string? b)
               (string=? a b)))
        ((vector? a)
           (and (vector? b)
                (equal? (vector->list a)
                        (vector->list b))))
        (else
          (eqv? a b))))

;; List procedures

(define (list? x)
  (letrec
    ((l? (lambda (x y)
           (cond ((eq? x y) #f)
                 ((null? x) #t)
                 ((pair? x) (or (null? (cdr x))
                                (and (pair? (cdr x))
                                     (l? (cddr x) (cdr y)))))
                 (else      #f)))))
    (or (null? x)
        (and (pair? x)
             (l? (cdr x) x)))))

(define (assoc x a)
  (cond ((null? a) #f)
        ((equal? (caar a) x) (car a))
        (else (assoc x (cdr a)))))

(define (member x a)
  (cond ((null? a) #f)
        ((equal? (car a) x) a)
        (else (member x (cdr a)))))

; Auxiliary functions for FOLD-LEFT, FOLD-RIGHT, MAP

(define (map-car f a)
  (letrec
    ((mapcar1
       (lambda (a r)
         (if (null? a)
             (reverse! r)
             (mapcar1 (cdr a)
                      (cons (f (car a)) r))))))
    (mapcar1 a '())))

(define car-of
  (let ((map-car map-car))
    (lambda (a*)
      (map-car car a*))))

(define cdr-of
  (let ((map-car map-car))
    (lambda (a*)
      (map-car cdr a*))))

(define (any-null a*)
  (memq '() a*))

(define fold-left
  (let ((car-of   car-of)
        (cdr-of   cdr-of)
        (any-null any-null))
    (lambda (f b . a*)
      (letrec
        ((fold
           (lambda (a* r)
             (if (any-null a*)
                 r
                 (fold (cdr-of a*)
                       (apply f r (car-of a*)))))))
        (if (null? a*)
            (error "fold-left: too few arguments")
            (fold a* b))))))

(define fold-right
  (let ((car-of   car-of)
        (cdr-of   cdr-of)
        (any-null any-null)
        (map-car  map-car))
    (lambda (f b . a*)
      (letrec
        ((foldr
           (lambda (a* r)
             (if (any-null a*)
                 r
                 (foldr (cdr-of a*)
                        (apply f (append2 (car-of a*)
                                          (list r))))))))
        (if (null? a*)
            (error "fold-right: too few arguments")
            (foldr (map-car reverse a*) b))))))

(define append
  (let ((append2 append2))
    (letrec
      ((foldr-app
         (lambda (a)
           (cond ((null? a)
                   '())
                 ((and (pair? a)
                       (not (pair? (car a)))
                       (null? (cdr a)))
                   (car a))
                 (else
                   (append2 (car a) (foldr-app (cdr a))))))))
      (lambda a
        (foldr-app a)))))

(define (list-ref x n)
  (car (list-tail x n)))

(define map
  (let ((car-of   car-of)
        (cdr-of   cdr-of)
        (any-null any-null))
    (lambda (f . a*)
      (letrec
        ((map2
           (lambda (a* r)
             (if (any-null a*)
                 (reverse! r)
                 (map2 (cdr-of a*)
                       (cons (apply f (car-of a*))
                             r))))))
        (if (null? a*)
            (error "map: too few arguments")
            (map2 a* '()))))))

(define (for-each f . a*)
  (if (null? a*)
      (error "for-each: too few arguments")
      (apply map f a*))
  (void))

;; Arithmetic procedures

(define (expt x y)
  (letrec
    ((square
       (lambda (x) (* x x)))
     (expt2
       (lambda (x y)
         (cond ((zero? y) 1)
               ((even? y) (square (expt2 x (quotient y 2))))
               (else      (* x (square (expt2 x (quotient y 2)))))))))
    (if (negative? y)
        (error "expt: expected non-negative exponent, got" y))
    (expt2 x y)))

(define gcd
  (let ((fold-left fold-left))
    (lambda a
      (letrec
        ((gcd2
           (lambda (a b)
             (cond ((zero? b) a)
                   ((zero? a) b)
                   ((< a b) (gcd2 a (remainder b a)))
                   (else (gcd2 b (remainder a b)))))))
        (fold-left gcd2 0 (map abs a))))))

(define lcm
  (let ((fold-left fold-left))
    (lambda a
      (letrec
        ((lcm2
           (lambda (a b)
             (let ((cd (gcd a b)))
               (* cd (* (quotient a cd)
                        (quotient b cd)))))))
        (fold-left lcm2 1 (map abs a))))))

