This file is indexed.

/usr/include/glm/gtx/matrix_interpolation.inl is in libglm-dev 0.9.9~a2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/// @ref gtx_matrix_interpolation
/// @file glm/gtx/matrix_interpolation.hpp

#include "../gtc/constants.hpp"

namespace glm
{
	template<typename T, qualifier Q>
	GLM_FUNC_QUALIFIER void axisAngle(mat<4, 4, T, Q> const& mat, vec<3, T, Q> & axis, T & angle)
	{
		T epsilon = static_cast<T>(0.01);
		T epsilon2 = static_cast<T>(0.1);

		if((abs(mat[1][0] - mat[0][1]) < epsilon) && (abs(mat[2][0] - mat[0][2]) < epsilon) && (abs(mat[2][1] - mat[1][2]) < epsilon))
		{
			if ((abs(mat[1][0] + mat[0][1]) < epsilon2) && (abs(mat[2][0] + mat[0][2]) < epsilon2) && (abs(mat[2][1] + mat[1][2]) < epsilon2) && (abs(mat[0][0] + mat[1][1] + mat[2][2] - static_cast<T>(3.0)) < epsilon2))
			{
				angle = static_cast<T>(0.0);
				axis.x = static_cast<T>(1.0);
				axis.y = static_cast<T>(0.0);
				axis.z = static_cast<T>(0.0);
				return;
			}
			angle = static_cast<T>(3.1415926535897932384626433832795);
			T xx = (mat[0][0] + static_cast<T>(1.0)) * static_cast<T>(0.5);
			T yy = (mat[1][1] + static_cast<T>(1.0)) * static_cast<T>(0.5);
			T zz = (mat[2][2] + static_cast<T>(1.0)) * static_cast<T>(0.5);
			T xy = (mat[1][0] + mat[0][1]) * static_cast<T>(0.25);
			T xz = (mat[2][0] + mat[0][2]) * static_cast<T>(0.25);
			T yz = (mat[2][1] + mat[1][2]) * static_cast<T>(0.25);
			if((xx > yy) && (xx > zz))
			{
				if(xx < epsilon)
				{
					axis.x = static_cast<T>(0.0);
					axis.y = static_cast<T>(0.7071);
					axis.z = static_cast<T>(0.7071);
				}
				else
				{
					axis.x = sqrt(xx);
					axis.y = xy / axis.x;
					axis.z = xz / axis.x;
				}
			}
			else if (yy > zz)
			{
				if(yy < epsilon)
				{
					axis.x = static_cast<T>(0.7071);
					axis.y = static_cast<T>(0.0);
					axis.z = static_cast<T>(0.7071);
				}
				else
				{
					axis.y = sqrt(yy);
					axis.x = xy / axis.y;
					axis.z = yz / axis.y;
				}
			}
			else
			{
				if (zz < epsilon)
				{
					axis.x = static_cast<T>(0.7071);
					axis.y = static_cast<T>(0.7071);
					axis.z = static_cast<T>(0.0);
				}
				else
				{
					axis.z = sqrt(zz);
					axis.x = xz / axis.z;
					axis.y = yz / axis.z;
				}
			}
			return;
		}
		T s = sqrt((mat[2][1] - mat[1][2]) * (mat[2][1] - mat[1][2]) + (mat[2][0] - mat[0][2]) * (mat[2][0] - mat[0][2]) + (mat[1][0] - mat[0][1]) * (mat[1][0] - mat[0][1]));
		if (glm::abs(s) < T(0.001))
			s = static_cast<T>(1);
		T const angleCos = (mat[0][0] + mat[1][1] + mat[2][2] - static_cast<T>(1)) * static_cast<T>(0.5);
		if(angleCos - static_cast<T>(1) < epsilon)
			angle = pi<T>() * static_cast<T>(0.25);
		else
			angle = acos(angleCos);
		axis.x = (mat[1][2] - mat[2][1]) / s;
		axis.y = (mat[2][0] - mat[0][2]) / s;
		axis.z = (mat[0][1] - mat[1][0]) / s;
	}

	template<typename T, qualifier Q>
	GLM_FUNC_QUALIFIER mat<4, 4, T, Q> axisAngleMatrix(vec<3, T, Q> const& axis, T const angle)
	{
		T c = cos(angle);
		T s = sin(angle);
		T t = static_cast<T>(1) - c;
		vec<3, T, Q> n = normalize(axis);

		return mat<4, 4, T, Q>(
			t * n.x * n.x + c,          t * n.x * n.y + n.z * s,    t * n.x * n.z - n.y * s,    static_cast<T>(0.0),
			t * n.x * n.y - n.z * s,    t * n.y * n.y + c,          t * n.y * n.z + n.x * s,    static_cast<T>(0.0),
			t * n.x * n.z + n.y * s,    t * n.y * n.z - n.x * s,    t * n.z * n.z + c,          static_cast<T>(0.0),
			static_cast<T>(0.0),        static_cast<T>(0.0),        static_cast<T>(0.0),        static_cast<T>(1.0));
	}

	template<typename T, qualifier Q>
	GLM_FUNC_QUALIFIER mat<4, 4, T, Q> extractMatrixRotation(mat<4, 4, T, Q> const& m)
	{
		return mat<4, 4, T, Q>(
			m[0][0], m[0][1], m[0][2], static_cast<T>(0.0),
			m[1][0], m[1][1], m[1][2], static_cast<T>(0.0),
			m[2][0], m[2][1], m[2][2], static_cast<T>(0.0),
			static_cast<T>(0.0), static_cast<T>(0.0), static_cast<T>(0.0), static_cast<T>(1.0));
	}

	template<typename T, qualifier Q>
	GLM_FUNC_QUALIFIER mat<4, 4, T, Q> interpolate(mat<4, 4, T, Q> const& m1, mat<4, 4, T, Q> const& m2, T const delta)
	{
		mat<4, 4, T, Q> m1rot = extractMatrixRotation(m1);
		mat<4, 4, T, Q> dltRotation = m2 * transpose(m1rot);
		vec<3, T, Q> dltAxis;
		T dltAngle;
		axisAngle(dltRotation, dltAxis, dltAngle);
		mat<4, 4, T, Q> out = axisAngleMatrix(dltAxis, dltAngle * delta) * m1rot;
		out[3][0] = m1[3][0] + delta * (m2[3][0] - m1[3][0]);
		out[3][1] = m1[3][1] + delta * (m2[3][1] - m1[3][1]);
		out[3][2] = m1[3][2] + delta * (m2[3][2] - m1[3][2]);
		return out;
	}
}//namespace glm