/usr/include/xmds_complex.h is in xmds 1.6.6-7.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 | /*
Copyright (C) 2000-2007
Code contributed by Greg Collecutt, Joseph Hope and the xmds-devel team
This file is part of xmds.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
$Id: xmds_complex.h 2040 2008-07-02 08:46:15Z grahamdennis $
*/
/*! @file xmds_complex.h
@brief Functions and overloads for fftw_complex types
*/
#include <math.h>
extern "C++" {
#include <iomanip>
#ifdef FFTW3_H
typedef struct {
double re;
double im;
} fftw_complex3;
#define fftw_complex fftw_complex3
#endif //FFTW3_H
// **********************************************
// rectangular complex and polar complex creation
// **********************************************
//! Rectangular complex object creation
inline fftw_complex rcomplex(const double& re, const double& im) {
fftw_complex z;
z.re = re;
z.im = im;
return z;
}
//! Polar complex object creation
inline fftw_complex pcomplex(const double& mag, const double& phase) {
fftw_complex z;
z.re = mag*cos(phase);
z.im = mag*sin(phase);
return z;
}
// **********************************************
// external fftw_complex overloads
// **********************************************
//! Overloaded complex addition operator
inline fftw_complex operator + (fftw_complex z) {
return z;
}
//! Overloaded complex addition operator
inline fftw_complex operator + (fftw_complex z1, const fftw_complex& z2) {
z1.re += z2.re;
z1.im += z2.im;
return z1;
}
//! Overloaded complex addition operator
inline fftw_complex operator + (fftw_complex z, const double& d) {
z.re += d;
return z;
}
//! Overloaded complex addition operator
inline fftw_complex operator + (const double& d, fftw_complex z) {
z.re += d;
return z;
}
//! Overloaded complex addition operator
inline fftw_complex operator + (fftw_complex z, const int& j) {
z.re += j;
return z;
}
//! Overloaded complex addition operator
inline fftw_complex operator + (const int& j, fftw_complex z) {
z.re += j;
return z;
}
//! Overloaded complex unary negation operator
inline fftw_complex operator - (fftw_complex z) {
z.im = -z.im;
z.re = -z.re;
return z;
}
//! Overloaded complex subtraction operator
inline fftw_complex operator - (fftw_complex z1, const fftw_complex& z2) {
z1.re -= z2.re;
z1.im -= z2.im;
return z1;
}
//! Overloaded complex subtraction operator
inline fftw_complex operator - (fftw_complex z, const double& d) {
z.re -= d;
return z;
}
//! Overloaded complex subtraction operator
inline fftw_complex operator - (const double& d, fftw_complex z) {
z.re = d-z.re;
z.im = -z.im;
return z;
}
//! Overloaded complex subtraction operator
inline fftw_complex operator - (fftw_complex z, const int& j) {
z.re -= j;
return z;
}
//! Overloaded complex subtraction operator
inline fftw_complex operator - (const int& j, fftw_complex z) {
z.re = j-z.re;
z.im = -z.im;
return z;
}
//! Overloaded complex multiplication operator
inline fftw_complex operator * (const fftw_complex& z1, const fftw_complex& z2) {
fftw_complex z;
z.re = z1.re*z2.re - z1.im*z2.im;
z.im = z1.im*z2.re + z1.re*z2.im;
return z;
}
//! Overloaded complex multiplication operator
inline fftw_complex operator * (fftw_complex z, const double& d) {
z.re *= d;
z.im *= d;
return z;
}
//! Overloaded complex multiplication operator
inline fftw_complex operator * (const double& d, fftw_complex z) {
z.re *= d;
z.im *= d;
return z;
}
//! Overloaded complex multiplication operator
inline fftw_complex operator * (fftw_complex z, const int& j) {
z.re *= j;
z.im *= j;
return z;
}
//! Overloaded complex multiplication operator
inline fftw_complex operator * (fftw_complex z, const long& j) {
z.re *= j;
z.im *= j;
return z;
}
//! Overloaded complex multiplication operator
inline fftw_complex operator * (const int& j, fftw_complex z) {
z.re *= j;
z.im *= j;
return z;
}
//! Overloaded complex multiplication operator
inline fftw_complex operator * (const long& j, fftw_complex z) {
z.re *= j;
z.im *= j;
