/usr/share/perl/5.26.1/pod/perlembed.pod is in perl-doc 5.26.1-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 | =head1 NAME
perlembed - how to embed perl in your C program
=head1 DESCRIPTION
=head2 PREAMBLE
Do you want to:
=over 5
=item B<Use C from Perl?>
Read L<perlxstut>, L<perlxs>, L<h2xs>, L<perlguts>, and L<perlapi>.
=item B<Use a Unix program from Perl?>
Read about back-quotes and about C<system> and C<exec> in L<perlfunc>.
=item B<Use Perl from Perl?>
Read about L<perlfunc/do> and L<perlfunc/eval> and L<perlfunc/require>
and L<perlfunc/use>.
=item B<Use C from C?>
Rethink your design.
=item B<Use Perl from C?>
Read on...
=back
=head2 ROADMAP
=over 5
=item *
Compiling your C program
=item *
Adding a Perl interpreter to your C program
=item *
Calling a Perl subroutine from your C program
=item *
Evaluating a Perl statement from your C program
=item *
Performing Perl pattern matches and substitutions from your C program
=item *
Fiddling with the Perl stack from your C program
=item *
Maintaining a persistent interpreter
=item *
Maintaining multiple interpreter instances
=item *
Using Perl modules, which themselves use C libraries, from your C program
=item *
Embedding Perl under Win32
=back
=head2 Compiling your C program
If you have trouble compiling the scripts in this documentation,
you're not alone. The cardinal rule: COMPILE THE PROGRAMS IN EXACTLY
THE SAME WAY THAT YOUR PERL WAS COMPILED. (Sorry for yelling.)
Also, every C program that uses Perl must link in the I<perl library>.
What's that, you ask? Perl is itself written in C; the perl library
is the collection of compiled C programs that were used to create your
perl executable (I</usr/bin/perl> or equivalent). (Corollary: you
can't use Perl from your C program unless Perl has been compiled on
your machine, or installed properly--that's why you shouldn't blithely
copy Perl executables from machine to machine without also copying the
I<lib> directory.)
When you use Perl from C, your C program will--usually--allocate,
"run", and deallocate a I<PerlInterpreter> object, which is defined by
the perl library.
If your copy of Perl is recent enough to contain this documentation
(version 5.002 or later), then the perl library (and I<EXTERN.h> and
I<perl.h>, which you'll also need) will reside in a directory
that looks like this:
/usr/local/lib/perl5/your_architecture_here/CORE
or perhaps just
/usr/local/lib/perl5/CORE
or maybe something like
/usr/opt/perl5/CORE
Execute this statement for a hint about where to find CORE:
perl -MConfig -e 'print $Config{archlib}'
Here's how you'd compile the example in the next section,
L</Adding a Perl interpreter to your C program>, on my Linux box:
% gcc -O2 -Dbool=char -DHAS_BOOL -I/usr/local/include
-I/usr/local/lib/perl5/i586-linux/5.003/CORE
-L/usr/local/lib/perl5/i586-linux/5.003/CORE
-o interp interp.c -lperl -lm
(That's all one line.) On my DEC Alpha running old 5.003_05, the
incantation is a bit different:
% cc -O2 -Olimit 2900 -DSTANDARD_C -I/usr/local/include
-I/usr/local/lib/perl5/alpha-dec_osf/5.00305/CORE
-L/usr/local/lib/perl5/alpha-dec_osf/5.00305/CORE -L/usr/local/lib
-D__LANGUAGE_C__ -D_NO_PROTO -o interp interp.c -lperl -lm
How can you figure out what to add? Assuming your Perl is post-5.001,
execute a C<perl -V> command and pay special attention to the "cc" and
"ccflags" information.
You'll have to choose the appropriate compiler (I<cc>, I<gcc>, et al.) for
your machine: C<perl -MConfig -e 'print $Config{cc}'> will tell you what
to use.
You'll also have to choose the appropriate library directory
(I</usr/local/lib/...>) for your machine. If your compiler complains
that certain functions are undefined, or that it can't locate
I<-lperl>, then you need to change the path following the C<-L>. If it
complains that it can't find I<EXTERN.h> and I<perl.h>, you need to
change the path following the C<-I>.
You may have to add extra libraries as well. Which ones?
Perhaps those printed by
perl -MConfig -e 'print $Config{libs}'
Provided your perl binary was properly configured and installed the
B<ExtUtils::Embed> module will determine all of this information for
you:
% cc -o interp interp.c `perl -MExtUtils::Embed -e ccopts -e ldopts`
If the B<ExtUtils::Embed> module isn't part of your Perl distribution,
you can retrieve it from
L<http://www.perl.com/perl/CPAN/modules/by-module/ExtUtils/>
(If this documentation came from your Perl distribution, then you're
running 5.004 or better and you already have it.)
