/usr/share/perl/5.26.1/pod/perlvar.pod is in perl-doc 5.26.1-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 | =head1 NAME
perlvar - Perl predefined variables
=head1 DESCRIPTION
=head2 The Syntax of Variable Names
Variable names in Perl can have several formats. Usually, they
must begin with a letter or underscore, in which case they can be
arbitrarily long (up to an internal limit of 251 characters) and
may contain letters, digits, underscores, or the special sequence
C<::> or C<'>. In this case, the part before the last C<::> or
C<'> is taken to be a I<package qualifier>; see L<perlmod>.
A Unicode letter that is not ASCII is not considered to be a letter
unless S<C<"use utf8">> is in effect, and somewhat more complicated
rules apply; see L<perldata/Identifier parsing> for details.
Perl variable names may also be a sequence of digits, a single
punctuation character, or the two-character sequence: C<^> (caret or
CIRCUMFLEX ACCENT) followed by any one of the characters C<[][A-Z^_?\]>.
These names are all reserved for
special uses by Perl; for example, the all-digits names are used
to hold data captured by backreferences after a regular expression
match.
Since Perl v5.6.0, Perl variable names may also be alphanumeric strings
preceded by a caret. These must all be written in the form C<${^Foo}>;
the braces are not optional. C<${^Foo}> denotes the scalar variable
whose name is considered to be a control-C<F> followed by two C<o>'s.
These variables are
reserved for future special uses by Perl, except for the ones that
begin with C<^_> (caret-underscore). No
name that begins with C<^_> will acquire a special
meaning in any future version of Perl; such names may therefore be
used safely in programs. C<$^_> itself, however, I<is> reserved.
Perl identifiers that begin with digits or
punctuation characters are exempt from the effects of the C<package>
declaration and are always forced to be in package C<main>; they are
also exempt from C<strict 'vars'> errors. A few other names are also
exempt in these ways:
ENV STDIN
INC STDOUT
ARGV STDERR
ARGVOUT
SIG
In particular, the special C<${^_XYZ}> variables are always taken
to be in package C<main>, regardless of any C<package> declarations
presently in scope.
=head1 SPECIAL VARIABLES
The following names have special meaning to Perl. Most punctuation
names have reasonable mnemonics, or analogs in the shells.
Nevertheless, if you wish to use long variable names, you need only say:
use English;
at the top of your program. This aliases all the short names to the long
names in the current package. Some even have medium names, generally
borrowed from B<awk>. For more info, please see L<English>.
Before you continue, note the sort order for variables. In general, we
first list the variables in case-insensitive, almost-lexigraphical
order (ignoring the C<{> or C<^> preceding words, as in C<${^UNICODE}>
or C<$^T>), although C<$_> and C<@_> move up to the top of the pile.
For variables with the same identifier, we list it in order of scalar,
array, hash, and bareword.
=head2 General Variables
=over 8
=item $ARG
=item $_
X<$_> X<$ARG>
The default input and pattern-searching space. The following pairs are
equivalent:
while (<>) {...} # equivalent only in while!
while (defined($_ = <>)) {...}
/^Subject:/
$_ =~ /^Subject:/
tr/a-z/A-Z/
$_ =~ tr/a-z/A-Z/
chomp
chomp($_)
Here are the places where Perl will assume C<$_> even if you don't use it:
=over 3
=item *
The following functions use C<$_> as a default argument:
abs, alarm, chomp, chop, chr, chroot,
cos, defined, eval, evalbytes, exp, fc, glob, hex, int, lc,
lcfirst, length, log, lstat, mkdir, oct, ord, pos, print, printf,
quotemeta, readlink, readpipe, ref, require, reverse (in scalar context only),
rmdir, say, sin, split (for its second
argument), sqrt, stat, study, uc, ucfirst,
unlink, unpack.
=item *
All file tests (C<-f>, C<-d>) except for C<-t>, which defaults to STDIN.
See L<perlfunc/-X>
=item *
The pattern matching operations C<m//>, C<s///> and C<tr///> (aka C<y///>)
when used without an C<=~> operator.
=item *
The default iterator variable in a C<foreach> loop if no other
variable is supplied.
=item *
The implicit iterator variable in the C<grep()> and C<map()> functions.
=item *
The implicit variable of C<given()>.
=item *
The default place to put the next value or input record
when a C<< <FH> >>, C<readline>, C<readdir> or C<each>
operation's result is tested by itself as the sole criterion of a C<while>
test. Outside a C<while> test, this will not happen.
=back
C<$_> is by default a global variable. However, as
of perl v5.10.0, you can use a lexical version of
C<$_> by declaring it in a file or in a block with C<my>. Moreover,
declaring C<our $_> restores the global C<$_> in the current scope. Though
this seemed like a good idea at the time it was introduced, lexical C<$_>
actually causes more problems than it solves. If you call a function that
expects to be passed information via C<$_>, it may or may not work,
depending on how the function is written, there not being any easy way to
solve this. Just avoid lexical C<$_>, unless you are feeling particularly
masochistic. For this reason lexical C<$_> is still experimental and will
produce a warning unless warnings have been disabled. As with other
experimental features, the behavior of lexical C<$_> is subject to change
without notice, including change into a fatal error.
Mnemonic: underline is understood in certain operations.
=item @ARG
=item @_
X<@_> X<@ARG>
Within a subroutine the array C<@_> contains the parameters passed to
that subroutine. Inside a subroutine, C<@_> is the default array for
the array operators C<pop> and C<shift>.
See L<perlsub>.
=item $LIST_SEPARATOR
=item $"
X<$"> X<$LIST_SEPARATOR>
When an array or an array slice is interpolated into a double-quoted
string or a similar context such as C</.../>, its elements are
separated by this value. Default is a space. For example, this:
print "The array is: @array\n";
is equivalent to this:
print "The array is: " . join($", @array) . "\n";
Mnemonic: works in double-quoted context.
=item $PROCESS_ID
=item $PID
=item $$
X<$$> X<$PID> X<$PROCESS_ID>
The process number of the Perl running this script. Though you I<can> set
this variable, doing so is generally discouraged, although it can be
invaluable for some testing purposes. It will be reset automatically
across C<fork()> calls.
Note for Linux and Debian GNU/kFreeBSD users: Before Perl v5.16.0 perl
would emulate POSIX semantics on Linux systems using LinuxThreads, a
partial implementation of POSIX Threads that has since been superseded
by the Native POSIX Thread Library (NPTL).
LinuxThreads is now obsolete on Linux, and caching C<getpid()>
like this made embedding perl unnecessarily complex (since you'd have
to manually update the value of $$), so now C<$$> and C<getppid()>
will always return the same values as the underlying C library.
Debian GNU/kFreeBSD systems also used LinuxThreads up until and
including the 6.0 release, but after that moved to FreeBSD thread
semantics, which are POSIX-like.
To see if your system is affected by this discrepancy check if
C<getconf GNU_LIBPTHREAD_VERSION | grep -q NPTL> returns a false
value. NTPL threads preserve the POSIX semantics.
Mnemonic: same as shells.
=item $PROGRAM_NAME
=item $0
X<$0> X<$PROGRAM_NAME>
Contains the name of the program being executed.
On some (but not all) operating systems assigning to C<$0> modifies
the argument area that the C<ps> program sees. On some platforms you
may have to use special C<ps> options or a different C<ps> to see the
changes. Modifying the C<$0> is more useful as a way of indicating the
current program state than it is for hiding the program you're
running.
Note that there are platform-specific limitations on the maximum
length of C<$0>. In the most extreme case it may be limited to the
space occupied by the original C<$0>.
In some platforms there may be arbitrary amount of padding, for
example space characters, after the modified name as shown by C<ps>.
In some platforms this padding may extend all the way to the original
length of the argument area, no matter what you do (this is the case
for example with Linux 2.2).
Note for BSD users: setting C<$0> does not completely remove "perl"
from the ps(1) output. For example, setting C<$0> to C<"foobar"> may
result in C<"perl: foobar (perl)"> (whether both the C<"perl: "> prefix
and the " (perl)" suffix are shown depends on your exact BSD variant
and version). This is an operating system feature, Perl cannot help it.
In multithreaded scripts Perl coordinates the threads so that any
thread may modify its copy of the C<$0> and the change becomes visible
to ps(1) (assuming the operating system plays along). Note that
the view of C<$0> the other threads have will not change since they
have their own copies of it.
If the program has been given to perl via the switches C<-e> or C<-E>,
C<$0> will contain the string C<"-e">.
On Linux as of perl v5.14.0 the legacy process name will be set with
C<prctl(2)>, in addition to altering the POSIX name via C<argv[0]> as
perl has done since version 4.000. Now system utilities that read the
legacy process name such as ps, top and killall will recognize the
name you set when assigning to C<$0>. The string you supply will be
cut off at 16 bytes, this is a limitation imposed by Linux.
Mnemonic: same as B<sh> and B<ksh>.
=item $REAL_GROUP_ID
=item $GID
=item $(
X<$(> X<$GID> X<$REAL_GROUP_ID>
The real gid of this process. If you are on a machine that supports
membership in multiple groups simultaneously, gives a space separated
list of groups you are in. The first number is the one returned by
C<getgid()>, and the subsequent ones by C<getgroups()>, one of which may be
the same as the first number.
