/usr/share/perl/5.26.1/bigint.pm is in perl-modules-5.26 5.26.1-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 | package bigint;
use 5.006;
use strict;
use warnings;
our $VERSION = '0.47';
use Exporter;
our @ISA = qw( Exporter );
our @EXPORT_OK = qw( PI e bpi bexp hex oct );
our @EXPORT = qw( inf NaN );
use overload;
##############################################################################
# These are all alike, and thus faked by AUTOLOAD
my @faked = qw/round_mode accuracy precision div_scale/;
our ($AUTOLOAD, $_lite); # _lite for testsuite
sub AUTOLOAD {
my $name = $AUTOLOAD;
$name =~ s/.*:://; # split package
no strict 'refs';
foreach my $n (@faked) {
if ($n eq $name) {
*{"bigint::$name"} =
sub {
my $self = shift;
no strict 'refs';
if (defined $_[0]) {
return Math::BigInt->$name($_[0]);
}
return Math::BigInt->$name();
};
return &$name;
}
}
# delayed load of Carp and avoid recursion
require Carp;
Carp::croak ("Can't call bigint\-\>$name, not a valid method");
}
sub upgrade {
$Math::BigInt::upgrade;
}
sub _binary_constant {
# this takes a binary/hexadecimal/octal constant string and returns it
# as string suitable for new. Basically it converts octal to decimal, and
# passes every thing else unmodified back.
my $string = shift;
return Math::BigInt->new($string) if $string =~ /^0[bx]/;
# so it must be an octal constant
Math::BigInt->from_oct($string);
}
sub _float_constant {
# this takes a floating point constant string and returns it truncated to
# integer. For instance, '4.5' => '4', '1.234e2' => '123' etc
my $float = shift;
# some simple cases first
return $float if ($float =~ /^[+-]?[0-9]+$/); # '+123','-1','0' etc
return $float
if ($float =~ /^[+-]?[0-9]+\.?[eE]\+?[0-9]+$/); # 123e2, 123.e+2
return '0' if ($float =~ /^[+-]?[0]*\.[0-9]+$/); # .2, 0.2, -.1
if ($float =~ /^[+-]?[0-9]+\.[0-9]*$/) { # 1., 1.23, -1.2 etc
$float =~ s/\..*//;
return $float;
}
my ($mis, $miv, $mfv, $es, $ev) = Math::BigInt::_split($float);
return $float if !defined $mis; # doesn't look like a number to me
my $ec = int($$ev);
my $sign = $$mis;
$sign = '' if $sign eq '+';
if ($$es eq '-') {
# ignore fraction part entirely
if ($ec >= length($$miv)) { # 123.23E-4
return '0';
}
return $sign . substr($$miv, 0, length($$miv) - $ec); # 1234.45E-2 = 12
}
# xE+y
if ($ec >= length($$mfv)) {
$ec -= length($$mfv);
return $sign.$$miv.$$mfv if $ec == 0; # 123.45E+2 => 12345
return $sign.$$miv.$$mfv.'E'.$ec; # 123.45e+3 => 12345e1
}
$mfv = substr($$mfv, 0, $ec);
$sign.$$miv.$mfv; # 123.45e+1 => 1234
}
sub unimport {
$^H{bigint} = undef; # no longer in effect
overload::remove_constant('binary', '', 'float', '', 'integer');
}
sub in_effect {
my $level = shift || 0;
my $hinthash = (caller($level))[10];
$hinthash->{bigint};
}
#############################################################################
# the following two routines are for "use bigint qw/hex oct/;":
use constant LEXICAL => $] > 5.009004;
# Internal function with the same semantics as CORE::hex(). This function is
# not used directly, but rather by other front-end functions.
sub _hex_core {
my $str = shift;
# Strip off, clean, and parse as much as we can from the beginning.
my $x;
if ($str =~ s/ ^ (0?[xX])? ( [0-9a-fA-F]* ( _ [0-9a-fA-F]+ )* ) //x) {
my $chrs = $2;
$chrs =~ tr/_//d;
$chrs = '0' unless CORE::length $chrs;
$x = Math::BigInt -> from_hex($chrs);
} else {
$x = Math::BigInt -> bzero();
}
# Warn about trailing garbage.
if (CORE::length($str)) {
require Carp;
Carp::carp(sprintf("Illegal hexadecimal digit '%s' ignored",
substr($str, 0, 1)));
}
return $x;