The B<ExtUtils::Embed> kit on CPAN also contains all source code for
the examples in this document, tests, additional examples and other
information you may find useful.
=head2 Adding a Perl interpreter to your C program
In a sense, perl (the C program) is a good example of embedding Perl
(the language), so I'll demonstrate embedding with I<miniperlmain.c>,
included in the source distribution. Here's a bastardized, non-portable
version of I<miniperlmain.c> containing the essentials of embedding:
#include <EXTERN.h> /* from the Perl distribution */
#include <perl.h> /* from the Perl distribution */
static PerlInterpreter *my_perl; /*** The Perl interpreter ***/
int main(int argc, char **argv, char **env)
{
PERL_SYS_INIT3(&argc,&argv,&env);
my_perl = perl_alloc();
perl_construct(my_perl);
PL_exit_flags |= PERL_EXIT_DESTRUCT_END;
perl_parse(my_perl, NULL, argc, argv, (char **)NULL);
perl_run(my_perl);
perl_destruct(my_perl);
perl_free(my_perl);
PERL_SYS_TERM();
}
Notice that we don't use the C<env> pointer. Normally handed to
C<perl_parse> as its final argument, C<env> here is replaced by
C<NULL>, which means that the current environment will be used.
The macros PERL_SYS_INIT3() and PERL_SYS_TERM() provide system-specific
tune up of the C runtime environment necessary to run Perl interpreters;
they should only be called once regardless of how many interpreters you
create or destroy. Call PERL_SYS_INIT3() before you create your first
interpreter, and PERL_SYS_TERM() after you free your last interpreter.
Since PERL_SYS_INIT3() may change C<env>, it may be more appropriate to
provide C<env> as an argument to perl_parse().
Also notice that no matter what arguments you pass to perl_parse(),
PERL_SYS_INIT3() must be invoked on the C main() argc, argv and env and
only once.
Mind that argv[argc] must be NULL, same as those passed to a main
function in C.
Now compile this program (I'll call it I<interp.c>) into an executable:
% cc -o interp interp.c `perl -MExtUtils::Embed -e ccopts -e ldopts`
After a successful compilation, you'll be able to use I<interp> just
like perl itself:
% interp
print "Pretty Good Perl \n";
print "10890 - 9801 is ", 10890 - 9801;
<CTRL-D>
Pretty Good Perl
10890 - 9801 is 1089
or
% interp -e 'printf("%x", 3735928559)'
deadbeef
You can also read and execute Perl statements from a file while in the
midst of your C program, by placing the filename in I<argv[1]> before
calling I<perl_run>.
=head2 Calling a Perl subroutine from your C program
To call individual Perl subroutines, you can use any of the B<call_*>
functions documented in L<perlcall>.
In this example we'll use C<call_argv>.
That's shown below, in a program I'll call I<showtime.c>.
#include <EXTERN.h>
#include <perl.h>
static PerlInterpreter *my_perl;
int main(int argc, char **argv, char **env)
{
char *args[] = { NULL };
PERL_SYS_INIT3(&argc,&argv,&env);
my_perl = perl_alloc();
perl_construct(my_perl);
perl_parse(my_perl, NULL, argc, argv, NULL);
PL_exit_flags |= PERL_EXIT_DESTRUCT_END;
/*** skipping perl_run() ***/
call_argv("showtime", G_DISCARD | G_NOARGS, args);
perl_destruct(my_perl);
perl_free(my_perl);
PERL_SYS_TERM();
}
where I<showtime> is a Perl subroutine that takes no arguments (that's the
I<G_NOARGS>) and for which I'll ignore the return value (that's the
I<G_DISCARD>). Those flags, and others, are discussed in L<perlcall>.
I'll define the I<showtime> subroutine in a file called I<showtime.pl>:
print "I shan't be printed.";
sub showtime {
print time;
}
Simple enough. Now compile and run:
% cc -o showtime showtime.c \
`perl -MExtUtils::Embed -e ccopts -e ldopts`
% showtime showtime.pl
818284590
yielding the number of seconds that elapsed between January 1, 1970
(the beginning of the Unix epoch), and the moment I began writing this
sentence.
In this particular case we don't have to call I<perl_run>, as we set
the PL_exit_flag PERL_EXIT_DESTRUCT_END which executes END blocks in
perl_destruct.
If you want to pass arguments to the Perl subroutine, you can add
strings to the C<NULL>-terminated C<args> list passed to
I<call_argv>. For other data types, or to examine return values,
you'll need to manipulate the Perl stack. That's demonstrated in
L</Fiddling with the Perl stack from your C program>.