However, a value assigned to C<$(> must be a single number used to
set the real gid. So the value given by C<$(> should I<not> be assigned
back to C<$(> without being forced numeric, such as by adding zero. Note
that this is different to the effective gid (C<$)>) which does take a
list.
You can change both the real gid and the effective gid at the same
time by using C<POSIX::setgid()>. Changes
to C<$(> require a check to C<$!>
to detect any possible errors after an attempted change.
Mnemonic: parentheses are used to I<group> things. The real gid is the
group you I<left>, if you're running setgid.
=item $EFFECTIVE_GROUP_ID
=item $EGID
=item $)
X<$)> X<$EGID> X<$EFFECTIVE_GROUP_ID>
The effective gid of this process. If you are on a machine that
supports membership in multiple groups simultaneously, gives a space
separated list of groups you are in. The first number is the one
returned by C<getegid()>, and the subsequent ones by C<getgroups()>,
one of which may be the same as the first number.
Similarly, a value assigned to C<$)> must also be a space-separated
list of numbers. The first number sets the effective gid, and
the rest (if any) are passed to C<setgroups()>. To get the effect of an
empty list for C<setgroups()>, just repeat the new effective gid; that is,
to force an effective gid of 5 and an effectively empty C<setgroups()>
list, say C< $) = "5 5" >.
You can change both the effective gid and the real gid at the same
time by using C<POSIX::setgid()> (use only a single numeric argument).
Changes to C<$)> require a check to C<$!> to detect any possible errors
after an attempted change.
C<< $< >>, C<< $> >>, C<$(> and C<$)> can be set only on
machines that support the corresponding I<set[re][ug]id()> routine. C<$(>
and C<$)> can be swapped only on machines supporting C<setregid()>.
Mnemonic: parentheses are used to I<group> things. The effective gid
is the group that's I<right> for you, if you're running setgid.
=item $REAL_USER_ID
=item $UID
=item $<
X<< $< >> X<$UID> X<$REAL_USER_ID>
The real uid of this process. You can change both the real uid and the
effective uid at the same time by using C<POSIX::setuid()>. Since
changes to C<< $< >> require a system call, check C<$!> after a change
attempt to detect any possible errors.
Mnemonic: it's the uid you came I<from>, if you're running setuid.
=item $EFFECTIVE_USER_ID
=item $EUID
=item $>
X<< $> >> X<$EUID> X<$EFFECTIVE_USER_ID>
The effective uid of this process. For example:
$< = $>; # set real to effective uid
($<,$>) = ($>,$<); # swap real and effective uids
You can change both the effective uid and the real uid at the same
time by using C<POSIX::setuid()>. Changes to C<< $> >> require a check
to C<$!> to detect any possible errors after an attempted change.
C<< $< >> and C<< $> >> can be swapped only on machines
supporting C<setreuid()>.
Mnemonic: it's the uid you went I<to>, if you're running setuid.
=item $SUBSCRIPT_SEPARATOR
=item $SUBSEP
=item $;
X<$;> X<$SUBSEP> X<SUBSCRIPT_SEPARATOR>
The subscript separator for multidimensional array emulation. If you
refer to a hash element as
$foo{$x,$y,$z}
it really means
$foo{join($;, $x, $y, $z)}
But don't put
@foo{$x,$y,$z} # a slice--note the @
which means
($foo{$x},$foo{$y},$foo{$z})
Default is "\034", the same as SUBSEP in B<awk>. If your keys contain
binary data there might not be any safe value for C<$;>.
Consider using "real" multidimensional arrays as described
in L<perllol>.
Mnemonic: comma (the syntactic subscript separator) is a semi-semicolon.
=item $a
=item $b
X<$a> X<$b>
Special package variables when using C<sort()>, see L<perlfunc/sort>.
Because of this specialness C<$a> and C<$b> don't need to be declared
(using C<use vars>, or C<our()>) even when using the C<strict 'vars'>
pragma. Don't lexicalize them with C<my $a> or C<my $b> if you want to
be able to use them in the C<sort()> comparison block or function.
=item %ENV
X<%ENV>
The hash C<%ENV> contains your current environment. Setting a
value in C<ENV> changes the environment for any child processes
you subsequently C<fork()> off.
As of v5.18.0, both keys and values stored in C<%ENV> are stringified.
my $foo = 1;
$ENV{'bar'} = \$foo;
if( ref $ENV{'bar'} ) {
say "Pre 5.18.0 Behaviour";
} else {
say "Post 5.18.0 Behaviour";
}
Previously, only child processes received stringified values:
my $foo = 1;
$ENV{'bar'} = \$foo;
# Always printed 'non ref'
system($^X, '-e',
q/print ( ref $ENV{'bar'} ? 'ref' : 'non ref' ) /);
This happens because you can't really share arbitrary data structures with
foreign processes.
=item $OLD_PERL_VERSION
=item $]
X<$]> X<$OLD_PERL_VERSION>
The revision, version, and subversion of the Perl interpreter, represented
as a decimal of the form 5.XXXYYY, where XXX is the version / 1e3 and YYY
is the subversion / 1e6. For example, Perl v5.10.1 would be "5.010001".
This variable can be used to determine whether the Perl interpreter
executing a script is in the right range of versions:
warn "No PerlIO!\n" if $] lt '5.008';
When comparing C<$]>, string comparison operators are B<highly
recommended>. The inherent limitations of binary floating point
representation can sometimes lead to incorrect comparisons for some
numbers on some architectures.
See also the documentation of C<use VERSION> and C<require VERSION>
for a convenient way to fail if the running Perl interpreter is too old.
See L</$^V> for a representation of the Perl version as a L<version>
object, which allows more flexible string comparisons.
The main advantage of C<$]> over C<$^V> is that it works the same on any
version of Perl. The disadvantages are that it can't easily be compared
to versions in other formats (e.g. literal v-strings, "v1.2.3" or
version objects) and numeric comparisons can occasionally fail; it's good
for string literal version checks and bad for comparing to a variable
that hasn't been sanity-checked.
The C<$OLD_PERL_VERSION> form was added in Perl v5.20.0 for historical
reasons but its use is discouraged. (If your reason to use C<$]> is to
run code on old perls then referring to it as C<$OLD_PERL_VERSION> would
be self-defeating.)
Mnemonic: Is this version of perl in the right bracket?
=item $SYSTEM_FD_MAX
=item $^F
X<$^F> X<$SYSTEM_FD_MAX>
The maximum system file descriptor, ordinarily 2. System file
descriptors are passed to C<exec()>ed processes, while higher file
descriptors are not. Also, during an
C<open()>, system file descriptors are
preserved even if the C<open()> fails (ordinary file descriptors are
closed before the C<open()> is attempted). The close-on-exec
status of a file descriptor will be decided according to the value of
C<$^F> when the corresponding file, pipe, or socket was opened, not the
time of the C<exec()>.
=item @F
X<@F>
The array C<@F> contains the fields of each line read in when autosplit
mode is turned on. See L<perlrun> for the B<-a> switch. This array
is package-specific, and must be declared or given a full package name
if not in package main when running under C<strict 'vars'>.
=item @INC
X<@INC>
The array C<@INC> contains the list of places that the C<do EXPR>,
C<require>, or C<use> constructs look for their library files. It
initially consists of the arguments to any B<-I> command-line
switches, followed by the default Perl library, probably
F</usr/local/lib/perl>, followed by ".", to represent the current
directory. ("." will not be appended if taint checks are enabled,
either by C<-T> or by C<-t>, or if configured not to do so by the
C<-Ddefault_inc_excludes_dot> compile time option.) If you need to
modify this at runtime, you should use the C<use lib> pragma to get
the machine-dependent library properly loaded also:
use lib '/mypath/libdir/';
use SomeMod;
You can also insert hooks into the file inclusion system by putting Perl
code directly into C<@INC>. Those hooks may be subroutine references,
array references or blessed objects. See L<perlfunc/require> for details.
=item %INC
X<%INC>
The hash C<%INC> contains entries for each filename included via the
C<do>, C<require>, or C<use> operators. The key is the filename
you specified (with module names converted to pathnames), and the
value is the location of the file found. The C<require>
operator uses this hash to determine whether a particular file has
already been included.
If the file was loaded via a hook (e.g. a subroutine reference, see
L<perlfunc/require> for a description of these hooks), this hook is
by default inserted into C<%INC> in place of a filename. Note, however,
that the hook may have set the C<%INC> entry by itself to provide some more
specific info.
=item $INPLACE_EDIT
=item $^I
X<$^I> X<$INPLACE_EDIT>
The current value of the inplace-edit extension. Use C<undef> to disable
inplace editing.
Mnemonic: value of B<-i> switch.
=item @ISA
X<@ISA>
Each package contains a special array called C<@ISA> which contains a list
of that class's parent classes, if any. This array is simply a list of
scalars, each of which is a string that corresponds to a package name. The
array is examined when Perl does method resolution, which is covered in
L<perlobj>.
To load packages while adding them to C<@ISA>, see the L<parent> pragma. The
discouraged L<base> pragma does this as well, but should not be used except
when compatibility with the discouraged L<fields> pragma is required.
=item $^M
X<$^M>
By default, running out of memory is an untrappable, fatal error.
However, if suitably built, Perl can use the contents of C<$^M>
as an emergency memory pool after C<die()>ing. Suppose that your Perl
were compiled with C<-DPERL_EMERGENCY_SBRK> and used Perl's malloc.