}
# Internal function with the same semantics as CORE::oct(). This function is
# not used directly, but rather by other front-end functions.
sub _oct_core {
my $str = shift;
$str =~ s/^\s*//;
# Hexadecimal input.
return _hex_core($str) if $str =~ /^0?[xX]/;
my $x;
# Binary input.
if ($str =~ /^0?[bB]/) {
# Strip off, clean, and parse as much as we can from the beginning.
if ($str =~ s/ ^ (0?[bB])? ( [01]* ( _ [01]+ )* ) //x) {
my $chrs = $2;
$chrs =~ tr/_//d;
$chrs = '0' unless CORE::length $chrs;
$x = Math::BigInt -> from_bin($chrs);
}
# Warn about trailing garbage.
if (CORE::length($str)) {
require Carp;
Carp::carp(sprintf("Illegal binary digit '%s' ignored",
substr($str, 0, 1)));
}
return $x;
}
# Octal input. Strip off, clean, and parse as much as we can from the
# beginning.
if ($str =~ s/ ^ ( [0-7]* ( _ [0-7]+ )* ) //x) {
my $chrs = $1;
$chrs =~ tr/_//d;
$chrs = '0' unless CORE::length $chrs;
$x = Math::BigInt -> from_oct($chrs);
}
# Warn about trailing garbage. CORE::oct() only warns about 8 and 9.
if (CORE::length($str)) {
my $chr = substr($str, 0, 1);
if ($chr eq '8' || $chr eq '9') {
require Carp;
Carp::carp(sprintf("Illegal octal digit '%s' ignored", $chr));
}
}
return $x;
}
{
my $proto = LEXICAL ? '_' : ';$';
eval '
sub hex(' . $proto . ') {' . <<'.';
my $str = @_ ? $_[0] : $_;
_hex_core($str);
}
.
eval '
sub oct(' . $proto . ') {' . <<'.';
my $str = @_ ? $_[0] : $_;
_oct_core($str);
}
.
}
#############################################################################
# the following two routines are for Perl 5.9.4 or later and are lexical
my ($prev_oct, $prev_hex, $overridden);
if (LEXICAL) { eval <<'.' }
sub _hex(_) {
my $hh = (caller 0)[10];
return $prev_hex ? &$prev_hex($_[0]) : CORE::hex($_[0])
unless $$hh{bigint}||$$hh{bignum}||$$hh{bigrat};
_hex_core($_[0]);
}
sub _oct(_) {
my $hh = (caller 0)[10];
return $prev_oct ? &$prev_oct($_[0]) : CORE::oct($_[0])
unless $$hh{bigint}||$$hh{bignum}||$$hh{bigrat};
_oct_core($_[0]);
}
.
sub _override {
return if $overridden;
$prev_oct = *CORE::GLOBAL::oct{CODE};
$prev_hex = *CORE::GLOBAL::hex{CODE};
no warnings 'redefine';
*CORE::GLOBAL::oct = \&_oct;
*CORE::GLOBAL::hex = \&_hex;
$overridden++;
}
sub import {
my $self = shift;
$^H{bigint} = 1; # we are in effect
# for newer Perls always override hex() and oct() with a lexical version:
if (LEXICAL) {
_override();
}
# some defaults
my $lib = '';
my $lib_kind = 'try';
my @import = (':constant'); # drive it w/ constant
my @a = @_;
my $l = scalar @_;
my $j = 0;
my ($ver, $trace); # version? trace?
my ($a, $p); # accuracy, precision
for (my $i = 0; $i < $l; $i++, $j++) {
if ($_[$i] =~ /^(l|lib|try|only)$/) {
# this causes a different low lib to take care...
$lib_kind = $1;
$lib_kind = 'lib' if $lib_kind eq 'l';
$lib = $_[$i + 1] || '';
my $s = 2;
$s = 1 if @a - $j < 2; # avoid "can not modify non-existent..."
splice @a, $j, $s;
$j -= $s;
$i++;
} elsif ($_[$i] =~ /^(a|accuracy)$/) {
$a = $_[$i + 1];
my $s = 2;
$s = 1 if @a - $j < 2; # avoid "can not modify non-existent..."
splice @a, $j, $s;
$j -= $s;
$i++;
} elsif ($_[$i] =~ /^(p|precision)$/) {
$p = $_[$i + 1];
my $s = 2;
$s = 1 if @a - $j < 2; # avoid "can not modify non-existent..."