return z;
}
//! Overloaded complex division operator
inline fftw_complex operator / (fftw_complex z1, const fftw_complex& z2) {
const double c = z2.re*z2.re + z2.im*z2.im;
const double temp = (z1.re*z2.re + z1.im*z2.im)/c;
z1.im = (z1.im*z2.re - z1.re*z2.im)/c;
z1.re = temp;
return z1;
}
//! Overloaded complex division operator
inline fftw_complex operator / (fftw_complex z, const double& d) {
z.re /= d;
z.im /= d;
return z;
}
//! Overloaded complex division operator
inline fftw_complex operator / (const double& d, fftw_complex z) {
double c = z.re*z.re + z.im*z.im;
z.re *= d/c;
z.im *= -d/c;
return z;
}
//! Overloaded complex division operator
inline fftw_complex operator / (fftw_complex z, const int& j) {
z.re /= j;
z.im /= j;
return z;
}
//! Overloaded complex division operator
inline fftw_complex operator / (const int& j, fftw_complex z) {
double c = z.re*z.re + z.im*z.im;
z.re *= j/c;
z.im *= -j/c;
return z;
}
//! Overloaded complex division operator
inline fftw_complex operator / (fftw_complex z, const long& j) {
z.re /= j;
z.im /= j;
return z;
}
//! Overloaded complex division operator
inline fftw_complex operator / (const long& j, fftw_complex z) {
double c = z.re*z.re + z.im*z.im;
z.re *= j/c;
z.im *= -j/c;
return z;
}
//! Overloaded complex less than operator
inline bool operator < (const double& d, const fftw_complex& z) {
return d < z.re*z.re+z.im*z.im;
}
//! Overloaded complex greater than operator
inline bool operator > (const double& d, const fftw_complex& z) {
return d > z.re*z.re+z.im*z.im;
}
//! Overloaded complex less than or equal to operator
inline bool operator <= (const double& d, const fftw_complex& z) {
return d <= z.re*z.re+z.im*z.im;
}
//! Overloaded complex greater than or equal to operator
inline bool operator >= (const double& d, const fftw_complex& z) {
return d >= z.re*z.re+z.im*z.im;
}
//! Overloaded complex equality operator
inline bool operator == (const double& d, const fftw_complex& z) {
return d == z.re*z.re+z.im*z.im;
}
//! Overloaded complex inequality operator
inline bool operator != (const double& d, const fftw_complex& z) {
return d != z.re*z.re+z.im*z.im;
}
// **********************************************
// some unary complex functions
// **********************************************
//! Returns real part of a complex number
inline double real(const fftw_complex& z) {
return z.re;
}
//! Returns imaginary part of a complex number
inline double imag(const fftw_complex& z) {
return z.im;
}
//! Returns modulus squared of a complex number
inline double mod2(const fftw_complex& z) {
return z.re*z.re + z.im*z.im;
}
//! Returns modulus of a complex number
inline double mod(const fftw_complex& z) {
return sqrt(z.re*z.re + z.im*z.im);
}
//! Returns arg of a complex number
inline double arg(const fftw_complex& z) {
return atan2(z.im, z.re);
}
//! Returns the complex conjugate
inline fftw_complex conj(fftw_complex z) {
z.im = -z.im;
return z;
}
//! Returns the complex exponential
inline fftw_complex c_exp(const fftw_complex& z1) {
fftw_complex z;
z.re = exp(z1.re)*cos(z1.im);
z.im = exp(z1.re)*sin(z1.im);
return z;
}
//! Returns the complex natural logarithm
inline fftw_complex c_log(const fftw_complex& z1) {
fftw_complex z;
double _m = mod(z1);
if (fabs(_m)>1e-100)
z.re = log(_m);
else
z.re = -46;
z.im = arg(z1);
return z;
}
//! Returns the complex square root
inline fftw_complex c_sqrt(const fftw_complex z1) {
const double _m = sqrt(mod(z1));
const double _a = arg(z1)/2;
return pcomplex(_m, _a);
}
// **********************************************
// a nice complex class
// **********************************************
//! A nice complex class
class complex : public fftw_complex {
public:
//Constructors
//! Constructor of complex object
complex() {
re = 0;
im = 0;
}
//! Constructor of complex object
/*!
This could be "explicit", providing extra warnings
*/
complex(const fftw_complex& z) {
re = z.re;
im = z.im;
}
//! Constructor of complex object
/*!