=head2 Evaluating a Perl statement from your C program
Perl provides two API functions to evaluate pieces of Perl code.
These are L<perlapi/eval_sv> and L<perlapi/eval_pv>.
Arguably, these are the only routines you'll ever need to execute
snippets of Perl code from within your C program. Your code can be as
long as you wish; it can contain multiple statements; it can employ
L<perlfunc/use>, L<perlfunc/require>, and L<perlfunc/do> to
include external Perl files.
I<eval_pv> lets us evaluate individual Perl strings, and then
extract variables for coercion into C types. The following program,
I<string.c>, executes three Perl strings, extracting an C<int> from
the first, a C<float> from the second, and a C<char *> from the third.
#include <EXTERN.h>
#include <perl.h>
static PerlInterpreter *my_perl;
main (int argc, char **argv, char **env)
{
char *embedding[] = { "", "-e", "0" };
PERL_SYS_INIT3(&argc,&argv,&env);
my_perl = perl_alloc();
perl_construct( my_perl );
perl_parse(my_perl, NULL, 3, embedding, NULL);
PL_exit_flags |= PERL_EXIT_DESTRUCT_END;
perl_run(my_perl);
/** Treat $a as an integer **/
eval_pv("$a = 3; $a **= 2", TRUE);
printf("a = %d\n", SvIV(get_sv("a", 0)));
/** Treat $a as a float **/
eval_pv("$a = 3.14; $a **= 2", TRUE);
printf("a = %f\n", SvNV(get_sv("a", 0)));
/** Treat $a as a string **/
eval_pv(
"$a = 'rekcaH lreP rehtonA tsuJ'; $a = reverse($a);", TRUE);
printf("a = %s\n", SvPV_nolen(get_sv("a", 0)));
perl_destruct(my_perl);
perl_free(my_perl);
PERL_SYS_TERM();
}
All of those strange functions with I<sv> in their names help convert Perl
scalars to C types. They're described in L<perlguts> and L<perlapi>.
If you compile and run I<string.c>, you'll see the results of using
I<SvIV()> to create an C<int>, I<SvNV()> to create a C<float>, and
I<SvPV()> to create a string:
a = 9
a = 9.859600
a = Just Another Perl Hacker
In the example above, we've created a global variable to temporarily
store the computed value of our eval'ed expression. It is also
possible and in most cases a better strategy to fetch the return value
from I<eval_pv()> instead. Example:
...
SV *val = eval_pv("reverse 'rekcaH lreP rehtonA tsuJ'", TRUE);
printf("%s\n", SvPV_nolen(val));
...
This way, we avoid namespace pollution by not creating global
variables and we've simplified our code as well.
=head2 Performing Perl pattern matches and substitutions from your C program
The I<eval_sv()> function lets us evaluate strings of Perl code, so we can
define some functions that use it to "specialize" in matches and
substitutions: I<match()>, I<substitute()>, and I<matches()>.
I32 match(SV *string, char *pattern);
Given a string and a pattern (e.g., C<m/clasp/> or C</\b\w*\b/>, which
in your C program might appear as "/\\b\\w*\\b/"), match()
returns 1 if the string matches the pattern and 0 otherwise.
int substitute(SV **string, char *pattern);
Given a pointer to an C<SV> and an C<=~> operation (e.g.,
C<s/bob/robert/g> or C<tr[A-Z][a-z]>), substitute() modifies the string
within the C<SV> as according to the operation, returning the number of
substitutions made.
SSize_t matches(SV *string, char *pattern, AV **matches);
Given an C<SV>, a pattern, and a pointer to an empty C<AV>,
matches() evaluates C<$string =~ $pattern> in a list context, and
fills in I<matches> with the array elements, returning the number of matches
found.
Here's a sample program, I<match.c>, that uses all three (long lines have
been wrapped here):
#include <EXTERN.h>
#include <perl.h>
static PerlInterpreter *my_perl;
/** my_eval_sv(code, error_check)
** kinda like eval_sv(),
** but we pop the return value off the stack
**/
SV* my_eval_sv(SV *sv, I32 croak_on_error)
{
dSP;
SV* retval;
PUSHMARK(SP);
eval_sv(sv, G_SCALAR);
SPAGAIN;
retval = POPs;
PUTBACK;
if (croak_on_error && SvTRUE(ERRSV))
croak(SvPVx_nolen(ERRSV));
return retval;
}
/** match(string, pattern)