Then
$^M = 'a' x (1 << 16);
would allocate a 64K buffer for use in an emergency. See the
F<INSTALL> file in the Perl distribution for information on how to
add custom C compilation flags when compiling perl. To discourage casual
use of this advanced feature, there is no L<English|English> long name for
this variable.
This variable was added in Perl 5.004.
=item $OSNAME
=item $^O
X<$^O> X<$OSNAME>
The name of the operating system under which this copy of Perl was
built, as determined during the configuration process. For examples
see L<perlport/PLATFORMS>.
The value is identical to C<$Config{'osname'}>. See also L<Config>
and the B<-V> command-line switch documented in L<perlrun>.
In Windows platforms, C<$^O> is not very helpful: since it is always
C<MSWin32>, it doesn't tell the difference between
95/98/ME/NT/2000/XP/CE/.NET. Use C<Win32::GetOSName()> or
Win32::GetOSVersion() (see L<Win32> and L<perlport>) to distinguish
between the variants.
This variable was added in Perl 5.003.
=item %SIG
X<%SIG>
The hash C<%SIG> contains signal handlers for signals. For example:
sub handler { # 1st argument is signal name
my($sig) = @_;
print "Caught a SIG$sig--shutting down\n";
close(LOG);
exit(0);
}
$SIG{'INT'} = \&handler;
$SIG{'QUIT'} = \&handler;
...
$SIG{'INT'} = 'DEFAULT'; # restore default action
$SIG{'QUIT'} = 'IGNORE'; # ignore SIGQUIT
Using a value of C<'IGNORE'> usually has the effect of ignoring the
signal, except for the C<CHLD> signal. See L<perlipc> for more about
this special case.
Here are some other examples:
$SIG{"PIPE"} = "Plumber"; # assumes main::Plumber (not
# recommended)
$SIG{"PIPE"} = \&Plumber; # just fine; assume current
# Plumber
$SIG{"PIPE"} = *Plumber; # somewhat esoteric
$SIG{"PIPE"} = Plumber(); # oops, what did Plumber()
# return??
Be sure not to use a bareword as the name of a signal handler,
lest you inadvertently call it.
If your system has the C<sigaction()> function then signal handlers
are installed using it. This means you get reliable signal handling.
The default delivery policy of signals changed in Perl v5.8.0 from
immediate (also known as "unsafe") to deferred, also known as "safe
signals". See L<perlipc> for more information.
Certain internal hooks can be also set using the C<%SIG> hash. The
routine indicated by C<$SIG{__WARN__}> is called when a warning
message is about to be printed. The warning message is passed as the
first argument. The presence of a C<__WARN__> hook causes the
ordinary printing of warnings to C<STDERR> to be suppressed. You can
use this to save warnings in a variable, or turn warnings into fatal
errors, like this:
local $SIG{__WARN__} = sub { die $_[0] };
eval $proggie;
As the C<'IGNORE'> hook is not supported by C<__WARN__>, you can
disable warnings using the empty subroutine:
local $SIG{__WARN__} = sub {};
The routine indicated by C<$SIG{__DIE__}> is called when a fatal
exception is about to be thrown. The error message is passed as the
first argument. When a C<__DIE__> hook routine returns, the exception
processing continues as it would have in the absence of the hook,
unless the hook routine itself exits via a C<goto &sub>, a loop exit,
or a C<die()>. The C<__DIE__> handler is explicitly disabled during
the call, so that you can die from a C<__DIE__> handler. Similarly
for C<__WARN__>.
The C<$SIG{__DIE__}> hook is called even inside an C<eval()>. It was
never intended to happen this way, but an implementation glitch made
this possible. This used to be deprecated, as it allowed strange action
at a distance like rewriting a pending exception in C<$@>. Plans to
rectify this have been scrapped, as users found that rewriting a
pending exception is actually a useful feature, and not a bug.
C<__DIE__>/C<__WARN__> handlers are very special in one respect: they
may be called to report (probable) errors found by the parser. In such
a case the parser may be in inconsistent state, so any attempt to
evaluate Perl code from such a handler will probably result in a
segfault. This means that warnings or errors that result from parsing
Perl should be used with extreme caution, like this:
require Carp if defined $^S;
Carp::confess("Something wrong") if defined &Carp::confess;
die "Something wrong, but could not load Carp to give "
. "backtrace...\n\t"
. "To see backtrace try starting Perl with -MCarp switch";
Here the first line will load C<Carp> I<unless> it is the parser who
called the handler. The second line will print backtrace and die if
C<Carp> was available. The third line will be executed only if C<Carp> was
not available.
Having to even think about the C<$^S> variable in your exception
handlers is simply wrong. C<$SIG{__DIE__}> as currently implemented
invites grievous and difficult to track down errors. Avoid it
and use an C<END{}> or CORE::GLOBAL::die override instead.
See L<perlfunc/die>, L<perlfunc/warn>, L<perlfunc/eval>, and
L<warnings> for additional information.
=item $BASETIME
=item $^T
X<$^T> X<$BASETIME>
The time at which the program began running, in seconds since the
epoch (beginning of 1970). The values returned by the B<-M>, B<-A>,
and B<-C> filetests are based on this value.
=item $PERL_VERSION
=item $^V
X<$^V> X<$PERL_VERSION>
The revision, version, and subversion of the Perl interpreter,
represented as a L<version> object.
This variable first appeared in perl v5.6.0; earlier versions of perl
will see an undefined value. Before perl v5.10.0 C<$^V> was represented
as a v-string rather than a L<version> object.
C<$^V> can be used to determine whether the Perl interpreter executing
a script is in the right range of versions. For example:
warn "Hashes not randomized!\n" if !$^V or $^V lt v5.8.1
While version objects overload stringification, to portably convert
C<$^V> into its string representation, use C<sprintf()>'s C<"%vd">
conversion, which works for both v-strings or version objects:
printf "version is v%vd\n", $^V; # Perl's version
See the documentation of C<use VERSION> and C<require VERSION>
for a convenient way to fail if the running Perl interpreter is too old.
See also C<L</$]>> for a decimal representation of the Perl version.
The main advantage of C<$^V> over C<$]> is that, for Perl v5.10.0 or
later, it overloads operators, allowing easy comparison against other
version representations (e.g. decimal, literal v-string, "v1.2.3", or
objects). The disadvantage is that prior to v5.10.0, it was only a
literal v-string, which can't be easily printed or compared, whereas
the behavior of C<$]> is unchanged on all versions of Perl.
Mnemonic: use ^V for a version object.
=item ${^WIN32_SLOPPY_STAT}
X<${^WIN32_SLOPPY_STAT}> X<sitecustomize> X<sitecustomize.pl>
If this variable is set to a true value, then C<stat()> on Windows will
not try to open the file. This means that the link count cannot be
determined and file attributes may be out of date if additional
hardlinks to the file exist. On the other hand, not opening the file
is considerably faster, especially for files on network drives.
This variable could be set in the F<sitecustomize.pl> file to
configure the local Perl installation to use "sloppy" C<stat()> by
default. See the documentation for B<-f> in
L<perlrun|perlrun/"Command Switches"> for more information about site
customization.
This variable was added in Perl v5.10.0.
=item $EXECUTABLE_NAME
=item $^X
X<$^X> X<$EXECUTABLE_NAME>
The name used to execute the current copy of Perl, from C's
C<argv[0]> or (where supported) F</proc/self/exe>.
Depending on the host operating system, the value of C<$^X> may be
a relative or absolute pathname of the perl program file, or may
be the string used to invoke perl but not the pathname of the
perl program file. Also, most operating systems permit invoking
programs that are not in the PATH environment variable, so there
is no guarantee that the value of C<$^X> is in PATH. For VMS, the
value may or may not include a version number.
You usually can use the value of C<$^X> to re-invoke an independent
copy of the same perl that is currently running, e.g.,
@first_run = `$^X -le "print int rand 100 for 1..100"`;
But recall that not all operating systems support forking or
capturing of the output of commands, so this complex statement
may not be portable.
It is not safe to use the value of C<$^X> as a path name of a file,
as some operating systems that have a mandatory suffix on
executable files do not require use of the suffix when invoking
a command. To convert the value of C<$^X> to a path name, use the
following statements:
# Build up a set of file names (not command names).
use Config;
my $this_perl = $^X;
if ($^O ne 'VMS') {
$this_perl .= $Config{_exe}
unless $this_perl =~ m/$Config{_exe}$/i;
}
Because many operating systems permit anyone with read access to
the Perl program file to make a copy of it, patch the copy, and
then execute the copy, the security-conscious Perl programmer
should take care to invoke the installed copy of perl, not the
copy referenced by C<$^X>. The following statements accomplish
this goal, and produce a pathname that can be invoked as a
command or referenced as a file.
use Config;
my $secure_perl_path = $Config{perlpath};
if ($^O ne 'VMS') {
$secure_perl_path .= $Config{_exe}
unless $secure_perl_path =~ m/$Config{_exe}$/i;
}
=back
=head2 Variables related to regular expressions
Most of the special variables related to regular expressions are side
effects. Perl sets these variables when it has a successful match, so
you should check the match result before using them. For instance:
if( /P(A)TT(ER)N/ ) {
print "I found $1 and $2\n";
}
These variables are read-only and dynamically-scoped, unless we note
otherwise.