(define (modulo a b)
  (let ((rem (remainder a b)))
    (cond ((zero? rem) 0)
          ((eq? (negative? a) (negative? b)) rem)
          (else (+ b rem)))))

;; String procedures

(define (number->string n . radix)
  (letrec
    ((digits
       (string->list "0123456789abcdef"))
     (conv
       (lambda (n rdx res)
         (if (zero? n)
             (if (null? res) '(#\0) res)
             (conv (quotient n rdx)
                   rdx
                   (cons (list-ref digits (remainder n rdx))
                         res)))))
     (conv-int
       (lambda (n rdx)
         (if (negative? n)
             (list->string (cons #\- (conv (abs n) rdx '())))
             (list->string (conv n rdx '())))))
     (get-radix
       (lambda ()
         (cond ((null? radix)
                 10)
               ((<= 2 (car radix) 16)
                 (car radix))
               (else
                 (error "number->string: invalid radix"
                        (car radix)))))))
    (conv-int n (get-radix))))

(define (string->number str . radix)
  (letrec
    ((digits
       (string->list "0123456789abcdef"))
     (value-of-digit
       (lambda (x)
         (letrec
           ((v (lambda (x d n)
                 (cond ((null? d) 17)
                       ((char=? x (car d)) n)
                       (else (v x (cdr d) (+ n 1)))))))
           (v (char-downcase x) digits 0))))
     (conv3
       (lambda (lst res rdx)
         (if (null? lst)
             res
             (let ((dval (value-of-digit (car lst))))
               (and (< dval rdx)
                    (conv3 (cdr lst)
                           (+ (value-of-digit (car lst))
                              (* res rdx))
                           rdx))))))
     (conv
       (lambda (lst rdx)
         (and (not (null? lst))
              (conv3 lst 0 rdx))))
     (sconv
       (lambda (lst rdx)
         (cond ((null? lst)
                 #f)
               ((char=? (car lst) #\+)
                 (conv (cdr lst) rdx))
               ((char=? (car lst) #\-)
                 (let ((r (conv (cdr lst) rdx)))
                   (if r (- r) #f)))
               (else
                 (conv lst rdx)))))
     (get-radix
       (lambda ()
         (cond ((null? radix)
                 10)
               ((<= 2 (car radix) 17)
                 (car radix))
               (else
                 (error "string->number: invalid radix" radix)))))
     (base-prefix?
       (lambda (s)
         (and (> (string-length s) 2)
              (char=? #\# (string-ref s 0))
              (memv (string-ref s 1) '(#\b #\d #\o #\x))
              #t))))
    (let ((r (if (base-prefix? str)
                 (let ((rc (string-ref str 1)))
                   (cond ((char=? rc #\b)  2)
                         ((char=? rc #\d) 10)
                         ((char=? rc #\o)  8)
                         (else            16)))
                 (get-radix)))
          (s (if (base-prefix? str)
                 (substring str 2 (string-length str))
                 str)))
      (and r (sconv (string->list s) r)))))

;; Input/output procedures

(define (newline . port)
  (apply write-char #\newline port))

(define (call-with-input-file file proc)
  (let ((f (open-input-file file)))
    (let ((r (proc f)))
      (close-input-port f)
      r)))

(define (call-with-output-file file proc)
  (let ((f (open-output-file file)))
    (let ((r (proc f)))
      (close-output-port f)
      r)))

(define with-input-from-file
  (let ((set-input-port! set-input-port!))
    (lambda (file thunk)
      (let ((outer-port (current-input-port))
            (new-port (open-input-file file)))
        (set-input-port! new-port)
        (let ((r (thunk)))
          (close-input-port new-port)
          (set-input-port! outer-port)
          r)))))

(define with-output-to-file
  (let ((set-output-port! set-output-port!))
    (lambda (file thunk)
      (let ((outer-port (current-output-port))
            (new-port (open-output-file file)))
        (set-output-port! new-port)
        (let ((r (thunk)))
          (close-output-port new-port)
          (set-output-port! outer-port)
          r)))))