**
** Used for matches in a scalar context.
**
** Returns 1 if the match was successful; 0 otherwise.
**/
I32 match(SV *string, char *pattern)
{
SV *command = newSV(0), *retval;
sv_setpvf(command, "my $string = '%s'; $string =~ %s",
SvPV_nolen(string), pattern);
retval = my_eval_sv(command, TRUE);
SvREFCNT_dec(command);
return SvIV(retval);
}
/** substitute(string, pattern)
**
** Used for =~ operations that
** modify their left-hand side (s/// and tr///)
**
** Returns the number of successful matches, and
** modifies the input string if there were any.
**/
I32 substitute(SV **string, char *pattern)
{
SV *command = newSV(0), *retval;
sv_setpvf(command, "$string = '%s'; ($string =~ %s)",
SvPV_nolen(*string), pattern);
retval = my_eval_sv(command, TRUE);
SvREFCNT_dec(command);
*string = get_sv("string", 0);
return SvIV(retval);
}
/** matches(string, pattern, matches)
**
** Used for matches in a list context.
**
** Returns the number of matches,
** and fills in **matches with the matching substrings
**/
SSize_t matches(SV *string, char *pattern, AV **match_list)
{
SV *command = newSV(0);
SSize_t num_matches;
sv_setpvf(command, "my $string = '%s'; @array = ($string =~ %s)",
SvPV_nolen(string), pattern);
my_eval_sv(command, TRUE);
SvREFCNT_dec(command);
*match_list = get_av("array", 0);
num_matches = av_top_index(*match_list) + 1;
return num_matches;
}
main (int argc, char **argv, char **env)
{
char *embedding[] = { "", "-e", "0" };
AV *match_list;
I32 num_matches, i;
SV *text;
PERL_SYS_INIT3(&argc,&argv,&env);
my_perl = perl_alloc();
perl_construct(my_perl);
perl_parse(my_perl, NULL, 3, embedding, NULL);
PL_exit_flags |= PERL_EXIT_DESTRUCT_END;
text = newSV(0);
sv_setpv(text, "When he is at a convenience store and the "
"bill comes to some amount like 76 cents, Maynard is "
"aware that there is something he *should* do, something "
"that will enable him to get back a quarter, but he has "
"no idea *what*. He fumbles through his red squeezey "
"changepurse and gives the boy three extra pennies with "
"his dollar, hoping that he might luck into the correct "
"amount. The boy gives him back two of his own pennies "
"and then the big shiny quarter that is his prize. "
"-RICHH");
if (match(text, "m/quarter/")) /** Does text contain 'quarter'? **/
printf("match: Text contains the word 'quarter'.\n\n");
else
printf("match: Text doesn't contain the word 'quarter'.\n\n");
if (match(text, "m/eighth/")) /** Does text contain 'eighth'? **/
printf("match: Text contains the word 'eighth'.\n\n");
else
printf("match: Text doesn't contain the word 'eighth'.\n\n");
/** Match all occurrences of /wi../ **/
num_matches = matches(text, "m/(wi..)/g", &match_list);
printf("matches: m/(wi..)/g found %d matches...\n", num_matches);
for (i = 0; i < num_matches; i++)
printf("match: %s\n",
SvPV_nolen(*av_fetch(match_list, i, FALSE)));
printf("\n");
/** Remove all vowels from text **/
num_matches = substitute(&text, "s/[aeiou]//gi");
if (num_matches) {
printf("substitute: s/[aeiou]//gi...%lu substitutions made.\n",
(unsigned long)num_matches);
printf("Now text is: %s\n\n", SvPV_nolen(text));
}
/** Attempt a substitution **/
if (!substitute(&text, "s/Perl/C/")) {
printf("substitute: s/Perl/C...No substitution made.\n\n");
}
SvREFCNT_dec(text);
PL_perl_destruct_level = 1;
perl_destruct(my_perl);
perl_free(my_perl);
PERL_SYS_TERM();
}
which produces the output (again, long lines have been wrapped here)
match: Text contains the word 'quarter'.
match: Text doesn't contain the word 'eighth'.
matches: m/(wi..)/g found 2 matches...
match: will
match: with
substitute: s/[aeiou]//gi...139 substitutions made.
Now text is: Whn h s t cnvnnc str nd th bll cms t sm mnt lk 76 cnts,
Mynrd s wr tht thr s smthng h *shld* d, smthng tht wll nbl hm t gt
bck qrtr, bt h hs n d *wht*. H fmbls thrgh hs rd sqzy chngprs nd
gvs th by thr xtr pnns wth hs dllr, hpng tht h mght lck nt th crrct
mnt. Th by gvs hm bck tw f hs wn pnns nd thn th bg shny qrtr tht s
hs prz. -RCHH
substitute: s/Perl/C...No substitution made.
=head2 Fiddling with the Perl stack from your C program
When trying to explain stacks, most computer science textbooks mumble
something about spring-loaded columns of cafeteria plates: the last
thing you pushed on the stack is the first thing you pop off. That'll
do for our purposes: your C program will push some arguments onto "the Perl
stack", shut its eyes while some magic happens, and then pop the
results--the return value of your Perl subroutine--off the stack.