The dynamic nature of the regular expression variables means that
their value is limited to the block that they are in, as demonstrated
by this bit of code:
my $outer = 'Wallace and Grommit';
my $inner = 'Mutt and Jeff';
my $pattern = qr/(\S+) and (\S+)/;
sub show_n { print "\$1 is $1; \$2 is $2\n" }
{
OUTER:
show_n() if $outer =~ m/$pattern/;
INNER: {
show_n() if $inner =~ m/$pattern/;
}
show_n();
}
The output shows that while in the C<OUTER> block, the values of C<$1>
and C<$2> are from the match against C<$outer>. Inside the C<INNER>
block, the values of C<$1> and C<$2> are from the match against
C<$inner>, but only until the end of the block (i.e. the dynamic
scope). After the C<INNER> block completes, the values of C<$1> and
C<$2> return to the values for the match against C<$outer> even though
we have not made another match:
$1 is Wallace; $2 is Grommit
$1 is Mutt; $2 is Jeff
$1 is Wallace; $2 is Grommit
=head3 Performance issues
Traditionally in Perl, any use of any of the three variables C<$`>, C<$&>
or C<$'> (or their C<use English> equivalents) anywhere in the code, caused
all subsequent successful pattern matches to make a copy of the matched
string, in case the code might subsequently access one of those variables.
This imposed a considerable performance penalty across the whole program,
so generally the use of these variables has been discouraged.
In Perl 5.6.0 the C<@-> and C<@+> dynamic arrays were introduced that
supply the indices of successful matches. So you could for example do
this:
$str =~ /pattern/;
print $`, $&, $'; # bad: perfomance hit
print # good: no perfomance hit
substr($str, 0, $-[0]),
substr($str, $-[0], $+[0]-$-[0]),
substr($str, $+[0]);
In Perl 5.10.0 the C</p> match operator flag and the C<${^PREMATCH}>,
C<${^MATCH}>, and C<${^POSTMATCH}> variables were introduced, that allowed
you to suffer the penalties only on patterns marked with C</p>.
In Perl 5.18.0 onwards, perl started noting the presence of each of the
three variables separately, and only copied that part of the string
required; so in
$`; $&; "abcdefgh" =~ /d/
perl would only copy the "abcd" part of the string. That could make a big
difference in something like
$str = 'x' x 1_000_000;
$&; # whoops
$str =~ /x/g # one char copied a million times, not a million chars
In Perl 5.20.0 a new copy-on-write system was enabled by default, which
finally fixes all performance issues with these three variables, and makes
them safe to use anywhere.
The C<Devel::NYTProf> and C<Devel::FindAmpersand> modules can help you
find uses of these problematic match variables in your code.
=over 8
=item $<I<digits>> ($1, $2, ...)
X<$1> X<$2> X<$3> X<$I<digits>>
Contains the subpattern from the corresponding set of capturing
parentheses from the last successful pattern match, not counting patterns
matched in nested blocks that have been exited already.
Note there is a distinction between a capture buffer which matches
the empty string a capture buffer which is optional. Eg, C<(x?)> and
C<(x)?> The latter may be undef, the former not.
These variables are read-only and dynamically-scoped.
Mnemonic: like \digits.
=item @{^CAPTURE}
X<@{^CAPTURE}> X<@^CAPTURE>
An array which exposes the contents of the capture buffers, if any, of
the last successful pattern match, not counting patterns matched
in nested blocks that have been exited already.
Note that the 0 index of @{^CAPTURE} is equivalent to $1, the 1 index
is equivalent to $2, etc.
if ("foal"=~/(.)(.)(.)(.)/) {
print join "-", @{^CAPTURE};
}
should output "f-o-a-l".
See also L</$I<digits>>, L</%{^CAPTURE}> and L</%{^CAPTURE_ALL}>.
Note that unlike most other regex magic variables there is no single
letter equivalent to C<@{^CAPTURE}>.
This variable was added in 5.25.7
=item $MATCH
=item $&
X<$&> X<$MATCH>
The string matched by the last successful pattern match (not counting
any matches hidden within a BLOCK or C<eval()> enclosed by the current
BLOCK).
See L</Performance issues> above for the serious performance implications
of using this variable (even once) in your code.
This variable is read-only and dynamically-scoped.
Mnemonic: like C<&> in some editors.
=item ${^MATCH}
X<${^MATCH}>
This is similar to C<$&> (C<$MATCH>) except that it does not incur the
performance penalty associated with that variable.
See L</Performance issues> above.
In Perl v5.18 and earlier, it is only guaranteed
to return a defined value when the pattern was compiled or executed with
the C</p> modifier. In Perl v5.20, the C</p> modifier does nothing, so
C<${^MATCH}> does the same thing as C<$MATCH>.
This variable was added in Perl v5.10.0.
This variable is read-only and dynamically-scoped.
=item $PREMATCH
=item $`
X<$`> X<$PREMATCH> X<${^PREMATCH}>
The string preceding whatever was matched by the last successful
pattern match, not counting any matches hidden within a BLOCK or C<eval>
enclosed by the current BLOCK.
See L</Performance issues> above for the serious performance implications
of using this variable (even once) in your code.
This variable is read-only and dynamically-scoped.
Mnemonic: C<`> often precedes a quoted string.
=item ${^PREMATCH}
X<$`> X<${^PREMATCH}>
This is similar to C<$`> ($PREMATCH) except that it does not incur the
performance penalty associated with that variable.
See L</Performance issues> above.
In Perl v5.18 and earlier, it is only guaranteed
to return a defined value when the pattern was compiled or executed with
the C</p> modifier. In Perl v5.20, the C</p> modifier does nothing, so
C<${^PREMATCH}> does the same thing as C<$PREMATCH>.
This variable was added in Perl v5.10.0.
This variable is read-only and dynamically-scoped.
=item $POSTMATCH
=item $'
X<$'> X<$POSTMATCH> X<${^POSTMATCH}> X<@->
The string following whatever was matched by the last successful
pattern match (not counting any matches hidden within a BLOCK or C<eval()>
enclosed by the current BLOCK). Example:
local $_ = 'abcdefghi';
/def/;
print "$`:$&:$'\n"; # prints abc:def:ghi
See L</Performance issues> above for the serious performance implications
of using this variable (even once) in your code.
This variable is read-only and dynamically-scoped.
Mnemonic: C<'> often follows a quoted string.
=item ${^POSTMATCH}
X<${^POSTMATCH}> X<$'> X<$POSTMATCH>
This is similar to C<$'> (C<$POSTMATCH>) except that it does not incur the
performance penalty associated with that variable.
See L</Performance issues> above.
In Perl v5.18 and earlier, it is only guaranteed
to return a defined value when the pattern was compiled or executed with
the C</p> modifier. In Perl v5.20, the C</p> modifier does nothing, so
C<${^POSTMATCH}> does the same thing as C<$POSTMATCH>.
This variable was added in Perl v5.10.0.
This variable is read-only and dynamically-scoped.
=item $LAST_PAREN_MATCH
=item $+
X<$+> X<$LAST_PAREN_MATCH>
The text matched by the last bracket of the last successful search pattern.
This is useful if you don't know which one of a set of alternative patterns
matched. For example:
/Version: (.*)|Revision: (.*)/ && ($rev = $+);
This variable is read-only and dynamically-scoped.
Mnemonic: be positive and forward looking.
=item $LAST_SUBMATCH_RESULT
=item $^N
X<$^N> X<$LAST_SUBMATCH_RESULT>
The text matched by the used group most-recently closed (i.e. the group
with the rightmost closing parenthesis) of the last successful search
pattern.
This is primarily used inside C<(?{...})> blocks for examining text
recently matched. For example, to effectively capture text to a variable
(in addition to C<$1>, C<$2>, etc.), replace C<(...)> with
(?:(...)(?{ $var = $^N }))
By setting and then using C<$var> in this way relieves you from having to
worry about exactly which numbered set of parentheses they are.
This variable was added in Perl v5.8.0.
Mnemonic: the (possibly) Nested parenthesis that most recently closed.
=item @LAST_MATCH_END
=item @+
X<@+> X<@LAST_MATCH_END>
This array holds the offsets of the ends of the last successful
submatches in the currently active dynamic scope. C<$+[0]> is
the offset into the string of the end of the entire match. This
is the same value as what the C<pos> function returns when called
on the variable that was matched against. The I<n>th element
of this array holds the offset of the I<n>th submatch, so
C<$+[1]> is the offset past where C<$1> ends, C<$+[2]> the offset
past where C<$2> ends, and so on. You can use C<$#+> to determine
how many subgroups were in the last successful match. See the
examples given for the C<@-> variable.
This variable was added in Perl v5.6.0.
=item %{^CAPTURE}
=item %LAST_PAREN_MATCH
=item %+
X<%+> X<%LAST_PAREN_MATCH> X<%{^CAPTURE}>
Similar to C<@+>, the C<%+> hash allows access to the named capture
buffers, should they exist, in the last successful match in the
currently active dynamic scope.
For example, C<$+{foo}> is equivalent to C<$1> after the following match:
'foo' =~ /(?<foo>foo)/;
The keys of the C<%+> hash list only the names of buffers that have
captured (and that are thus associated to defined values).
The underlying behaviour of C<%+> is provided by the
L<Tie::Hash::NamedCapture> module.
B<Note:> C<%-> and C<%+> are tied views into a common internal hash
associated with the last successful regular expression. Therefore mixing
iterative access to them via C<each> may have unpredictable results.
