This file is indexed.

/usr/include/xmds_complex.h is in xmds 1.6.6-7.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
/*
  Copyright (C) 2000-2007

  Code contributed by Greg Collecutt, Joseph Hope and the xmds-devel team

  This file is part of xmds.

  This program is free software; you can redistribute it and/or
  modify it under the terms of the GNU General Public License
  as published by the Free Software Foundation; either version 2
  of the License, or (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
*/

/*
  $Id: xmds_complex.h 2040 2008-07-02 08:46:15Z grahamdennis $
*/

/*! @file xmds_complex.h
  @brief Functions and overloads for fftw_complex types
*/
#include <math.h>

extern "C++" {

#include <iomanip>

#ifdef FFTW3_H
  typedef struct {
    double re;
    double im;
  } fftw_complex3;

#define fftw_complex fftw_complex3
#endif //FFTW3_H

  // **********************************************
  // rectangular complex and polar complex creation
  // **********************************************

  //! Rectangular complex object creation
  inline fftw_complex rcomplex(const double& re, const double& im) {
    fftw_complex z;
    z.re = re;
    z.im = im;
    return z;
  }

  //! Polar complex object creation
  inline fftw_complex pcomplex(const double& mag, const double& phase) {
    fftw_complex z;
    z.re = mag*cos(phase);
    z.im = mag*sin(phase);
    return z;
  }

  // **********************************************
  //     external fftw_complex overloads
  // **********************************************

  //! Overloaded complex addition operator
  inline fftw_complex operator + (fftw_complex z) {
    return z;
  }

  //! Overloaded complex addition operator
  inline fftw_complex operator + (fftw_complex z1, const fftw_complex& z2) {
    z1.re += z2.re;
    z1.im += z2.im;
    return z1;
  }

  //! Overloaded complex addition operator
  inline fftw_complex operator + (fftw_complex z, const double& d) {
    z.re += d;
    return z;
  }

  //! Overloaded complex addition operator
  inline fftw_complex operator + (const double& d, fftw_complex z) {
    z.re += d;
    return z;
  }

  //! Overloaded complex addition operator
  inline fftw_complex operator + (fftw_complex z, const int& j) {
    z.re += j;
    return z;
  }

  //! Overloaded complex addition operator
  inline fftw_complex operator + (const int& j, fftw_complex z) {
    z.re += j;
    return z;
  }

  //! Overloaded complex unary negation operator
  inline fftw_complex operator - (fftw_complex z) {
    z.im = -z.im;
    z.re = -z.re;
    return z;
  }

  //! Overloaded complex subtraction operator
  inline fftw_complex operator - (fftw_complex z1, const fftw_complex& z2) {
    z1.re -= z2.re;
    z1.im -= z2.im;
    return z1;
  }

  //! Overloaded complex subtraction operator
  inline fftw_complex operator - (fftw_complex z, const double& d) {
    z.re -= d;
    return z;
  }

  //! Overloaded complex subtraction operator
  inline fftw_complex operator - (const double& d, fftw_complex z) {
    z.re = d-z.re;
    z.im =  -z.im;
    return z;
  }

  //! Overloaded complex subtraction operator
  inline fftw_complex operator - (fftw_complex z, const int& j) {
    z.re -= j;
    return z;
  }

  //! Overloaded complex subtraction operator
  inline fftw_complex operator - (const int& j, fftw_complex z) {
    z.re = j-z.re;
    z.im =  -z.im;
    return z;
  }

  //! Overloaded complex multiplication operator
  inline fftw_complex operator * (const fftw_complex& z1, const fftw_complex&  z2) {
    fftw_complex z;
    z.re = z1.re*z2.re - z1.im*z2.im;
    z.im = z1.im*z2.re + z1.re*z2.im;
    return z;
  }

  //! Overloaded complex multiplication operator
  inline fftw_complex operator * (fftw_complex z, const double& d) {
    z.re *= d;
    z.im *= d;
    return z;
  }

  //! Overloaded complex multiplication operator
  inline fftw_complex operator * (const double& d, fftw_complex z) {
    z.re *= d;
    z.im *= d;
    return z;
  }

  //! Overloaded complex multiplication operator
  inline fftw_complex operator * (fftw_complex z, const int& j) {
    z.re *= j;
    z.im *= j;
    return z;
  }
  
  //! Overloaded complex multiplication operator
  inline fftw_complex operator * (fftw_complex z, const long& j) {
    z.re *= j;
    z.im *= j;
    return z;
  }

  //! Overloaded complex multiplication operator
  inline fftw_complex operator * (const int& j, fftw_complex z) {
    z.re *= j;
    z.im *= j;
    return z;
  }

  //! Overloaded complex multiplication operator
  inline fftw_complex operator * (const long& j, fftw_complex z) {
    z.re *= j;
    z.im *= j;
    return z;
  }