First you'll need to know how to convert between C types and Perl
types, with newSViv() and sv_setnv() and newAV() and all their
friends. They're described in L<perlguts> and L<perlapi>.
Then you'll need to know how to manipulate the Perl stack. That's
described in L<perlcall>.
Once you've understood those, embedding Perl in C is easy.
Because C has no builtin function for integer exponentiation, let's
make Perl's ** operator available to it (this is less useful than it
sounds, because Perl implements ** with C's I<pow()> function). First
I'll create a stub exponentiation function in I<power.pl>:
sub expo {
my ($a, $b) = @_;
return $a ** $b;
}
Now I'll create a C program, I<power.c>, with a function
I<PerlPower()> that contains all the perlguts necessary to push the
two arguments into I<expo()> and to pop the return value out. Take a
deep breath...
#include <EXTERN.h>
#include <perl.h>
static PerlInterpreter *my_perl;
static void
PerlPower(int a, int b)
{
dSP; /* initialize stack pointer */
ENTER; /* everything created after here */
SAVETMPS; /* ...is a temporary variable. */
PUSHMARK(SP); /* remember the stack pointer */
XPUSHs(sv_2mortal(newSViv(a))); /* push the base onto the stack */
XPUSHs(sv_2mortal(newSViv(b))); /* push the exponent onto stack */
PUTBACK; /* make local stack pointer global */
call_pv("expo", G_SCALAR); /* call the function */
SPAGAIN; /* refresh stack pointer */
/* pop the return value from stack */
printf ("%d to the %dth power is %d.\n", a, b, POPi);
PUTBACK;
FREETMPS; /* free that return value */
LEAVE; /* ...and the XPUSHed "mortal" args.*/
}
int main (int argc, char **argv, char **env)
{
char *my_argv[] = { "", "power.pl" };
PERL_SYS_INIT3(&argc,&argv,&env);
my_perl = perl_alloc();
perl_construct( my_perl );
perl_parse(my_perl, NULL, 2, my_argv, (char **)NULL);
PL_exit_flags |= PERL_EXIT_DESTRUCT_END;
perl_run(my_perl);
PerlPower(3, 4); /*** Compute 3 ** 4 ***/
perl_destruct(my_perl);
perl_free(my_perl);
PERL_SYS_TERM();
}
Compile and run:
% cc -o power power.c `perl -MExtUtils::Embed -e ccopts -e ldopts`
% power
3 to the 4th power is 81.
=head2 Maintaining a persistent interpreter
When developing interactive and/or potentially long-running
applications, it's a good idea to maintain a persistent interpreter
rather than allocating and constructing a new interpreter multiple
times. The major reason is speed: since Perl will only be loaded into
memory once.
However, you have to be more cautious with namespace and variable
scoping when using a persistent interpreter. In previous examples
we've been using global variables in the default package C<main>. We
knew exactly what code would be run, and assumed we could avoid
variable collisions and outrageous symbol table growth.
Let's say your application is a server that will occasionally run Perl
code from some arbitrary file. Your server has no way of knowing what
code it's going to run. Very dangerous.
If the file is pulled in by C<perl_parse()>, compiled into a newly
constructed interpreter, and subsequently cleaned out with
C<perl_destruct()> afterwards, you're shielded from most namespace
troubles.
One way to avoid namespace collisions in this scenario is to translate
the filename into a guaranteed-unique package name, and then compile
the code into that package using L<perlfunc/eval>. In the example
below, each file will only be compiled once. Or, the application
might choose to clean out the symbol table associated with the file
after it's no longer needed. Using L<perlapi/call_argv>, We'll
call the subroutine C<Embed::Persistent::eval_file> which lives in the
file C<persistent.pl> and pass the filename and boolean cleanup/cache
flag as arguments.
Note that the process will continue to grow for each file that it
uses. In addition, there might be C<AUTOLOAD>ed subroutines and other
conditions that cause Perl's symbol table to grow. You might want to
add some logic that keeps track of the process size, or restarts
itself after a certain number of requests, to ensure that memory
consumption is minimized. You'll also want to scope your variables
with L<perlfunc/my> whenever possible.