Likewise, if the last successful match changes, then the results may be
surprising.
This variable was added in Perl v5.10.0. The C<%{^CAPTURE}> alias was
added in 5.25.7.
This variable is read-only and dynamically-scoped.
=item @LAST_MATCH_START
=item @-
X<@-> X<@LAST_MATCH_START>
C<$-[0]> is the offset of the start of the last successful match.
C<$-[>I<n>C<]> is the offset of the start of the substring matched by
I<n>-th subpattern, or undef if the subpattern did not match.
Thus, after a match against C<$_>, C<$&> coincides with C<substr $_, $-[0],
$+[0] - $-[0]>. Similarly, $I<n> coincides with C<substr $_, $-[n],
$+[n] - $-[n]> if C<$-[n]> is defined, and $+ coincides with
C<substr $_, $-[$#-], $+[$#-] - $-[$#-]>. One can use C<$#-> to find the
last matched subgroup in the last successful match. Contrast with
C<$#+>, the number of subgroups in the regular expression. Compare
with C<@+>.
This array holds the offsets of the beginnings of the last
successful submatches in the currently active dynamic scope.
C<$-[0]> is the offset into the string of the beginning of the
entire match. The I<n>th element of this array holds the offset
of the I<n>th submatch, so C<$-[1]> is the offset where C<$1>
begins, C<$-[2]> the offset where C<$2> begins, and so on.
After a match against some variable C<$var>:
=over 5
=item C<$`> is the same as C<substr($var, 0, $-[0])>
=item C<$&> is the same as C<substr($var, $-[0], $+[0] - $-[0])>
=item C<$'> is the same as C<substr($var, $+[0])>
=item C<$1> is the same as C<substr($var, $-[1], $+[1] - $-[1])>
=item C<$2> is the same as C<substr($var, $-[2], $+[2] - $-[2])>
=item C<$3> is the same as C<substr($var, $-[3], $+[3] - $-[3])>
=back
This variable was added in Perl v5.6.0.
=item %{^CAPTURE_ALL}
X<%{^CAPTURE_ALL}>
=item %-
X<%->
Similar to C<%+>, this variable allows access to the named capture groups
in the last successful match in the currently active dynamic scope. To
each capture group name found in the regular expression, it associates a
reference to an array containing the list of values captured by all
buffers with that name (should there be several of them), in the order
where they appear.
Here's an example:
if ('1234' =~ /(?<A>1)(?<B>2)(?<A>3)(?<B>4)/) {
foreach my $bufname (sort keys %-) {
my $ary = $-{$bufname};
foreach my $idx (0..$#$ary) {
print "\$-{$bufname}[$idx] : ",
(defined($ary->[$idx])
? "'$ary->[$idx]'"
: "undef"),
"\n";
}
}
}
would print out:
$-{A}[0] : '1'
$-{A}[1] : '3'
$-{B}[0] : '2'
$-{B}[1] : '4'
The keys of the C<%-> hash correspond to all buffer names found in
the regular expression.
The behaviour of C<%-> is implemented via the
L<Tie::Hash::NamedCapture> module.
B<Note:> C<%-> and C<%+> are tied views into a common internal hash
associated with the last successful regular expression. Therefore mixing
iterative access to them via C<each> may have unpredictable results.
Likewise, if the last successful match changes, then the results may be
surprising.
This variable was added in Perl v5.10.0. The C<%{^CAPTURE_ALL}> alias was
added in 5.25.7.
This variable is read-only and dynamically-scoped.
=item $LAST_REGEXP_CODE_RESULT
=item $^R
X<$^R> X<$LAST_REGEXP_CODE_RESULT>
The result of evaluation of the last successful C<(?{ code })>
regular expression assertion (see L<perlre>). May be written to.
This variable was added in Perl 5.005.
=item ${^RE_DEBUG_FLAGS}
X<${^RE_DEBUG_FLAGS}>
The current value of the regex debugging flags. Set to 0 for no debug output
even when the C<re 'debug'> module is loaded. See L<re> for details.
This variable was added in Perl v5.10.0.
=item ${^RE_TRIE_MAXBUF}
X<${^RE_TRIE_MAXBUF}>
Controls how certain regex optimisations are applied and how much memory they
utilize. This value by default is 65536 which corresponds to a 512kB
temporary cache. Set this to a higher value to trade
memory for speed when matching large alternations. Set
it to a lower value if you want the optimisations to
be as conservative of memory as possible but still occur, and set it to a
negative value to prevent the optimisation and conserve the most memory.
Under normal situations this variable should be of no interest to you.
This variable was added in Perl v5.10.0.
=back
=head2 Variables related to filehandles
Variables that depend on the currently selected filehandle may be set
by calling an appropriate object method on the C<IO::Handle> object,
although this is less efficient than using the regular built-in
variables. (Summary lines below for this contain the word HANDLE.)
First you must say
use IO::Handle;
after which you may use either
method HANDLE EXPR
or more safely,
HANDLE->method(EXPR)
Each method returns the old value of the C<IO::Handle> attribute. The
methods each take an optional EXPR, which, if supplied, specifies the
new value for the C<IO::Handle> attribute in question. If not
supplied, most methods do nothing to the current value--except for
C<autoflush()>, which will assume a 1 for you, just to be different.
Because loading in the C<IO::Handle> class is an expensive operation,
you should learn how to use the regular built-in variables.
A few of these variables are considered "read-only". This means that
if you try to assign to this variable, either directly or indirectly
through a reference, you'll raise a run-time exception.
You should be very careful when modifying the default values of most
special variables described in this document. In most cases you want
to localize these variables before changing them, since if you don't,
the change may affect other modules which rely on the default values
of the special variables that you have changed. This is one of the
correct ways to read the whole file at once:
open my $fh, "<", "foo" or die $!;
local $/; # enable localized slurp mode
my $content = <$fh>;
close $fh;
But the following code is quite bad:
open my $fh, "<", "foo" or die $!;
undef $/; # enable slurp mode
my $content = <$fh>;
close $fh;
since some other module, may want to read data from some file in the
default "line mode", so if the code we have just presented has been
executed, the global value of C<$/> is now changed for any other code
running inside the same Perl interpreter.
Usually when a variable is localized you want to make sure that this
change affects the shortest scope possible. So unless you are already
inside some short C<{}> block, you should create one yourself. For
example:
my $content = '';
open my $fh, "<", "foo" or die $!;
{
local $/;
$content = <$fh>;
}
close $fh;
Here is an example of how your own code can go broken:
for ( 1..3 ){
$\ = "\r\n";
nasty_break();
print "$_";
}
sub nasty_break {
$\ = "\f";
# do something with $_
}
You probably expect this code to print the equivalent of
"1\r\n2\r\n3\r\n"
but instead you get:
"1\f2\f3\f"
Why? Because C<nasty_break()> modifies C<$\> without localizing it
first. The value you set in C<nasty_break()> is still there when you
return. The fix is to add C<local()> so the value doesn't leak out of
C<nasty_break()>:
local $\ = "\f";
It's easy to notice the problem in such a short example, but in more
complicated code you are looking for trouble if you don't localize
changes to the special variables.
=over 8
=item $ARGV
X<$ARGV>
Contains the name of the current file when reading from C<< <> >>.
=item @ARGV
X<@ARGV>
The array C<@ARGV> contains the command-line arguments intended for
the script. C<$#ARGV> is generally the number of arguments minus
one, because C<$ARGV[0]> is the first argument, I<not> the program's
command name itself. See L</$0> for the command name.
=item ARGV
X<ARGV>
The special filehandle that iterates over command-line filenames in
C<@ARGV>. Usually written as the null filehandle in the angle operator
C<< <> >>. Note that currently C<ARGV> only has its magical effect
within the C<< <> >> operator; elsewhere it is just a plain filehandle
corresponding to the last file opened by C<< <> >>. In particular,
passing C<\*ARGV> as a parameter to a function that expects a filehandle
may not cause your function to automatically read the contents of all the
files in C<@ARGV>.
=item ARGVOUT
X<ARGVOUT>
The special filehandle that points to the currently open output file
when doing edit-in-place processing with B<-i>. Useful when you have
to do a lot of inserting and don't want to keep modifying C<$_>. See
L<perlrun> for the B<-i> switch.
=item IO::Handle->output_field_separator( EXPR )
=item $OUTPUT_FIELD_SEPARATOR
=item $OFS
=item $,
X<$,> X<$OFS> X<$OUTPUT_FIELD_SEPARATOR>
The output field separator for the print operator. If defined, this
value is printed between each of print's arguments. Default is C<undef>.
You cannot call C<output_field_separator()> on a handle, only as a
static method. See L<IO::Handle|IO::Handle>.
Mnemonic: what is printed when there is a "," in your print statement.
=item HANDLE->input_line_number( EXPR )
=item $INPUT_LINE_NUMBER
=item $NR
=item $.
X<$.> X<$NR> X<$INPUT_LINE_NUMBER> X<line number>
Current line number for the last filehandle accessed.
Each filehandle in Perl counts the number of lines that have been read
from it. (Depending on the value of C<$/>, Perl's idea of what
constitutes a line may not match yours.) When a line is read from a
filehandle (via C<readline()> or C<< <> >>), or when C<tell()> or
C<seek()> is called on it, C<$.> becomes an alias to the line counter
for that filehandle.