;; Quasiquote Expander

(define-syntax (quasiquote tmpl)
  (letrec
    ((qq-cons
       (lambda (a b)
         (cond ((and (pair? a)
                     (eq? 'unquote-splicing (car a)))
                 (list 'append (cadr a) b))
               (else 
                 (list 'cons a b)))))
     (qq-expand-1
       (lambda (x)
         (cond ((vector? x)
                 (list 'list->vector (qq-expand-1 (vector->list x))))
               ((not (pair? x))
                 (list 'quote x))
               ((eq? 'unquote (car x))
                 (cadr x))
               ((eq? 'unquote-splicing (car x))
                 x)
               (else
                 (qq-cons (qq-expand-1 (car x))
                          (qq-expand-1 (cdr x)))))))
     (qq-expand
       (lambda (tmpl q)
         (let ((embedded-qq '()))
           (letrec
             ((extract-nested-qq
                (lambda (tmpl q)
                  (cond ((not (pair? tmpl))
                          tmpl)
                        ((or (eq? (car tmpl) 'unquote)
                             (eq? (car tmpl) 'unquote-splicing))
                          (if (not q)
                              (error
                                "quasiquote: extra unquote/unquote-splicing"))
                          (if (and (pair? (cdr tmpl))
                                   (null? (cddr tmpl)))
                              (list (car tmpl)
                                    (extract-nested-qq (cadr tmpl) #f))
                              (error (string-append
                                       (symbol->string (car tmpl))
                                       ": wrong number of arguments")
                                     tmpl)))
                        ((eq? 'quasiquote (car tmpl))
                          (if q (error "quasiquote: may not be nested"))
                          (if (and (pair? (cdr tmpl))
                                   (null? (cddr tmpl)))
                              (let ((g (gensym)))
                                (set! embedded-qq
                                      (cons (list g (qq-expand (cadr tmpl)
                                                               #t))
                                            embedded-qq))
                                g)
                              (error "quasiquote: wrong number of arguments"
                                     tmpl)))
                        (else
                          (cons (extract-nested-qq (car tmpl) q)
                                (extract-nested-qq (cdr tmpl) q)))))))
             (let ((tmpl (extract-nested-qq tmpl q)))
               (if (null? embedded-qq)
                   (qq-expand-1 tmpl)
                   (list 'let embedded-qq (qq-expand-1 tmpl)))))))))
    (qq-expand tmpl #t)))

;; Derived Syntax

; LET/LET*/LETREC helper

(define (check-bindings who b opt-arg)
  (cond ((null? b)
          #t)
        ((and (pair? b)
              (pair? (car b))
              (symbol? (caar b))
              (pair? (cdar b))
              (or (null? (cddar b))
                  (and opt-arg
                       (pair? (cddar b))
                       (null? (cdddar b)))))
          (check-bindings who (cdr b) opt-arg))
        (else
          (error (string-append who ": invalid syntax") b))))

(define (split-bindings clauses)
  (letrec
    ((split3
       (lambda (clauses vars args opt)
         (cond ((null? clauses)
                 (list (reverse! vars)
                       (reverse! args)
                       (reverse! opt)))
               (else
                 (split3 (cdr clauses)
                         (cons (caar clauses) vars)
                         (cons (cadar clauses) args)
                         (if (null? (cddar clauses))
                             (cons (caar clauses) opt)
                             (cons (caddar clauses) opt))))))))
    (split3 clauses '() '() '())))

; Now that the QQ expander is here, define a
; clean version of LET (including named LET).
; Can't name it LET yet, because it uses LET.

(define-syntax %full-let
  (let ((check-bindings check-bindings)
        (split-bindings split-bindings))
    (lambda (a1 a2 . a3)
      (if (symbol? a1)
          (if (null? a3)
              (error "named let: missing body"
                     `(let ,a1 ,a2 ,@a3))
              (begin (check-bindings "let" a2 #f)
                     (let ((va (split-bindings a2)))
                       (let ((v (car va))
                             (a (cadr va)))
                         `((letrec ((,a1 (lambda ,v ,@a3)))
                             ,a1) ,@a)))))
          (begin (check-bindings "let" a1 #f)
                 (let ((va (split-bindings a1)))
                   (let ((v (car va))
                         (a (cadr va)))
                     `((lambda ,v ,a2 ,@a3) ,@a))))))))

(define-syntax let %full-let)

; Also define a clean version of LETREC.