  //! Overloaded complex division operator
  inline fftw_complex operator / (fftw_complex z1, const fftw_complex&  z2) {
    const double c = z2.re*z2.re + z2.im*z2.im;
    const double temp = (z1.re*z2.re + z1.im*z2.im)/c;
    z1.im = (z1.im*z2.re - z1.re*z2.im)/c;
    z1.re = temp;
    return z1;
  }

  //! Overloaded complex division operator
  inline fftw_complex operator / (fftw_complex z, const double& d) {
    z.re /= d;
    z.im /= d;
    return z;
  }

  //! Overloaded complex division operator
  inline fftw_complex operator / (const double& d, fftw_complex z) {
    double c = z.re*z.re + z.im*z.im;
    z.re *=  d/c;
    z.im *= -d/c;
    return z;
  }

  //! Overloaded complex division operator
  inline fftw_complex operator / (fftw_complex z, const int& j) {
    z.re /= j;
    z.im /= j;
    return z;
  }

  //! Overloaded complex division operator
  inline fftw_complex operator / (const int& j, fftw_complex z) {
    double c = z.re*z.re + z.im*z.im;
    z.re *=  j/c;
    z.im *= -j/c;
    return z;
  }

  //! Overloaded complex division operator
  inline fftw_complex operator / (fftw_complex z, const long& j) {
    z.re /= j;
    z.im /= j;
    return z;
  }

  //! Overloaded complex division operator
  inline fftw_complex operator / (const long& j, fftw_complex z) {
    double c = z.re*z.re + z.im*z.im;
    z.re *=  j/c;
    z.im *= -j/c;
    return z;
  }

  //! Overloaded complex less than operator
  inline bool operator < (const double& d, const fftw_complex& z) {
    return d < z.re*z.re+z.im*z.im;
  }

  //! Overloaded complex greater than operator
  inline bool operator > (const double& d, const fftw_complex& z) {
    return d > z.re*z.re+z.im*z.im;
  }

  //! Overloaded complex less than or equal to operator
  inline bool operator <= (const double& d, const fftw_complex& z) {
    return d <= z.re*z.re+z.im*z.im;
  }

  //! Overloaded complex greater than or equal to operator
  inline bool operator >= (const double& d, const fftw_complex& z) {
    return d >= z.re*z.re+z.im*z.im;
  }

  //! Overloaded complex equality operator
  inline bool operator == (const double& d, const fftw_complex& z) {
    return d == z.re*z.re+z.im*z.im;
  }

  //! Overloaded complex inequality operator
  inline bool operator != (const double& d, const fftw_complex& z) {
    return d != z.re*z.re+z.im*z.im;
  }

  // **********************************************
  //         some unary complex functions
  // **********************************************

  //! Returns real part of a complex number
  inline double real(const fftw_complex& z) {
    return z.re;
  }

  //! Returns imaginary part of a complex number
  inline double imag(const fftw_complex& z) {
    return z.im;
  }

  //! Returns modulus squared of a complex number
  inline double mod2(const fftw_complex& z) {
    return z.re*z.re + z.im*z.im;
  }

  //! Returns modulus of a complex number
  inline double mod(const fftw_complex& z) {
    return sqrt(z.re*z.re + z.im*z.im);
  }

  //! Returns arg of a complex number
  inline double arg(const fftw_complex& z) {
    return atan2(z.im, z.re);
  }

  //! Returns the complex conjugate
  inline fftw_complex conj(fftw_complex z) {
    z.im = -z.im;
    return z;
  }

  //! Returns the complex exponential
  inline fftw_complex c_exp(const fftw_complex& z1) {
    fftw_complex z;
    z.re = exp(z1.re)*cos(z1.im);
    z.im = exp(z1.re)*sin(z1.im);
    return z;
  }

  //! Returns the complex natural logarithm
  inline fftw_complex c_log(const fftw_complex& z1) {

    fftw_complex z;

    double _m = mod(z1);

    if (fabs(_m)>1e-100)
      z.re = log(_m);
    else
      z.re = -46;

    z.im = arg(z1);

    return z;
  }

  //! Returns the complex square root
  inline fftw_complex c_sqrt(const fftw_complex z1) {

    const double _m = sqrt(mod(z1));
    const double _a = arg(z1)/2;

    return pcomplex(_m, _a);
  }

  // **********************************************
  //             a nice complex class
  // **********************************************

  //! A nice complex class
  class complex : public fftw_complex {

  public:

    //Constructors

    //! Constructor of complex object
    complex() {
      re = 0;
      im = 0;
    }

    //! Constructor of complex object
    /*!
      This could be "explicit", providing extra warnings
    */
    complex(const fftw_complex& z) {
      re = z.re;
      im = z.im;
    }

    //! Constructor of complex object
    /*!
      This could be "explicit", providing extra warnings
    */
    complex(const double& d) {
      re = d;
      im = 0;
    }