You can adjust the counter by assigning to C<$.>, but this will not
actually move the seek pointer. I<Localizing C<$.> will not localize
the filehandle's line count>. Instead, it will localize perl's notion
of which filehandle C<$.> is currently aliased to.
C<$.> is reset when the filehandle is closed, but B<not> when an open
filehandle is reopened without an intervening C<close()>. For more
details, see L<perlop/"IE<sol>O Operators">. Because C<< <> >> never does
an explicit close, line numbers increase across C<ARGV> files (but see
examples in L<perlfunc/eof>).
You can also use C<< HANDLE->input_line_number(EXPR) >> to access the
line counter for a given filehandle without having to worry about
which handle you last accessed.
Mnemonic: many programs use "." to mean the current line number.
=item IO::Handle->input_record_separator( EXPR )
=item $INPUT_RECORD_SEPARATOR
=item $RS
=item $/
X<$/> X<$RS> X<$INPUT_RECORD_SEPARATOR>
The input record separator, newline by default. This influences Perl's
idea of what a "line" is. Works like B<awk>'s RS variable, including
treating empty lines as a terminator if set to the null string (an
empty line cannot contain any spaces or tabs). You may set it to a
multi-character string to match a multi-character terminator, or to
C<undef> to read through the end of file. Setting it to C<"\n\n">
means something slightly different than setting to C<"">, if the file
contains consecutive empty lines. Setting to C<""> will treat two or
more consecutive empty lines as a single empty line. Setting to
C<"\n\n"> will blindly assume that the next input character belongs to
the next paragraph, even if it's a newline.
local $/; # enable "slurp" mode
local $_ = <FH>; # whole file now here
s/\n[ \t]+/ /g;
Remember: the value of C<$/> is a string, not a regex. B<awk> has to
be better for something. :-)
Setting C<$/> to a reference to an integer, scalar containing an
integer, or scalar that's convertible to an integer will attempt to
read records instead of lines, with the maximum record size being the
referenced integer number of characters. So this:
local $/ = \32768; # or \"32768", or \$var_containing_32768
open my $fh, "<", $myfile or die $!;
local $_ = <$fh>;
will read a record of no more than 32768 characters from $fh. If you're
not reading from a record-oriented file (or your OS doesn't have
record-oriented files), then you'll likely get a full chunk of data
with every read. If a record is larger than the record size you've
set, you'll get the record back in pieces. Trying to set the record
size to zero or less is deprecated and will cause $/ to have the value
of "undef", which will cause reading in the (rest of the) whole file.
As of 5.19.9 setting C<$/> to any other form of reference will throw a
fatal exception. This is in preparation for supporting new ways to set
C<$/> in the future.
On VMS only, record reads bypass PerlIO layers and any associated
buffering, so you must not mix record and non-record reads on the
same filehandle. Record mode mixes with line mode only when the
same buffering layer is in use for both modes.
You cannot call C<input_record_separator()> on a handle, only as a
static method. See L<IO::Handle|IO::Handle>.
See also L<perlport/"Newlines">. Also see L</$.>.
Mnemonic: / delimits line boundaries when quoting poetry.
=item IO::Handle->output_record_separator( EXPR )
=item $OUTPUT_RECORD_SEPARATOR
=item $ORS
=item $\
X<$\> X<$ORS> X<$OUTPUT_RECORD_SEPARATOR>
The output record separator for the print operator. If defined, this
value is printed after the last of print's arguments. Default is C<undef>.
You cannot call C<output_record_separator()> on a handle, only as a
static method. See L<IO::Handle|IO::Handle>.
Mnemonic: you set C<$\> instead of adding "\n" at the end of the print.
Also, it's just like C<$/>, but it's what you get "back" from Perl.
=item HANDLE->autoflush( EXPR )
=item $OUTPUT_AUTOFLUSH
=item $|
X<$|> X<autoflush> X<flush> X<$OUTPUT_AUTOFLUSH>
If set to nonzero, forces a flush right away and after every write or
print on the currently selected output channel. Default is 0
(regardless of whether the channel is really buffered by the system or
not; C<$|> tells you only whether you've asked Perl explicitly to
flush after each write). STDOUT will typically be line buffered if
output is to the terminal and block buffered otherwise. Setting this
variable is useful primarily when you are outputting to a pipe or
socket, such as when you are running a Perl program under B<rsh> and
want to see the output as it's happening. This has no effect on input
buffering. See L<perlfunc/getc> for that. See L<perlfunc/select> on
how to select the output channel. See also L<IO::Handle>.
Mnemonic: when you want your pipes to be piping hot.
=item ${^LAST_FH}
X<${^LAST_FH}>
This read-only variable contains a reference to the last-read filehandle.
This is set by C<< <HANDLE> >>, C<readline>, C<tell>, C<eof> and C<seek>.
This is the same handle that C<$.> and C<tell> and C<eof> without arguments
use. It is also the handle used when Perl appends ", <STDIN> line 1" to
an error or warning message.
This variable was added in Perl v5.18.0.
=back
=head3 Variables related to formats
The special variables for formats are a subset of those for
filehandles. See L<perlform> for more information about Perl's
formats.
=over 8
=item $ACCUMULATOR
=item $^A
X<$^A> X<$ACCUMULATOR>
The current value of the C<write()> accumulator for C<format()> lines.
A format contains C<formline()> calls that put their result into
C<$^A>. After calling its format, C<write()> prints out the contents
of C<$^A> and empties. So you never really see the contents of C<$^A>
unless you call C<formline()> yourself and then look at it. See
L<perlform> and L<perlfunc/"formline PICTURE,LIST">.
=item IO::Handle->format_formfeed(EXPR)
=item $FORMAT_FORMFEED
=item $^L
X<$^L> X<$FORMAT_FORMFEED>
What formats output as a form feed. The default is C<\f>.
You cannot call C<format_formfeed()> on a handle, only as a static
method. See L<IO::Handle|IO::Handle>.
=item HANDLE->format_page_number(EXPR)
=item $FORMAT_PAGE_NUMBER
=item $%
X<$%> X<$FORMAT_PAGE_NUMBER>
The current page number of the currently selected output channel.
Mnemonic: C<%> is page number in B<nroff>.
=item HANDLE->format_lines_left(EXPR)
=item $FORMAT_LINES_LEFT
=item $-
X<$-> X<$FORMAT_LINES_LEFT>
The number of lines left on the page of the currently selected output
channel.
Mnemonic: lines_on_page - lines_printed.
=item IO::Handle->format_line_break_characters EXPR
=item $FORMAT_LINE_BREAK_CHARACTERS
=item $:
X<$:> X<FORMAT_LINE_BREAK_CHARACTERS>
The current set of characters after which a string may be broken to
fill continuation fields (starting with C<^>) in a format. The default is
S<" \n-">, to break on a space, newline, or a hyphen.
You cannot call C<format_line_break_characters()> on a handle, only as
a static method. See L<IO::Handle|IO::Handle>.
Mnemonic: a "colon" in poetry is a part of a line.
=item HANDLE->format_lines_per_page(EXPR)
=item $FORMAT_LINES_PER_PAGE
=item $=
X<$=> X<$FORMAT_LINES_PER_PAGE>
The current page length (printable lines) of the currently selected
output channel. The default is 60.
Mnemonic: = has horizontal lines.
=item HANDLE->format_top_name(EXPR)
=item $FORMAT_TOP_NAME
=item $^
X<$^> X<$FORMAT_TOP_NAME>
The name of the current top-of-page format for the currently selected
output channel. The default is the name of the filehandle with C<_TOP>
appended. For example, the default format top name for the C<STDOUT>
filehandle is C<STDOUT_TOP>.
Mnemonic: points to top of page.
=item HANDLE->format_name(EXPR)
=item $FORMAT_NAME
=item $~
X<$~> X<$FORMAT_NAME>
The name of the current report format for the currently selected
output channel. The default format name is the same as the filehandle
name. For example, the default format name for the C<STDOUT>
filehandle is just C<STDOUT>.
Mnemonic: brother to C<$^>.
=back
=head2 Error Variables
X<error> X<exception>
The variables C<$@>, C<$!>, C<$^E>, and C<$?> contain information
about different types of error conditions that may appear during
execution of a Perl program. The variables are shown ordered by
the "distance" between the subsystem which reported the error and
the Perl process. They correspond to errors detected by the Perl
interpreter, C library, operating system, or an external program,
respectively.
To illustrate the differences between these variables, consider the
following Perl expression, which uses a single-quoted string. After
execution of this statement, perl may have set all four special error
variables:
eval q{
open my $pipe, "/cdrom/install |" or die $!;
my @res = <$pipe>;
close $pipe or die "bad pipe: $?, $!";
};
When perl executes the C<eval()> expression, it translates the
C<open()>, C<< <PIPE> >>, and C<close> calls in the C run-time library
and thence to the operating system kernel. perl sets C<$!> to
the C library's C<errno> if one of these calls fails.
C<$@> is set if the string to be C<eval>-ed did not compile (this may
happen if C<open> or C<close> were imported with bad prototypes), or
if Perl code executed during evaluation C<die()>d. In these cases the
value of C<$@> is the compile error, or the argument to C<die> (which
will interpolate C<$!> and C<$?>). (See also L<Fatal>, though.)