package Embed::Persistent;
#persistent.pl
use strict;
our %Cache;
use Symbol qw(delete_package);
sub valid_package_name {
my($string) = @_;
$string =~ s/([^A-Za-z0-9\/])/sprintf("_%2x",unpack("C",$1))/eg;
# second pass only for words starting with a digit
$string =~ s|/(\d)|sprintf("/_%2x",unpack("C",$1))|eg;
# Dress it up as a real package name
$string =~ s|/|::|g;
return "Embed" . $string;
}
sub eval_file {
my($filename, $delete) = @_;
my $package = valid_package_name($filename);
my $mtime = -M $filename;
if(defined $Cache{$package}{mtime}
&&
$Cache{$package}{mtime} <= $mtime)
{
# we have compiled this subroutine already,
# it has not been updated on disk, nothing left to do
print STDERR "already compiled $package->handler\n";
}
else {
local *FH;
open FH, $filename or die "open '$filename' $!";
local($/) = undef;
my $sub = <FH>;
close FH;
#wrap the code into a subroutine inside our unique package
my $eval = qq{package $package; sub handler { $sub; }};
{
# hide our variables within this block
my($filename,$mtime,$package,$sub);
eval $eval;
}
die $@ if $@;
#cache it unless we're cleaning out each time
$Cache{$package}{mtime} = $mtime unless $delete;
}
eval {$package->handler;};
die $@ if $@;
delete_package($package) if $delete;
#take a look if you want
#print Devel::Symdump->rnew($package)->as_string, $/;
}
1;
__END__
/* persistent.c */
#include <EXTERN.h>
#include <perl.h>
/* 1 = clean out filename's symbol table after each request,
0 = don't
*/
#ifndef DO_CLEAN
#define DO_CLEAN 0
#endif
#define BUFFER_SIZE 1024
static PerlInterpreter *my_perl = NULL;
int
main(int argc, char **argv, char **env)
{
char *embedding[] = { "", "persistent.pl" };
char *args[] = { "", DO_CLEAN, NULL };
char filename[BUFFER_SIZE];
int exitstatus = 0;
PERL_SYS_INIT3(&argc,&argv,&env);
if((my_perl = perl_alloc()) == NULL) {
fprintf(stderr, "no memory!");
exit(1);
}
perl_construct(my_perl);
PL_origalen = 1; /* don't let $0 assignment update the
proctitle or embedding[0] */
exitstatus = perl_parse(my_perl, NULL, 2, embedding, NULL);
PL_exit_flags |= PERL_EXIT_DESTRUCT_END;
if(!exitstatus) {
exitstatus = perl_run(my_perl);
while(printf("Enter file name: ") &&
fgets(filename, BUFFER_SIZE, stdin)) {
filename[strlen(filename)-1] = '\0'; /* strip \n */
/* call the subroutine,
passing it the filename as an argument */
args[0] = filename;
call_argv("Embed::Persistent::eval_file",
G_DISCARD | G_EVAL, args);
/* check $@ */
if(SvTRUE(ERRSV))
fprintf(stderr, "eval error: %s\n", SvPV_nolen(ERRSV));
}
}
PL_perl_destruct_level = 0;
perl_destruct(my_perl);
perl_free(my_perl);
PERL_SYS_TERM();
exit(exitstatus);
}
Now compile:
% cc -o persistent persistent.c \
`perl -MExtUtils::Embed -e ccopts -e ldopts`
Here's an example script file:
#test.pl
my $string = "hello";
foo($string);
sub foo {
print "foo says: @_\n";
}
Now run:
% persistent
Enter file name: test.pl
foo says: hello
Enter file name: test.pl
already compiled Embed::test_2epl->handler
foo says: hello
Enter file name: ^C
=head2 Execution of END blocks
Traditionally END blocks have been executed at the end of the perl_run.
This causes problems for applications that never call perl_run. Since
perl 5.7.2 you can specify C<PL_exit_flags |= PERL_EXIT_DESTRUCT_END>
to get the new behaviour. This also enables the running of END blocks if
the perl_parse fails and C<perl_destruct> will return the exit value.
=head2 $0 assignments
When a perl script assigns a value to $0 then the perl runtime will
try to make this value show up as the program name reported by "ps" by
updating the memory pointed to by the argv passed to perl_parse() and
also calling API functions like setproctitle() where available. This
behaviour might not be appropriate when embedding perl and can be
disabled by assigning the value C<1> to the variable C<PL_origalen>
before perl_parse() is called.
The F<persistent.c> example above is for instance likely to segfault
when $0 is assigned to if the C<PL_origalen = 1;> assignment is
removed. This because perl will try to write to the read only memory
of the C<embedding[]> strings.
=head2 Maintaining multiple interpreter instances
Some rare applications will need to create more than one interpreter
during a session. Such an application might sporadically decide to
release any resources associated with the interpreter.
The program must take care to ensure that this takes place I<before>
the next interpreter is constructed. By default, when perl is not
built with any special options, the global variable
C<PL_perl_destruct_level> is set to C<0>, since extra cleaning isn't
usually needed when a program only ever creates a single interpreter
in its entire lifetime.