splice @a, $j, $s;
$j -= $s;
$i++;
} elsif ($_[$i] =~ /^(v|version)$/) {
$ver = 1;
splice @a, $j, 1;
$j--;
} elsif ($_[$i] =~ /^(t|trace)$/) {
$trace = 1;
splice @a, $j, 1;
$j--;
} elsif ($_[$i] !~ /^(PI|e|bpi|bexp|hex|oct)\z/) {
die ("unknown option $_[$i]");
}
}
my $class;
$_lite = 0; # using M::BI::L ?
if ($trace) {
require Math::BigInt::Trace;
$class = 'Math::BigInt::Trace';
} else {
# see if we can find Math::BigInt::Lite
if (!defined $a && !defined $p) { # rounding won't work to well
local @INC = @INC;
pop @INC if $INC[-1] eq '.';
if (eval { require Math::BigInt::Lite; 1 }) {
@import = (); # :constant in Lite, not MBI
Math::BigInt::Lite->import(':constant');
$_lite = 1; # signal okay
}
}
require Math::BigInt if $_lite == 0; # not already loaded?
$class = 'Math::BigInt'; # regardless of MBIL or not
}
push @import, $lib_kind => $lib if $lib ne '';
# Math::BigInt::Trace or plain Math::BigInt
$class->import(@import);
bigint->accuracy($a) if defined $a;
bigint->precision($p) if defined $p;
if ($ver) {
print "bigint\t\t\t v$VERSION\n";
print "Math::BigInt::Lite\t v$Math::BigInt::Lite::VERSION\n" if $_lite;
print "Math::BigInt\t\t v$Math::BigInt::VERSION";
my $config = Math::BigInt->config();
print " lib => $config->{lib} v$config->{lib_version}\n";
exit;
}
# we take care of floating point constants, since BigFloat isn't available
# and BigInt doesn't like them:
overload::constant float =>
sub {
Math::BigInt->new(_float_constant(shift));
};
# Take care of octal/hexadecimal constants
overload::constant binary =>
sub {
_binary_constant(shift);
};
# if another big* was already loaded:
my ($package) = caller();
no strict 'refs';
if (!defined *{"${package}::inf"}) {
$self->export_to_level(1, $self, @a); # export inf and NaN, e and PI
}
}
sub inf () { Math::BigInt->binf(); }
sub NaN () { Math::BigInt->bnan(); }
sub PI () { Math::BigInt->new(3); }
sub e () { Math::BigInt->new(2); }
sub bpi ($) { Math::BigInt->new(3); }
sub bexp ($$) {
my $x = Math::BigInt->new($_[0]);
$x->bexp($_[1]);
}
1;
__END__
=pod
=head1 NAME
bigint - Transparent BigInteger support for Perl
=head1 SYNOPSIS
use bigint;
$x = 2 + 4.5,"\n"; # BigInt 6
print 2 ** 512,"\n"; # really is what you think it is
print inf + 42,"\n"; # inf
print NaN * 7,"\n"; # NaN
print hex("0x1234567890123490"),"\n"; # Perl v5.10.0 or later
{
no bigint;
print 2 ** 256,"\n"; # a normal Perl scalar now
}
# Import into current package:
use bigint qw/hex oct/;
print hex("0x1234567890123490"),"\n";
print oct("01234567890123490"),"\n";
=head1 DESCRIPTION
All operators (including basic math operations) except the range operator C<..>
are overloaded. Integer constants are created as proper BigInts.
Floating point constants are truncated to integer. All parts and results of
expressions are also truncated.
Unlike L<integer>, this pragma creates integer constants that are only
limited in their size by the available memory and CPU time.
=head2 use integer vs. use bigint
There is one small difference between C<use integer> and C<use bigint>: the
former will not affect assignments to variables and the return value of
some functions. C<bigint> truncates these results to integer too:
# perl -Minteger -wle 'print 3.2'
3.2
# perl -Minteger -wle 'print 3.2 + 0'
3
# perl -Mbigint -wle 'print 3.2'
3
# perl -Mbigint -wle 'print 3.2 + 0'
3
# perl -Mbigint -wle 'print exp(1) + 0'
2
# perl -Mbigint -wle 'print exp(1)'
2
# perl -Minteger -wle 'print exp(1)'
2.71828182845905
# perl -Minteger -wle 'print exp(1) + 0'
2
In practice this makes seldom a difference as B<parts and results> of
expressions will be truncated anyway, but this can, for instance, affect the
return value of subroutines:
sub three_integer { use integer; return 3.2; }
sub three_bigint { use bigint; return 3.2; }
print three_integer(), " ", three_bigint(),"\n"; # prints "3.2 3"
=head2 Options
bigint recognizes some options that can be passed while loading it via use.