Under a few operating systems, C<$^E> may contain a more verbose error
indicator, such as in this case, "CDROM tray not closed." Systems that
do not support extended error messages leave C<$^E> the same as C<$!>.
Finally, C<$?> may be set to a non-0 value if the external program
F</cdrom/install> fails. The upper eight bits reflect specific error
conditions encountered by the program (the program's C<exit()> value).
The lower eight bits reflect mode of failure, like signal death and
core dump information. See L<wait(2)> for details. In contrast to
C<$!> and C<$^E>, which are set only if an error condition is detected,
the variable C<$?> is set on each C<wait> or pipe C<close>,
overwriting the old value. This is more like C<$@>, which on every
C<eval()> is always set on failure and cleared on success.
For more details, see the individual descriptions at C<$@>, C<$!>,
C<$^E>, and C<$?>.
=over 8
=item ${^CHILD_ERROR_NATIVE}
X<$^CHILD_ERROR_NATIVE>
The native status returned by the last pipe close, backtick (C<``>)
command, successful call to C<wait()> or C<waitpid()>, or from the
C<system()> operator. On POSIX-like systems this value can be decoded
with the WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WIFSTOPPED,
WSTOPSIG and WIFCONTINUED functions provided by the L<POSIX> module.
Under VMS this reflects the actual VMS exit status; i.e. it is the
same as C<$?> when the pragma C<use vmsish 'status'> is in effect.
This variable was added in Perl v5.10.0.
=item $EXTENDED_OS_ERROR
=item $^E
X<$^E> X<$EXTENDED_OS_ERROR>
Error information specific to the current operating system. At the
moment, this differs from C<L</$!>> under only VMS, OS/2, and Win32 (and
for MacPerl). On all other platforms, C<$^E> is always just the same
as C<$!>.
Under VMS, C<$^E> provides the VMS status value from the last system
error. This is more specific information about the last system error
than that provided by C<$!>. This is particularly important when C<$!>
is set to B<EVMSERR>.
Under OS/2, C<$^E> is set to the error code of the last call to OS/2
API either via CRT, or directly from perl.
Under Win32, C<$^E> always returns the last error information reported
by the Win32 call C<GetLastError()> which describes the last error
from within the Win32 API. Most Win32-specific code will report errors
via C<$^E>. ANSI C and Unix-like calls set C<errno> and so most
portable Perl code will report errors via C<$!>.
Caveats mentioned in the description of C<L</$!>> generally apply to
C<$^E>, also.
This variable was added in Perl 5.003.
Mnemonic: Extra error explanation.
=item $EXCEPTIONS_BEING_CAUGHT
=item $^S
X<$^S> X<$EXCEPTIONS_BEING_CAUGHT>
Current state of the interpreter.
$^S State
--------- -------------------------------------
undef Parsing module, eval, or main program
true (1) Executing an eval
false (0) Otherwise
The first state may happen in C<$SIG{__DIE__}> and C<$SIG{__WARN__}>
handlers.
The English name $EXCEPTIONS_BEING_CAUGHT is slightly misleading, because
the C<undef> value does not indicate whether exceptions are being caught,
since compilation of the main program does not catch exceptions.
This variable was added in Perl 5.004.
=item $WARNING
=item $^W
X<$^W> X<$WARNING>
The current value of the warning switch, initially true if B<-w> was
used, false otherwise, but directly modifiable.
See also L<warnings>.
Mnemonic: related to the B<-w> switch.
=item ${^WARNING_BITS}
X<${^WARNING_BITS}>
The current set of warning checks enabled by the C<use warnings> pragma.
It has the same scoping as the C<$^H> and C<%^H> variables. The exact
values are considered internal to the L<warnings> pragma and may change
between versions of Perl.
This variable was added in Perl v5.6.0.
=item $OS_ERROR
=item $ERRNO
=item $!
X<$!> X<$ERRNO> X<$OS_ERROR>
When referenced, C<$!> retrieves the current value
of the C C<errno> integer variable.
If C<$!> is assigned a numerical value, that value is stored in C<errno>.
When referenced as a string, C<$!> yields the system error string
corresponding to C<errno>.
Many system or library calls set C<errno> if they fail,
to indicate the cause of failure. They usually do B<not>
set C<errno> to zero if they succeed. This means C<errno>,
hence C<$!>, is meaningful only I<immediately> after a B<failure>:
if (open my $fh, "<", $filename) {
# Here $! is meaningless.
...
}
else {
# ONLY here is $! meaningful.
...
# Already here $! might be meaningless.
}
# Since here we might have either success or failure,
# $! is meaningless.
Here, I<meaningless> means that C<$!> may be unrelated to the outcome
of the C<open()> operator. Assignment to C<$!> is similarly ephemeral.
It can be used immediately before invoking the C<die()> operator,
to set the exit value, or to inspect the system error string
corresponding to error I<n>, or to restore C<$!> to a meaningful state.
Mnemonic: What just went bang?
=item %OS_ERROR
=item %ERRNO
=item %!
X<%!> X<%OS_ERROR> X<%ERRNO>
Each element of C<%!> has a true value only if C<$!> is set to that
value. For example, C<$!{ENOENT}> is true if and only if the current
value of C<$!> is C<ENOENT>; that is, if the most recent error was "No
such file or directory" (or its moral equivalent: not all operating
systems give that exact error, and certainly not all languages). The
specific true value is not guaranteed, but in the past has generally
been the numeric value of C<$!>. To check if a particular key is
meaningful on your system, use C<exists $!{the_key}>; for a list of legal
keys, use C<keys %!>. See L<Errno> for more information, and also see
L</$!>.
This variable was added in Perl 5.005.
=item $CHILD_ERROR
=item $?
X<$?> X<$CHILD_ERROR>
The status returned by the last pipe close, backtick (C<``>) command,
successful call to C<wait()> or C<waitpid()>, or from the C<system()>
operator. This is just the 16-bit status word returned by the
traditional Unix C<wait()> system call (or else is made up to look
like it). Thus, the exit value of the subprocess is really (C<<< $? >>
8 >>>), and C<$? & 127> gives which signal, if any, the process died
from, and C<$? & 128> reports whether there was a core dump.
Additionally, if the C<h_errno> variable is supported in C, its value
is returned via C<$?> if any C<gethost*()> function fails.
If you have installed a signal handler for C<SIGCHLD>, the
value of C<$?> will usually be wrong outside that handler.
Inside an C<END> subroutine C<$?> contains the value that is going to be
given to C<exit()>. You can modify C<$?> in an C<END> subroutine to
change the exit status of your program. For example:
END {
$? = 1 if $? == 255; # die would make it 255
}
Under VMS, the pragma C<use vmsish 'status'> makes C<$?> reflect the
actual VMS exit status, instead of the default emulation of POSIX
status; see L<perlvms/$?> for details.
Mnemonic: similar to B<sh> and B<ksh>.
=item $EVAL_ERROR
=item $@
X<$@> X<$EVAL_ERROR>
The Perl error from the last C<eval> operator, i.e. the last exception that
was caught. For C<eval BLOCK>, this is either a runtime error message or the
string or reference C<die> was called with. The C<eval STRING> form also
catches syntax errors and other compile time exceptions.
If no error occurs, C<eval> sets C<$@> to the empty string.
Warning messages are not collected in this variable. You can, however,
set up a routine to process warnings by setting C<$SIG{__WARN__}> as
described in L</%SIG>.
Mnemonic: Where was the error "at"?
=back
=head2 Variables related to the interpreter state
These variables provide information about the current interpreter state.
=over 8
=item $COMPILING
=item $^C
X<$^C> X<$COMPILING>
The current value of the flag associated with the B<-c> switch.
Mainly of use with B<-MO=...> to allow code to alter its behavior
when being compiled, such as for example to C<AUTOLOAD> at compile
time rather than normal, deferred loading. Setting
C<$^C = 1> is similar to calling C<B::minus_c>.
This variable was added in Perl v5.6.0.
=item $DEBUGGING
=item $^D
X<$^D> X<$DEBUGGING>
The current value of the debugging flags. May be read or set. Like its
L<command-line equivalent|perlrun/B<-D>I<letters>>, you can use numeric
or symbolic values, e.g. C<$^D = 10> or C<$^D = "st">. See
L<perlrun/B<-D>I<number>>. The contents of this variable also affects the
debugger operation. See L<perldebguts/Debugger Internals>.
Mnemonic: value of B<-D> switch.
=item ${^ENCODING}
X<${^ENCODING}>
This variable is no longer supported.
It used to hold the I<object reference> to the C<Encode> object that was
used to convert the source code to Unicode.
Its purpose was to allow your non-ASCII Perl
scripts not to have to be written in UTF-8; this was
useful before editors that worked on UTF-8 encoded text were common, but
that was long ago. It caused problems, such as affecting the operation
of other modules that weren't expecting it, causing general mayhem.
If you need something like this functionality, it is recommended that use
you a simple source filter, such as L<Filter::Encoding>.
If you are coming here because code of yours is being adversely affected
by someone's use of this variable, you can usually work around it by
doing this:
local ${^ENCODING};
near the beginning of the functions that are getting broken. This
undefines the variable during the scope of execution of the including
function.
This variable was added in Perl 5.8.2 and removed in 5.26.0.
=item ${^GLOBAL_PHASE}
X<${^GLOBAL_PHASE}>
The current phase of the perl interpreter.