(define-syntax %clean-letrec
  (let ((check-bindings check-bindings)
        (split-bindings split-bindings))
    (lambda (bindings expr . exprs)
      (check-bindings "letrec" bindings #f)
      (let ((va (split-bindings bindings)))
        (let ((tmps (map (lambda (x) (gensym)) bindings))
              (vars (car va))
              (args (cadr va)))
          (let ((undefineds   (map (lambda (v) (list v #f))
                                   vars))
                (tmp-bindings (map (lambda (t a) (list t a))
                                   tmps
                                   args))
                (updates      (map (lambda (v t) (list 'set! v t))
                                   vars
                                   tmps)))
            `(let ,undefineds
               (let ,tmp-bindings
                 ,@updates
                 ,expr
                 ,@exprs))))))))

(define-syntax letrec %clean-letrec)

(define-syntax let*
  (let ((check-bindings check-bindings))
    (lambda (bindings expr . exprs)
      (letrec
        ((nest-let
           (lambda (b)
             (cond ((null? b)
                     (cons expr exprs))
                   ((null? (cdr b))
                     `(let ((,(caar b) ,(cadar b)))
                        ,@(cons expr exprs)))
                   (else
                     `(let ((,(caar b) ,(cadar b)))
                        ,(nest-let (cdr b))))))))
        (check-bindings "let*" bindings #f)
        (if (null? bindings)
            `(let () ,expr ,@exprs)
            (nest-let bindings))))))

(define-syntax (case key . clauses)
  (letrec
    ((gen-clauses
       (lambda (k c*)
         (cond ((null? c*) '())
               ((or (not (pair? c*))
                    (not (pair? (car c*)))
                    (not (pair? (cdar c*))))
                 (error "case: invalid syntax" c*))
               ((null? (cdr c*))
                 (if (eq? 'else (caar c*))
                     `((else ,@(cdar c*)))
                     `(((memv ,k ',(caar c*)) ,@(cdar c*)))))
               (else
                 `(((memv ,k ',(caar c*)) ,@(cdar c*))
                     ,@(gen-clauses k (cdr c*))))))))
    (let ((k (gensym)))
      `(let ((,k ,key))
         (cond ,@(gen-clauses k clauses))))))

(define-syntax do
  (let ((check-bindings check-bindings)
        (split-bindings split-bindings))
    (lambda (var-clauses test . body)
      (if (or (not (pair? test))
              (not (list? (cdr test))))
          (error "do: invalid syntax" test))
      (check-bindings "do" var-clauses #t)
      (let ((loop (gensym))
            (var+init+step (split-bindings var-clauses)))
        (let ((v (car   var+init+step))
              (i (cadr  var+init+step))
              (s (caddr var+init+step)))
          `(letrec
             ((,loop
                (lambda ,v
                  (if ,(car test)
                      (begin ,@(cdr test))
                      (begin ,@body (,loop ,@s))))))
             (,loop ,@i)))))))

(define-syntax (delay expr)
  `(let ((value #f))
     (lambda ()
       (if value
           (car value)
           (let ((x ,expr))
             (if value
                 (car value)
                 (begin (set! value (list x))
                        (car value))))))))

(define (force x) (x))

;; Utilities

(define (print . x*)
  (letrec
    ((p (lambda (x* first)
          (cond ((not (null? x*))
                  (if (not first) (write-char #\space))
                  (write (car x*))
                  (p (cdr x*) #f))))))
    (p x* #t)
    (newline)))

(define (locate-file file)
  (letrec
    ((split
       (lambda (s)
         (let loop ((in  (string->list s))
                    (tmp '())
                    (out '()))
           (cond ((null? in)
                   (if (null? tmp)
                       out
                       (reverse! (cons (list->string (reverse! tmp))
                                       out))))
                 ((char=? #\: (car in))
                   (loop (cdr in)
                         '()
                         (cons (list->string (reverse! tmp))
                               out)))
                 (else
                   (loop (cdr in)
                         (cons (car in) tmp)
                         out)))))))
    (let loop ((path (split *library-path*)))
      (and (not (null? path))
           (let ((full-path (string-append (car path) "/" file)))
             (if (file-exists? full-path)
                 full-path
                 (loop (cdr path))))))))

(define load-from-library 
  (let ((locate-file locate-file))
    (lambda (file)
      (let ((full-path (locate-file file))
            (do-load (lambda (file)
                       (begin (if (not *loading*)
                                  (begin (display "; loading from ")
                                         (display file)
                                         (newline)))
                              (load file)))))
        (if full-path
            (do-load full-path)
            (let ((full-path (locate-file (string-append file ".scm"))))
              (if full-path
                  (do-load full-path)
                  (error "cannot locate file" file))))))))

(define-syntax (require-extension . x*)
  (do ((x* x* (cdr x*))
       (na '()))
      ((null? x*)
        (if (not (null? na))
            (error "extension(s) required, but not compiled-in"
                   (reverse! na))))
    (if (not (memq (car x*) *extensions*))
        (set! na (cons (car x*) na)))))