The options can (currently) be either a single letter form, or the long form.
The following options exist:
=over 2
=item a or accuracy
This sets the accuracy for all math operations. The argument must be greater
than or equal to zero. See Math::BigInt's bround() function for details.
perl -Mbigint=a,2 -le 'print 12345+1'
Note that setting precision and accuracy at the same time is not possible.
=item p or precision
This sets the precision for all math operations. The argument can be any
integer. Negative values mean a fixed number of digits after the dot, and
are <B>ignored</B> since all operations happen in integer space.
A positive value rounds to this digit left from the dot. 0 or 1 mean round to
integer and are ignore like negative values.
See Math::BigInt's bfround() function for details.
perl -Mbignum=p,5 -le 'print 123456789+123'
Note that setting precision and accuracy at the same time is not possible.
=item t or trace
This enables a trace mode and is primarily for debugging bigint or
Math::BigInt.
=item hex
Override the built-in hex() method with a version that can handle big
integers. This overrides it by exporting it to the current package. Under
Perl v5.10.0 and higher, this is not so necessary, as hex() is lexically
overridden in the current scope whenever the bigint pragma is active.
=item oct
Override the built-in oct() method with a version that can handle big
integers. This overrides it by exporting it to the current package. Under
Perl v5.10.0 and higher, this is not so necessary, as oct() is lexically
overridden in the current scope whenever the bigint pragma is active.
=item l, lib, try or only
Load a different math lib, see L<Math Library>.
perl -Mbigint=lib,GMP -e 'print 2 ** 512'
perl -Mbigint=try,GMP -e 'print 2 ** 512'
perl -Mbigint=only,GMP -e 'print 2 ** 512'
Currently there is no way to specify more than one library on the command
line. This means the following does not work:
perl -Mbignum=l,GMP,Pari -e 'print 2 ** 512'
This will be hopefully fixed soon ;)
=item v or version
This prints out the name and version of all modules used and then exits.
perl -Mbigint=v
=back
=head2 Math Library
Math with the numbers is done (by default) by a module called
Math::BigInt::Calc. This is equivalent to saying:
use bigint lib => 'Calc';
You can change this by using:
use bignum lib => 'GMP';
The following would first try to find Math::BigInt::Foo, then
Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc:
use bigint lib => 'Foo,Math::BigInt::Bar';
Using C<lib> warns if none of the specified libraries can be found and
L<Math::BigInt> did fall back to one of the default libraries.
To suppress this warning, use C<try> instead:
use bignum try => 'GMP';
If you want the code to die instead of falling back, use C<only> instead:
use bignum only => 'GMP';
Please see respective module documentation for further details.
=head2 Internal Format
The numbers are stored as objects, and their internals might change at anytime,
especially between math operations. The objects also might belong to different
classes, like Math::BigInt, or Math::BigInt::Lite. Mixing them together, even
with normal scalars is not extraordinary, but normal and expected.
You should not depend on the internal format, all accesses must go through
accessor methods. E.g. looking at $x->{sign} is not a good idea since there
is no guaranty that the object in question has such a hash key, nor is a hash
underneath at all.
=head2 Sign
The sign is either '+', '-', 'NaN', '+inf' or '-inf'.
You can access it with the sign() method.
A sign of 'NaN' is used to represent the result when input arguments are not
numbers or as a result of 0/0. '+inf' and '-inf' represent plus respectively
minus infinity. You will get '+inf' when dividing a positive number by 0, and
'-inf' when dividing any negative number by 0.
=head2 Method calls
Since all numbers are now objects, you can use all functions that are part of
the BigInt API. You can only use the bxxx() notation, and not the fxxx()
notation, though.
But a warning is in order. When using the following to make a copy of a number,
only a shallow copy will be made.
$x = 9; $y = $x;
$x = $y = 7;
Using the copy or the original with overloaded math is okay, e.g. the
following work:
$x = 9; $y = $x;
print $x + 1, " ", $y,"\n"; # prints 10 9
but calling any method that modifies the number directly will result in
B<both> the original and the copy being destroyed:
$x = 9; $y = $x;
print $x->badd(1), " ", $y,"\n"; # prints 10 10
$x = 9; $y = $x;
print $x->binc(1), " ", $y,"\n"; # prints 10 10
$x = 9; $y = $x;
print $x->bmul(2), " ", $y,"\n"; # prints 18 18
Using methods that do not modify, but test that the contents works:
$x = 9; $y = $x;
$z = 9 if $x->is_zero(); # works fine
See the documentation about the copy constructor and C<=> in overload, as
well as the documentation in BigInt for further details.
