This file is indexed.

/usr/share/doc/xmds/examples/fullpos3D.xmds is in xmds 1.6.6-7.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
<?xml version="1.0"?>
<!--Stochastic Superchemistry simulation-->

<!-- $Id: fullpos3D.xmds 1526 2007-08-21 17:30:14Z paultcochrane $ -->

<!--  Copyright (C) 2000-2007                                           -->
<!--                                                                    -->
<!--  Code contributed by Greg Collecutt, Joseph Hope and Paul Cochrane -->
<!--                                                                    -->
<!--  This file is part of xmds.                                        -->
<!--                                                                    -->
<!--  This program is free software; you can redistribute it and/or     -->
<!--  modify it under the terms of the GNU General Public License       -->
<!--  as published by the Free Software Foundation; either version 2    -->
<!--  of the License, or (at your option) any later version.            -->
<!--                                                                    -->
<!--  This program is distributed in the hope that it will be useful,   -->
<!--  but WITHOUT ANY WARRANTY; without even the implied warranty of    -->
<!--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the     -->
<!--  GNU General Public License for more details.                      -->
<!--                                                                    -->
<!--  You should have received a copy of the GNU General Public License -->
<!--  along with this program; if not, write to the Free Software       -->
<!--  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,            -->
<!--  MA  02110-1301, USA.                                              -->

<simulation>

  <name>fullpos3D</name>

  <author>Unknown Author</author>
  <description>
    Stochastic superchemistry simulation
  </description>

  <!-- Global system parameters and functionality -->
  <stochastic>yes</stochastic> 
  <prop_dim>t</prop_dim>
  <error_check>yes</error_check>
  <threads>1</threads>
  <paths>1</paths>
  <use_mpi>no</use_mpi> 
  <seed>37 41</seed>
  <noises>8</noises>

  <!-- Global variables for the simulation -->
  <globals>
  <![CDATA[
    const double noise = 1.0;
    const double hbar = 1.05500000000e-34;
    const double M = 1.409539200000000e-25;
    const double omegax = 0.58976353090742;
    const double omegay = 0.58976353090742;
    const double omegaz = 0.58976353090742/30;
    const double U11 = 2.974797272874263e-51;
    const double U13 = -1.417820412490823e-50;
    const double U33 = 2.974797272874263e-51;
    const double inum = 1.0e6;
    const double Uoh11 = U11/hbar;
    const double Uoh13 = U13/hbar;
    const double Uoh33 = U33/hbar;
    const double mu = pow(15*inum*U11*omegax*omegay*omegaz/M_PI/4,0.4)*pow(M,0.6)/2;
    const double delta = 1.0e9;
    const double F = 2.0e-2;
    const double g = sqrt(Uoh11*2.0/delta);
    const double loss11=1.0e-2;
    const double loss12=1.6e-22;
    const double loss31=1.0e-2;
    const double loss32=1.6e-22;
    const double loss132=8.0e-17;
    const double chi = F*g*delta;
    const double biggamma = g*g*delta/2;
    const double gam13 = Uoh13/chi;
    const double gam33 = Uoh33/chi;
    const double gameff = (Uoh11-biggamma)/chi;
    const double gamloss11=loss11/2/chi;
    const double gamloss12=loss12/chi;
    const double gamloss31=loss31/2/chi;
    const double gamloss32=loss32/chi;
    const double gamloss132=loss132/chi;
    const double cnoise =  noise/sqrt(2.0); 
  ]]>		
  </globals>  

  <!-- Field to be integrated over -->
  <field>
    <dimensions>x y z</dimensions>
    <lattice>32 32 16</lattice>
    <domains>(-1.2e-4,1.2e-4) (-1.2e-4,1.2e-4) (-8.0e-3,8.0e-3)</domains>
    <samples> 1 1 </samples>
		
    <vector>
      <name> vc1 </name>
      <type>double</type>
      <components>vcore V1r V3r gV1r gV3r</components>
      <fourier_space>no no no</fourier_space>
      <![CDATA[		
        vcore = (omegax*omegax*x*x+omegay*omegay*y*y+omegaz*omegaz*z*z);
	V1r = 0.5*M*vcore/hbar/chi -(gameff+gam13/2)/2/(dx*dy*dz);
	V3r = M*vcore/hbar/chi -(gam13/2+gam33)/2/(dx*dy*dz);
	gV1r = 0.5*M*vcore/hbar/chi;
	gV3r = M*vcore/hbar/chi;
      ]]>
    </vector>

    <vector>
      <name> main </name>
      <type>complex</type>
      <components>phi1a phi1b phi3a phi3b gphi1a gphi3a</components>
      <fourier_space>no no no</fourier_space>
      <vectors> vc1 </vectors>
      <![CDATA[
        const double realfn = (mu-0.5*M*vcore)/Uoh11/hbar;

	phi1a = realfn>0. ? complex(sqrt(realfn),0) : complex(0,0);
	phi1b = realfn>0. ? complex(sqrt(realfn),0) : complex(0,0);
	phi3a = complex(0,0);
	phi3b = complex(0,0);
	gphi1a = realfn>0. ? complex(sqrt(realfn),0) : complex(0,0);
	gphi3a = complex(0,0);
      ]]>
    </vector>
  </field>

