/usr/share/doc/xmds/examples/fullpos3D.xmds is in xmds 1.6.6-7.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 | <?xml version="1.0"?>
<!--Stochastic Superchemistry simulation-->
<!-- $Id: fullpos3D.xmds 1526 2007-08-21 17:30:14Z paultcochrane $ -->
<!-- Copyright (C) 2000-2007 -->
<!-- -->
<!-- Code contributed by Greg Collecutt, Joseph Hope and Paul Cochrane -->
<!-- -->
<!-- This file is part of xmds. -->
<!-- -->
<!-- This program is free software; you can redistribute it and/or -->
<!-- modify it under the terms of the GNU General Public License -->
<!-- as published by the Free Software Foundation; either version 2 -->
<!-- of the License, or (at your option) any later version. -->
<!-- -->
<!-- This program is distributed in the hope that it will be useful, -->
<!-- but WITHOUT ANY WARRANTY; without even the implied warranty of -->
<!-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -->
<!-- GNU General Public License for more details. -->
<!-- -->
<!-- You should have received a copy of the GNU General Public License -->
<!-- along with this program; if not, write to the Free Software -->
<!-- Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, -->
<!-- MA 02110-1301, USA. -->
<simulation>
<name>fullpos3D</name>
<author>Unknown Author</author>
<description>
Stochastic superchemistry simulation
</description>
<!-- Global system parameters and functionality -->
<stochastic>yes</stochastic>
<prop_dim>t</prop_dim>
<error_check>yes</error_check>
<threads>1</threads>
<paths>1</paths>
<use_mpi>no</use_mpi>
<seed>37 41</seed>
<noises>8</noises>
<!-- Global variables for the simulation -->
<globals>
<![CDATA[
const double noise = 1.0;
const double hbar = 1.05500000000e-34;
const double M = 1.409539200000000e-25;
const double omegax = 0.58976353090742;
const double omegay = 0.58976353090742;
const double omegaz = 0.58976353090742/30;
const double U11 = 2.974797272874263e-51;
const double U13 = -1.417820412490823e-50;
const double U33 = 2.974797272874263e-51;
const double inum = 1.0e6;
const double Uoh11 = U11/hbar;
const double Uoh13 = U13/hbar;
const double Uoh33 = U33/hbar;
const double mu = pow(15*inum*U11*omegax*omegay*omegaz/M_PI/4,0.4)*pow(M,0.6)/2;
const double delta = 1.0e9;
const double F = 2.0e-2;
const double g = sqrt(Uoh11*2.0/delta);
const double loss11=1.0e-2;
const double loss12=1.6e-22;
const double loss31=1.0e-2;
const double loss32=1.6e-22;
const double loss132=8.0e-17;
const double chi = F*g*delta;
const double biggamma = g*g*delta/2;
const double gam13 = Uoh13/chi;
const double gam33 = Uoh33/chi;
const double gameff = (Uoh11-biggamma)/chi;
const double gamloss11=loss11/2/chi;
const double gamloss12=loss12/chi;
const double gamloss31=loss31/2/chi;
const double gamloss32=loss32/chi;
const double gamloss132=loss132/chi;
const double cnoise = noise/sqrt(2.0);
]]>
</globals>
<!-- Field to be integrated over -->
<field>
<dimensions>x y z</dimensions>
<lattice>32 32 16</lattice>
<domains>(-1.2e-4,1.2e-4) (-1.2e-4,1.2e-4) (-8.0e-3,8.0e-3)</domains>
<samples> 1 1 </samples>
<vector>
<name> vc1 </name>
<type>double</type>
<components>vcore V1r V3r gV1r gV3r</components>
<fourier_space>no no no</fourier_space>
<![CDATA[
vcore = (omegax*omegax*x*x+omegay*omegay*y*y+omegaz*omegaz*z*z);
V1r = 0.5*M*vcore/hbar/chi -(gameff+gam13/2)/2/(dx*dy*dz);
V3r = M*vcore/hbar/chi -(gam13/2+gam33)/2/(dx*dy*dz);
gV1r = 0.5*M*vcore/hbar/chi;
gV3r = M*vcore/hbar/chi;
]]>
</vector>
<vector>
<name> main </name>