Setting C<PL_perl_destruct_level> to C<1> makes everything squeaky clean:
while(1) {
...
/* reset global variables here with PL_perl_destruct_level = 1 */
PL_perl_destruct_level = 1;
perl_construct(my_perl);
...
/* clean and reset _everything_ during perl_destruct */
PL_perl_destruct_level = 1;
perl_destruct(my_perl);
perl_free(my_perl);
...
/* let's go do it again! */
}
When I<perl_destruct()> is called, the interpreter's syntax parse tree
and symbol tables are cleaned up, and global variables are reset. The
second assignment to C<PL_perl_destruct_level> is needed because
perl_construct resets it to C<0>.
Now suppose we have more than one interpreter instance running at the
same time. This is feasible, but only if you used the Configure option
C<-Dusemultiplicity> or the options C<-Dusethreads -Duseithreads> when
building perl. By default, enabling one of these Configure options
sets the per-interpreter global variable C<PL_perl_destruct_level> to
C<1>, so that thorough cleaning is automatic and interpreter variables
are initialized correctly. Even if you don't intend to run two or
more interpreters at the same time, but to run them sequentially, like
in the above example, it is recommended to build perl with the
C<-Dusemultiplicity> option otherwise some interpreter variables may
not be initialized correctly between consecutive runs and your
application may crash.
See also L<perlxs/Thread-aware system interfaces>.
Using C<-Dusethreads -Duseithreads> rather than C<-Dusemultiplicity>
is more appropriate if you intend to run multiple interpreters
concurrently in different threads, because it enables support for
linking in the thread libraries of your system with the interpreter.
Let's give it a try:
#include <EXTERN.h>
#include <perl.h>
/* we're going to embed two interpreters */
#define SAY_HELLO "-e", "print qq(Hi, I'm $^X\n)"
int main(int argc, char **argv, char **env)
{
PerlInterpreter *one_perl, *two_perl;
char *one_args[] = { "one_perl", SAY_HELLO };
char *two_args[] = { "two_perl", SAY_HELLO };
PERL_SYS_INIT3(&argc,&argv,&env);
one_perl = perl_alloc();
two_perl = perl_alloc();
PERL_SET_CONTEXT(one_perl);
perl_construct(one_perl);
PERL_SET_CONTEXT(two_perl);
perl_construct(two_perl);
PERL_SET_CONTEXT(one_perl);
perl_parse(one_perl, NULL, 3, one_args, (char **)NULL);
PERL_SET_CONTEXT(two_perl);
perl_parse(two_perl, NULL, 3, two_args, (char **)NULL);
PERL_SET_CONTEXT(one_perl);
perl_run(one_perl);
PERL_SET_CONTEXT(two_perl);
perl_run(two_perl);
PERL_SET_CONTEXT(one_perl);
perl_destruct(one_perl);
PERL_SET_CONTEXT(two_perl);
perl_destruct(two_perl);
PERL_SET_CONTEXT(one_perl);
perl_free(one_perl);
PERL_SET_CONTEXT(two_perl);
perl_free(two_perl);
PERL_SYS_TERM();
}
Note the calls to PERL_SET_CONTEXT(). These are necessary to initialize
the global state that tracks which interpreter is the "current" one on
the particular process or thread that may be running it. It should
always be used if you have more than one interpreter and are making
perl API calls on both interpreters in an interleaved fashion.
PERL_SET_CONTEXT(interp) should also be called whenever C<interp> is
used by a thread that did not create it (using either perl_alloc(), or
the more esoteric perl_clone()).
Compile as usual:
% cc -o multiplicity multiplicity.c \
`perl -MExtUtils::Embed -e ccopts -e ldopts`
Run it, Run it:
% multiplicity
Hi, I'm one_perl
Hi, I'm two_perl
=head2 Using Perl modules, which themselves use C libraries, from your C
program
If you've played with the examples above and tried to embed a script
that I<use()>s a Perl module (such as I<Socket>) which itself uses a C or C++
library, this probably happened:
Can't load module Socket, dynamic loading not available in this perl.
(You may need to build a new perl executable which either supports
dynamic loading or has the Socket module statically linked into it.)
What's wrong?