This could be "explicit", providing extra warnings
*/
complex(const double& d) {
re = d;
im = 0;
}
//! Constructor of complex object
complex(const double& real, const double& imag, const bool& polar=false) {
if (polar) {
re = real*cos(imag);
im = real*sin(imag);
}
else {
re = real;
im = imag;
}
}
//! Addition operator
inline complex& operator + () {
return *this;
}
//! Unary negation operator
inline complex operator - () {
return complex(-re, -im);
}
//! Assignment operator
inline complex& operator = (const fftw_complex& z) {
re = z.re;
im = z.im;
return *this;
}
//! Assignment operator
inline complex& operator = (const double& d) {
re = d;
im = 0;
return *this;
}
//! Conversion to double operator
inline operator double () const {
return re;
}
//! += operator
inline complex& operator += (const fftw_complex& z) {
re += z.re;
im += z.im;
return *this;
}
//! += operator
inline complex& operator += (const double& d) {
re += d;
return *this;
}
//! -= operator
inline complex& operator -= (const fftw_complex& z) {
re -= z.re;
im -= z.im;
return *this;
}
//! -= operator
inline complex& operator -= (const double& d) {
re -= d;
return *this;
}
//! *= operator
inline complex& operator *= (const fftw_complex& z) {
const double temp = re*z.re - im*z.im;
im = im*z.re + re*z.im;
re = temp;
return *this;
}
//! *= operator
inline complex& operator *= (const double& d) {
re *= d;
im *= d;
return *this;
}
//! /= operator
inline complex& operator /= (const fftw_complex& z) {
const double c = z.re*z.re + z.im*z.im;
const double temp = (re*z.re + im*z.im)/c;
im = (im*z.re - re*z.im)/c;
re=temp;
return *this;
}
//! /= operator
inline complex& operator /= (const double& d) {
re /= d;
im /= d;
return *this;
}
//! /= operator
inline complex& operator /= (const int& j) {
re /= j;
im /= j;
return *this;
}
//! /= operator
inline complex& operator /= (const long& j) {
re /= j;
im /= j;
return *this;
}
//! Less than comparison operator
inline bool operator < (const fftw_complex& z) const {
return re*re+im*im < z.re*z.re+z.im*z.im;
}
//! Less than comparison operator
inline bool operator < (const double& d) const {
return re*re+im*im < d;
}
//! Greater than comparison operator
inline bool operator > (const fftw_complex& z) const {
return re*re+im*im > z.re*z.re+z.im*z.im;
}
//! Greater than comparison operator
inline bool operator > (const double& d) const {
return re*re+im*im > d;
}
//! Less than or equal to comparison operator
inline bool operator <= (const fftw_complex& z) const {
return re*re+im*im <= z.re*z.re+z.im*z.im;
}
//! Less than or equal to comparison operator
inline bool operator <= (const double& d) const {
return re*re+im*im <= d;
}
//! Greater than or equal to comparison operator
inline bool operator >= (const fftw_complex& z) const {
return re*re+im*im >= z.re*z.re+z.im*z.im;
}
//! Greater than or equal to comparison operator
inline bool operator >= (const double& d) const {
return re*re+im*im >= d;
}
//! Equality comparison operator
inline bool operator == (const complex& z) const {
return re == z.re && im == z.im;
}
//! Equality comparison operator
inline bool operator == (const double& d) const {
return re == d && im == 0;
}
//! Inequality comparison operator
inline bool operator != (const complex& z) const {
return re!=z.re || im!=z.im;
}
//! Inequality comparison operator
inline bool operator != (const double& d) const {
return re!=d || im!=0;
}
//! Complex conjugate operator
/*!
We define operator ~ to be the complex conjugate
*/
inline complex operator ~ () const {
complex z = *this;
z.im = -z.im;
return z;
}
};
//! Define the complex number i
const complex i = complex(0, 1);
#ifdef FFTW3_H
#undef fftw_complex
#endif //FFTW3_H
} // extern "C++"
//! To be documented!!!
/*! This is not actually part of the complex class, but declaring it here
saves creating another xmds include header
*/
extern bool initialiseFieldFromXSILFile(const char *filename,
const char *mgName, unsigned long dimension, char **dimNames,
char **componentNames,
// output variables
char**binaryDataFilename, int *unsignedLongSize,
bool *dataEncodingIsNative, bool *isPrecisionDouble,
unsigned long *nDataComponents, unsigned long **inputLattice,
int **componentIndicesPtr);
/*
* Local variables:
* c-indentation-style: bsd
* c-basic-offset: 2
* indent-tabs-mode: nil
* End:
*
* vim: tabstop=2 expandtab shiftwidth=2:
*/
|