Possible values are:
=over 8
=item CONSTRUCT
The C<PerlInterpreter*> is being constructed via C<perl_construct>. This
value is mostly there for completeness and for use via the
underlying C variable C<PL_phase>. It's not really possible for Perl
code to be executed unless construction of the interpreter is
finished.
=item START
This is the global compile-time. That includes, basically, every
C<BEGIN> block executed directly or indirectly from during the
compile-time of the top-level program.
This phase is not called "BEGIN" to avoid confusion with
C<BEGIN>-blocks, as those are executed during compile-time of any
compilation unit, not just the top-level program. A new, localised
compile-time entered at run-time, for example by constructs as
C<eval "use SomeModule"> are not global interpreter phases, and
therefore aren't reflected by C<${^GLOBAL_PHASE}>.
=item CHECK
Execution of any C<CHECK> blocks.
=item INIT
Similar to "CHECK", but for C<INIT>-blocks, not C<CHECK> blocks.
=item RUN
The main run-time, i.e. the execution of C<PL_main_root>.
=item END
Execution of any C<END> blocks.
=item DESTRUCT
Global destruction.
=back
Also note that there's no value for UNITCHECK-blocks. That's because
those are run for each compilation unit individually, and therefore is
not a global interpreter phase.
Not every program has to go through each of the possible phases, but
transition from one phase to another can only happen in the order
described in the above list.
An example of all of the phases Perl code can see:
BEGIN { print "compile-time: ${^GLOBAL_PHASE}\n" }
INIT { print "init-time: ${^GLOBAL_PHASE}\n" }
CHECK { print "check-time: ${^GLOBAL_PHASE}\n" }
{
package Print::Phase;
sub new {
my ($class, $time) = @_;
return bless \$time, $class;
}
sub DESTROY {
my $self = shift;
print "$$self: ${^GLOBAL_PHASE}\n";
}
}
print "run-time: ${^GLOBAL_PHASE}\n";
my $runtime = Print::Phase->new(
"lexical variables are garbage collected before END"
);
END { print "end-time: ${^GLOBAL_PHASE}\n" }
our $destruct = Print::Phase->new(
"package variables are garbage collected after END"
);
This will print out
compile-time: START
check-time: CHECK
init-time: INIT
run-time: RUN
lexical variables are garbage collected before END: RUN
end-time: END
package variables are garbage collected after END: DESTRUCT
This variable was added in Perl 5.14.0.
=item $^H
X<$^H>
WARNING: This variable is strictly for
internal use only. Its availability,
behavior, and contents are subject to change without notice.
This variable contains compile-time hints for the Perl interpreter. At the
end of compilation of a BLOCK the value of this variable is restored to the
value when the interpreter started to compile the BLOCK.
When perl begins to parse any block construct that provides a lexical scope
(e.g., eval body, required file, subroutine body, loop body, or conditional
block), the existing value of C<$^H> is saved, but its value is left unchanged.
When the compilation of the block is completed, it regains the saved value.
Between the points where its value is saved and restored, code that
executes within BEGIN blocks is free to change the value of C<$^H>.
This behavior provides the semantic of lexical scoping, and is used in,
for instance, the C<use strict> pragma.
The contents should be an integer; different bits of it are used for
different pragmatic flags. Here's an example:
sub add_100 { $^H |= 0x100 }
sub foo {
BEGIN { add_100() }
bar->baz($boon);
}
Consider what happens during execution of the BEGIN block. At this point
the BEGIN block has already been compiled, but the body of C<foo()> is still
being compiled. The new value of C<$^H>
will therefore be visible only while
the body of C<foo()> is being compiled.
Substitution of C<BEGIN { add_100() }> block with:
BEGIN { require strict; strict->import('vars') }
demonstrates how C<use strict 'vars'> is implemented. Here's a conditional
version of the same lexical pragma:
BEGIN {
require strict; strict->import('vars') if $condition
}
This variable was added in Perl 5.003.
=item %^H
X<%^H>
The C<%^H> hash provides the same scoping semantic as C<$^H>. This makes
it useful for implementation of lexically scoped pragmas. See
L<perlpragma>. All the entries are stringified when accessed at
runtime, so only simple values can be accommodated. This means no
pointers to objects, for example.
When putting items into C<%^H>, in order to avoid conflicting with other
users of the hash there is a convention regarding which keys to use.
A module should use only keys that begin with the module's name (the
name of its main package) and a "/" character. For example, a module
C<Foo::Bar> should use keys such as C<Foo::Bar/baz>.
This variable was added in Perl v5.6.0.
=item ${^OPEN}
X<${^OPEN}>
An internal variable used by PerlIO. A string in two parts, separated
by a C<\0> byte, the first part describes the input layers, the second
part describes the output layers.
This variable was added in Perl v5.8.0.
=item $PERLDB
=item $^P
X<$^P> X<$PERLDB>
The internal variable for debugging support. The meanings of the
various bits are subject to change, but currently indicate:
=over 6
=item 0x01
Debug subroutine enter/exit.
=item 0x02
Line-by-line debugging. Causes C<DB::DB()> subroutine to be called for
each statement executed. Also causes saving source code lines (like
0x400).
=item 0x04
Switch off optimizations.
=item 0x08
Preserve more data for future interactive inspections.
=item 0x10
Keep info about source lines on which a subroutine is defined.
=item 0x20
Start with single-step on.
=item 0x40
Use subroutine address instead of name when reporting.
=item 0x80
Report C<goto &subroutine> as well.
=item 0x100
Provide informative "file" names for evals based on the place they were compiled.
=item 0x200
Provide informative names to anonymous subroutines based on the place they
were compiled.
=item 0x400
Save source code lines into C<@{"_<$filename"}>.
=item 0x800
When saving source, include evals that generate no subroutines.
=item 0x1000
When saving source, include source that did not compile.
=back
Some bits may be relevant at compile-time only, some at
run-time only. This is a new mechanism and the details may change.
See also L<perldebguts>.
=item ${^TAINT}
X<${^TAINT}>
Reflects if taint mode is on or off. 1 for on (the program was run with
B<-T>), 0 for off, -1 when only taint warnings are enabled (i.e. with
B<-t> or B<-TU>).
This variable is read-only.
This variable was added in Perl v5.8.0.
=item ${^UNICODE}
X<${^UNICODE}>
Reflects certain Unicode settings of Perl. See L<perlrun>
documentation for the C<-C> switch for more information about
the possible values.
This variable is set during Perl startup and is thereafter read-only.
This variable was added in Perl v5.8.2.
=item ${^UTF8CACHE}
X<${^UTF8CACHE}>
This variable controls the state of the internal UTF-8 offset caching code.
1 for on (the default), 0 for off, -1 to debug the caching code by checking
all its results against linear scans, and panicking on any discrepancy.
This variable was added in Perl v5.8.9. It is subject to change or
removal without notice, but is currently used to avoid recalculating the
boundaries of multi-byte UTF-8-encoded characters.
=item ${^UTF8LOCALE}
X<${^UTF8LOCALE}>
This variable indicates whether a UTF-8 locale was detected by perl at
startup. This information is used by perl when it's in
adjust-utf8ness-to-locale mode (as when run with the C<-CL> command-line
switch); see L<perlrun> for more info on this.
This variable was added in Perl v5.8.8.
=back
=head2 Deprecated and removed variables
Deprecating a variable announces the intent of the perl maintainers to
eventually remove the variable from the language. It may still be
available despite its status. Using a deprecated variable triggers
a warning.
Once a variable is removed, its use triggers an error telling you
the variable is unsupported.
See L<perldiag> for details about error messages.
=over 8
=item $#
X<$#>
C<$#> was a variable that could be used to format printed numbers.
After a deprecation cycle, its magic was removed in Perl v5.10.0 and
using it now triggers a warning: C<$# is no longer supported>.
This is not the sigil you use in front of an array name to get the
last index, like C<$#array>. That's still how you get the last index
of an array in Perl. The two have nothing to do with each other.
Deprecated in Perl 5.
Removed in Perl v5.10.0.
=item $*
X<$*>
C<$*> was a variable that you could use to enable multiline matching.
After a deprecation cycle, its magic was removed in Perl v5.10.0.
Using it now triggers a warning: C<$* is no longer supported>.
You should use the C</s> and C</m> regexp modifiers instead.
Deprecated in Perl 5.
Removed in Perl v5.10.0.
=item $[
X<$[>
This variable stores the index of the first element in an array, and
of the first character in a substring. The default is 0, but you could
theoretically set it to 1 to make Perl behave more like B<awk> (or Fortran)
when subscripting and when evaluating the index() and substr() functions.
As of release 5 of Perl, assignment to C<$[> is treated as a compiler
directive, and cannot influence the behavior of any other file.
(That's why you can only assign compile-time constants to it.)
Its use is highly discouraged.
Prior to Perl v5.10.0, assignment to C<$[> could be seen from outer lexical
scopes in the same file, unlike other compile-time directives (such as
L<strict>). Using local() on it would bind its value strictly to a lexical
block. Now it is always lexically scoped.
As of Perl v5.16.0, it is implemented by the L<arybase> module. See
L<arybase> for more details on its behaviour.
Under C<use v5.16>, or C<no feature "array_base">, C<$[> no longer has any
effect, and always contains 0. Assigning 0 to it is permitted, but any
other value will produce an error.
Mnemonic: [ begins subscripts.
Deprecated in Perl v5.12.0.
=back
=cut
|