    //! Constructor of complex object
    complex(const double& real, const double& imag, const bool& polar=false) {
      if (polar) {
  re = real*cos(imag);
  im = real*sin(imag);
      }
      else {
  re = real;
  im = imag;
      }
    }

    //! Addition operator
    inline complex& operator + () {
      return *this;
    }

    //! Unary negation operator
    inline complex operator - () {
      return complex(-re, -im);
    }

    //! Assignment operator
    inline complex& operator = (const fftw_complex& z) {
      re = z.re;
      im = z.im;
      return *this;
    }

    //! Assignment operator
    inline complex& operator = (const double& d) {
      re = d;
      im = 0;
      return *this;
    }

    //! Conversion to double operator
    inline operator double () const {
      return re;
    }

    //! += operator
    inline complex& operator += (const fftw_complex& z) {
      re += z.re;
      im += z.im;
      return *this;
    }

    //! += operator
    inline complex& operator += (const double& d) {
      re += d;
      return *this;
    }

    //! -= operator
    inline complex& operator -= (const fftw_complex& z) {
      re -= z.re;
      im -= z.im;
      return *this;
    }

    //! -= operator
    inline complex& operator -= (const double& d) {
      re -= d;
      return *this;
    }

    //! *= operator
    inline complex& operator *= (const fftw_complex& z) {
      const double temp = re*z.re - im*z.im;
      im = im*z.re + re*z.im;
      re = temp;
      return *this;
    }

    //! *= operator
    inline complex& operator *= (const double& d) {
      re *= d;
      im *= d;
      return *this;
    }

    //! /= operator
    inline complex& operator /= (const fftw_complex& z) {
      const double c = z.re*z.re + z.im*z.im;
      const double temp = (re*z.re + im*z.im)/c;
      im = (im*z.re - re*z.im)/c;
      re=temp;
      return *this;
    }

    //! /= operator
    inline complex& operator /= (const double& d) {
      re /= d;
      im /= d;
      return *this;
    }

    //! /= operator
    inline complex& operator /= (const int& j) {
      re /= j;
      im /= j;
      return *this;
    }

    //! /= operator
    inline complex& operator /= (const long& j) {
      re /= j;
      im /= j;
      return *this;
    }

    //! Less than comparison operator
    inline bool operator < (const fftw_complex& z) const {
      return re*re+im*im < z.re*z.re+z.im*z.im;
    }

    //! Less than comparison operator
    inline bool operator < (const double& d) const {
      return re*re+im*im < d;
    }

    //! Greater than comparison operator
    inline bool operator > (const fftw_complex& z) const {
      return re*re+im*im > z.re*z.re+z.im*z.im;
    }

    //! Greater than comparison operator
    inline bool operator > (const double& d) const {
      return re*re+im*im > d;
    }

    //! Less than or equal to comparison operator
    inline bool operator <= (const fftw_complex& z) const {
      return re*re+im*im <= z.re*z.re+z.im*z.im;
    }

    //! Less than or equal to comparison operator
    inline bool operator <= (const double& d) const {
      return re*re+im*im <= d;
    }

    //! Greater than or equal to comparison operator
    inline bool operator >= (const fftw_complex& z) const {
      return re*re+im*im >= z.re*z.re+z.im*z.im;
    }

    //! Greater than or equal to comparison operator
    inline bool operator >= (const double& d) const {
      return re*re+im*im >= d;
    }

    //! Equality comparison operator
    inline bool operator == (const complex& z) const {
      return re == z.re && im == z.im;
    }

    //! Equality comparison operator
    inline bool operator == (const double& d) const {
      return re == d && im == 0;
    }

    //! Inequality comparison operator
    inline bool operator != (const complex& z) const {
      return re!=z.re || im!=z.im;
    }

    //! Inequality comparison operator
    inline bool operator != (const double& d) const {
      return re!=d || im!=0;
    }

    //! Complex conjugate operator
    /*!
      We define operator ~ to be the complex conjugate
    */
    inline complex operator ~ () const {
      complex z = *this;
      z.im = -z.im;
      return z;
    }
  };

  //! Define the complex number i
  const complex i = complex(0, 1);

#ifdef FFTW3_H
#undef fftw_complex
#endif //FFTW3_H

} // extern "C++"

//! To be documented!!!
/*! This is not actually part of the complex class, but declaring it here
    saves creating another xmds include header
*/
extern bool initialiseFieldFromXSILFile(const char *filename,
      const char *mgName, unsigned long dimension, char **dimNames,
      char **componentNames,
      // output variables
      char**binaryDataFilename, int *unsignedLongSize,
      bool *dataEncodingIsNative, bool *isPrecisionDouble,
      unsigned long *nDataComponents, unsigned long **inputLattice,
      int **componentIndicesPtr);

/*
 * Local variables:
 * c-indentation-style: bsd
 * c-basic-offset: 2
 * indent-tabs-mode: nil
 * End:
 *
 * vim: tabstop=2 expandtab shiftwidth=2:
 */