  <!-- The sequence of integrations to perform -->
  <sequence>
    <integrate>
      <algorithm>SIIP</algorithm>
      <interval>1e-10</interval>
      <lattice>50</lattice>
      <samples>1 5</samples>
      <k_operators>
        <constant>yes</constant>
	<operator_names> L2p L2n L4p L4n </operator_names>
	<![CDATA[
	  L2p = complex(0,-hbar/M/2/chi*(kx*kx+ky*ky+kz*kz));
	  L2n = complex(0, hbar/M/2/chi*(kx*kx+ky*ky+kz*kz));
	  L4p = complex(0,-hbar/M/4/chi*(kx*kx+ky*ky+kz*kz));
	  L4n = complex(0, hbar/M/4/chi*(kx*kx+ky*ky+kz*kz));
	]]>
      </k_operators>
      <vectors> main vc1 </vectors>
      <![CDATA[
        const complex dens1 = phi1b*phi1a;
	const complex dens3 = phi3b*phi3a;

	const double gdens1 = (gphi1a.re*gphi1a.re+gphi1a.im*gphi1a.im);
	const double gdens3 = (gphi3a.re*gphi3a.re+gphi3a.im*gphi3a.im);

	dphi1a_dt = L2p[phi1a] + (-i*V1r-gamloss11+(gamloss132/2+gamloss12)/2/(dx*dy*dz))*phi1a 
	                       + (-i*gameff-gamloss12)*dens1*phi1a 
			       - (i*gam13+gamloss132)*dens3*phi1a -i*phi1b*phi3a 
			       + c_sqrt(-i*phi3a-(i*gameff+gamloss12)*phi1a*phi1a)*noise*n_1
			       - c_sqrt((i*gam13+gamloss132)*phi1a*phi3a)*cnoise*(n_5-i*n_7);

	dphi1b_dt = L2n[phi1b] + (i*V1r-gamloss11+(gamloss132/2+gamloss12)/2/(dx*dy*dz))*phi1b 
	                       + (i*gameff-gamloss12)*dens1*phi1b 
			       + (i*gam13-gamloss132)*dens3*phi1b +i*phi1a*phi3b
			       + c_sqrt(i*phi3b+(i*gameff-gamloss12)*phi1b*phi1b)*noise*n_2
			       + c_sqrt((gamloss132-i*gam13)*phi1b*phi3b)*cnoise*(n_6+i*n_8);

	dphi3a_dt = L4p[phi3a] + (-i*V3r-gamloss31+(gamloss132/2+gamloss32)/2/(dx*dy*dz))*phi3a 
	                       + (-i*gam33-gamloss32)*dens3*phi3a 
			       - i*0.5*phi1a*phi1a -(i*gam13+gamloss132)*dens1*phi3a
			       + c_sqrt(-i*gam33-gamloss32)*phi3a*noise*n_3
			       + c_sqrt((gamloss132+i*gam13)*phi1a*phi3a)*cnoise*(n_5+i*n_7);

	dphi3b_dt = L4n[phi3b] + (i*V3r-gamloss31+(gamloss132/2+gamloss32)/2/(dx*dy*dz))*phi3b 
	                       + (i*gam33-gamloss32)*dens3*phi3b 
			       + i*0.5*phi1b*phi1b +(i*gam13-gamloss132)*dens1*phi3b
			       + c_sqrt(i*gam33-gamloss32)*phi3b*noise*n_4
			       + c_sqrt((gamloss132-i*gam13)*phi1b*phi3b)*cnoise*(n_6-i*n_8);
			       
	dgphi1a_dt = L2p[gphi1a] + (-i*gV1r-gamloss11)*gphi1a +(-i*gameff-gamloss12)*gdens1*gphi1a 
	                         - (i*gam13+gamloss132)*gdens3*gphi1a-i*conj(gphi1a)*gphi3a;

	dgphi3a_dt = L4p[gphi3a] + (-i*gV3r-gamloss31)*gphi3a +(-i*gam33-gamloss32)*gdens3*gphi3a 
	                         -i*0.5*gphi1a*gphi1a +(i*gam13-gamloss132)*gdens1*gphi3a;
      ]]>
    </integrate>
  </sequence>

  <!-- The output to generate -->
  <output format="ascii" precision="double">
    <group>
      <sampling>
        <fourier_space>   no     no no</fourier_space>
	<lattice>         16    4  4</lattice>
	<moments>atoms molecules gatoms gmolecules</moments>
	<![CDATA[
	  atoms=phi1b*phi1a;
	  molecules=phi3b*phi3a;
	  gatoms=conj(gphi1a)*gphi1a;
	  gmolecules=conj(gphi3a)*gphi3a;
	]]>
      </sampling>
    </group>

    <group>
      <sampling>
        <fourier_space>    no   no  no</fourier_space>
	<lattice>           0    0   0</lattice>
	<moments>rn_1 rn_2 grn_1 grn_2 excitedn</moments>
	<![CDATA[
	  rn_1 = phi1b*phi1a;
	  rn_2 = phi3b*phi3a;
	  grn_1 = conj(gphi1a)*gphi1a;
	  grn_2 = conj(gphi3a)*gphi3a;
	  excitedn = g*g/4*phi1b*phi1b*phi1a*phi1a+F*F*phi3b*phi3a
	             - F*g/2*(phi1b*phi1b*phi3a+phi1a*phi1a*phi3b);
	]]>
      </sampling>
    </group>
  </output>
</simulation>