<type>complex</type>
<components>phi1a phi1b phi3a phi3b gphi1a gphi3a</components>
<fourier_space>no no no</fourier_space>
<vectors> vc1 </vectors>
<![CDATA[
const double realfn = (mu-0.5*M*vcore)/Uoh11/hbar;
phi1a = realfn>0. ? complex(sqrt(realfn),0) : complex(0,0);
phi1b = realfn>0. ? complex(sqrt(realfn),0) : complex(0,0);
phi3a = complex(0,0);
phi3b = complex(0,0);
gphi1a = realfn>0. ? complex(sqrt(realfn),0) : complex(0,0);
gphi3a = complex(0,0);
]]>
</vector>
</field>
<!-- The sequence of integrations to perform -->
<sequence>
<integrate>
<algorithm>SIIP</algorithm>
<interval>1e-10</interval>
<lattice>50</lattice>
<samples>1 5</samples>
<k_operators>
<constant>yes</constant>
<operator_names> L2p L2n L4p L4n </operator_names>
<![CDATA[
L2p = complex(0,-hbar/M/2/chi*(kx*kx+ky*ky+kz*kz));
L2n = complex(0, hbar/M/2/chi*(kx*kx+ky*ky+kz*kz));
L4p = complex(0,-hbar/M/4/chi*(kx*kx+ky*ky+kz*kz));
L4n = complex(0, hbar/M/4/chi*(kx*kx+ky*ky+kz*kz));
]]>
</k_operators>
<vectors> main vc1 </vectors>
<![CDATA[
const complex dens1 = phi1b*phi1a;
const complex dens3 = phi3b*phi3a;
const double gdens1 = (gphi1a.re*gphi1a.re+gphi1a.im*gphi1a.im);
const double gdens3 = (gphi3a.re*gphi3a.re+gphi3a.im*gphi3a.im);
dphi1a_dt = L2p[phi1a] + (-i*V1r-gamloss11+(gamloss132/2+gamloss12)/2/(dx*dy*dz))*phi1a
+ (-i*gameff-gamloss12)*dens1*phi1a
- (i*gam13+gamloss132)*dens3*phi1a -i*phi1b*phi3a
+ c_sqrt(-i*phi3a-(i*gameff+gamloss12)*phi1a*phi1a)*noise*n_1
- c_sqrt((i*gam13+gamloss132)*phi1a*phi3a)*cnoise*(n_5-i*n_7);
dphi1b_dt = L2n[phi1b] + (i*V1r-gamloss11+(gamloss132/2+gamloss12)/2/(dx*dy*dz))*phi1b
+ (i*gameff-gamloss12)*dens1*phi1b
+ (i*gam13-gamloss132)*dens3*phi1b +i*phi1a*phi3b
+ c_sqrt(i*phi3b+(i*gameff-gamloss12)*phi1b*phi1b)*noise*n_2
+ c_sqrt((gamloss132-i*gam13)*phi1b*phi3b)*cnoise*(n_6+i*n_8);
dphi3a_dt = L4p[phi3a] + (-i*V3r-gamloss31+(gamloss132/2+gamloss32)/2/(dx*dy*dz))*phi3a
+ (-i*gam33-gamloss32)*dens3*phi3a
- i*0.5*phi1a*phi1a -(i*gam13+gamloss132)*dens1*phi3a
+ c_sqrt(-i*gam33-gamloss32)*phi3a*noise*n_3
+ c_sqrt((gamloss132+i*gam13)*phi1a*phi3a)*cnoise*(n_5+i*n_7);
dphi3b_dt = L4n[phi3b] + (i*V3r-gamloss31+(gamloss132/2+gamloss32)/2/(dx*dy*dz))*phi3b
+ (i*gam33-gamloss32)*dens3*phi3b
+ i*0.5*phi1b*phi1b +(i*gam13-gamloss132)*dens1*phi3b
+ c_sqrt(i*gam33-gamloss32)*phi3b*noise*n_4
+ c_sqrt((gamloss132-i*gam13)*phi1b*phi3b)*cnoise*(n_6-i*n_8);
dgphi1a_dt = L2p[gphi1a] + (-i*gV1r-gamloss11)*gphi1a +(-i*gameff-gamloss12)*gdens1*gphi1a
- (i*gam13+gamloss132)*gdens3*gphi1a-i*conj(gphi1a)*gphi3a;
dgphi3a_dt = L4p[gphi3a] + (-i*gV3r-gamloss31)*gphi3a +(-i*gam33-gamloss32)*gdens3*gphi3a
-i*0.5*gphi1a*gphi1a +(i*gam13-gamloss132)*gdens1*gphi3a;
]]>
</integrate>
</sequence>
<!-- The output to generate -->
<output format="ascii" precision="double">
<group>
<sampling>
<fourier_space> no no no</fourier_space>
<lattice> 16 4 4</lattice>
<moments>atoms molecules gatoms gmolecules</moments>
<![CDATA[
atoms=phi1b*phi1a;
molecules=phi3b*phi3a;
gatoms=conj(gphi1a)*gphi1a;
gmolecules=conj(gphi3a)*gphi3a;
]]>
</sampling>
</group>
<group>
<sampling>
<fourier_space> no no no</fourier_space>
<lattice> 0 0 0</lattice>
<moments>rn_1 rn_2 grn_1 grn_2 excitedn</moments>
<![CDATA[
rn_1 = phi1b*phi1a;
rn_2 = phi3b*phi3a;
grn_1 = conj(gphi1a)*gphi1a;
grn_2 = conj(gphi3a)*gphi3a;
excitedn = g*g/4*phi1b*phi1b*phi1a*phi1a+F*F*phi3b*phi3a
- F*g/2*(phi1b*phi1b*phi3a+phi1a*phi1a*phi3b);
]]>
</sampling>
</group>
</output>
</simulation>
|