Your interpreter doesn't know how to communicate with these extensions
on its own. A little glue will help. Up until now you've been
calling I<perl_parse()>, handing it NULL for the second argument:
perl_parse(my_perl, NULL, argc, my_argv, NULL);
That's where the glue code can be inserted to create the initial contact
between Perl and linked C/C++ routines. Let's take a look some pieces of
I<perlmain.c> to see how Perl does this:
static void xs_init (pTHX);
EXTERN_C void boot_DynaLoader (pTHX_ CV* cv);
EXTERN_C void boot_Socket (pTHX_ CV* cv);
EXTERN_C void
xs_init(pTHX)
{
char *file = __FILE__;
/* DynaLoader is a special case */
newXS("DynaLoader::boot_DynaLoader", boot_DynaLoader, file);
newXS("Socket::bootstrap", boot_Socket, file);
}
Simply put: for each extension linked with your Perl executable
(determined during its initial configuration on your
computer or when adding a new extension),
a Perl subroutine is created to incorporate the extension's
routines. Normally, that subroutine is named
I<Module::bootstrap()> and is invoked when you say I<use Module>. In
turn, this hooks into an XSUB, I<boot_Module>, which creates a Perl
counterpart for each of the extension's XSUBs. Don't worry about this
part; leave that to the I<xsubpp> and extension authors. If your
extension is dynamically loaded, DynaLoader creates I<Module::bootstrap()>
for you on the fly. In fact, if you have a working DynaLoader then there
is rarely any need to link in any other extensions statically.
Once you have this code, slap it into the second argument of I<perl_parse()>:
perl_parse(my_perl, xs_init, argc, my_argv, NULL);
Then compile:
% cc -o interp interp.c `perl -MExtUtils::Embed -e ccopts -e ldopts`
% interp
use Socket;
use SomeDynamicallyLoadedModule;
print "Now I can use extensions!\n"'
B<ExtUtils::Embed> can also automate writing the I<xs_init> glue code.
% perl -MExtUtils::Embed -e xsinit -- -o perlxsi.c
% cc -c perlxsi.c `perl -MExtUtils::Embed -e ccopts`
% cc -c interp.c `perl -MExtUtils::Embed -e ccopts`
% cc -o interp perlxsi.o interp.o `perl -MExtUtils::Embed -e ldopts`
Consult L<perlxs>, L<perlguts>, and L<perlapi> for more details.
=head2 Using embedded Perl with POSIX locales
(See L<perllocale> for information about these.)
When a Perl interpreter normally starts up, it tells the system it wants
to use the system's default locale. This is often, but not necessarily,
the "C" or "POSIX" locale. Absent a S<C<"use locale">> within the perl
code, this mostly has no effect (but see L<perllocale/Not within the
scope of "use locale">). Also, there is not a problem if the
locale you want to use in your embedded Perl is the same as the system
default. However, this doesn't work if you have set up and want to use
a locale that isn't the system default one. Starting in Perl v5.20, you
can tell the embedded Perl interpreter that the locale is already
properly set up, and to skip doing its own normal initialization. It
skips if the environment variable C<PERL_SKIP_LOCALE_INIT> is set (even
if set to 0 or C<"">). A Perl that has this capability will define the
C pre-processor symbol C<HAS_SKIP_LOCALE_INIT>. This allows code that
has to work with multiple Perl versions to do some sort of work-around
when confronted with an earlier Perl.
=head1 Hiding Perl_
If you completely hide the short forms of the Perl public API,
add -DPERL_NO_SHORT_NAMES to the compilation flags. This means that
for example instead of writing
warn("%d bottles of beer on the wall", bottlecount);
you will have to write the explicit full form
Perl_warn(aTHX_ "%d bottles of beer on the wall", bottlecount);
(See L<perlguts/"Background and PERL_IMPLICIT_CONTEXT"> for the explanation
of the C<aTHX_>. ) Hiding the short forms is very useful for avoiding
all sorts of nasty (C preprocessor or otherwise) conflicts with other
software packages (Perl defines about 2400 APIs with these short names,
take or leave few hundred, so there certainly is room for conflict.)
=head1 MORAL
You can sometimes I<write faster code> in C, but
you can always I<write code faster> in Perl. Because you can use
each from the other, combine them as you wish.
=head1 AUTHOR
Jon Orwant <F<orwant@media.mit.edu>> and Doug MacEachern
<F<dougm@covalent.net>>, with small contributions from Tim Bunce, Tom
Christiansen, Guy Decoux, Hallvard Furuseth, Dov Grobgeld, and Ilya
Zakharevich.
Doug MacEachern has an article on embedding in Volume 1, Issue 4 of
The Perl Journal ( L<http://www.tpj.com/> ). Doug is also the developer of the
most widely-used Perl embedding: the mod_perl system
(perl.apache.org), which embeds Perl in the Apache web server.
Oracle, Binary Evolution, ActiveState, and Ben Sugars's nsapi_perl
have used this model for Oracle, Netscape and Internet Information
Server Perl plugins.
=head1 COPYRIGHT
Copyright (C) 1995, 1996, 1997, 1998 Doug MacEachern and Jon Orwant. All
Rights Reserved.
This document may be distributed under the same terms as Perl itself.
|