=head2 Methods
=over 2
=item inf()
A shortcut to return Math::BigInt->binf(). Useful because Perl does not always
handle bareword C<inf> properly.
=item NaN()
A shortcut to return Math::BigInt->bnan(). Useful because Perl does not always
handle bareword C<NaN> properly.
=item e
# perl -Mbigint=e -wle 'print e'
Returns Euler's number C<e>, aka exp(1). Note that under bigint, this is
truncated to an integer, and hence simple '2'.
=item PI
# perl -Mbigint=PI -wle 'print PI'
Returns PI. Note that under bigint, this is truncated to an integer, and hence
simple '3'.
=item bexp()
bexp($power,$accuracy);
Returns Euler's number C<e> raised to the appropriate power, to
the wanted accuracy.
Note that under bigint, the result is truncated to an integer.
Example:
# perl -Mbigint=bexp -wle 'print bexp(1,80)'
=item bpi()
bpi($accuracy);
Returns PI to the wanted accuracy. Note that under bigint, this is truncated
to an integer, and hence simple '3'.
Example:
# perl -Mbigint=bpi -wle 'print bpi(80)'
=item upgrade()
Return the class that numbers are upgraded to, is in fact returning
C<$Math::BigInt::upgrade>.
=item in_effect()
use bigint;
print "in effect\n" if bigint::in_effect; # true
{
no bigint;
print "in effect\n" if bigint::in_effect; # false
}
Returns true or false if C<bigint> is in effect in the current scope.
This method only works on Perl v5.9.4 or later.
=back
=head1 CAVEATS
=over 2
=item Operator vs literal overloading
C<bigint> works by overloading handling of integer and floating point
literals, converting them to L<Math::BigInt> objects.
This means that arithmetic involving only string values or string
literals will be performed using Perl's built-in operators.
For example:
use bignum;
my $x = "900000000000000009";
my $y = "900000000000000007";
print $x - $y;
will output C<0> on default 32-bit builds, since C<bigint> never sees
the string literals. To ensure the expression is all treated as
C<Math::BigInt> objects, use a literal number in the expression:
print +(0+$x) - $y;
=item ranges
Perl does not allow overloading of ranges, so you can neither safely use
ranges with bigint endpoints, nor is the iterator variable a bigint.
use 5.010;
for my $i (12..13) {
for my $j (20..21) {
say $i ** $j; # produces a floating-point number,
# not a big integer
}
}
=item in_effect()
This method only works on Perl v5.9.4 or later.
=item hex()/oct()
C<bigint> overrides these routines with versions that can also handle
big integer values. Under Perl prior to version v5.9.4, however, this
will not happen unless you specifically ask for it with the two
import tags "hex" and "oct" - and then it will be global and cannot be
disabled inside a scope with "no bigint":
use bigint qw/hex oct/;
print hex("0x1234567890123456");
{
no bigint;
print hex("0x1234567890123456");
}
The second call to hex() will warn about a non-portable constant.
Compare this to:
use bigint;
# will warn only under Perl older than v5.9.4
print hex("0x1234567890123456");
=back
=head1 MODULES USED
C<bigint> is just a thin wrapper around various modules of the Math::BigInt
family. Think of it as the head of the family, who runs the shop, and orders
the others to do the work.
The following modules are currently used by bigint:
Math::BigInt::Lite (for speed, and only if it is loadable)
Math::BigInt
=head1 EXAMPLES
Some cool command line examples to impress the Python crowd ;) You might want
to compare them to the results under -Mbignum or -Mbigrat:
perl -Mbigint -le 'print sqrt(33)'
perl -Mbigint -le 'print 2*255'
perl -Mbigint -le 'print 4.5+2*255'
perl -Mbigint -le 'print 3/7 + 5/7 + 8/3'
perl -Mbigint -le 'print 123->is_odd()'
perl -Mbigint -le 'print log(2)'
perl -Mbigint -le 'print 2 ** 0.5'
perl -Mbigint=a,65 -le 'print 2 ** 0.2'
perl -Mbignum=a,65,l,GMP -le 'print 7 ** 7777'
=head1 BUGS
For information about bugs and how to report them, see the BUGS section in the
documentation available with the perldoc command.
perldoc bignum
=head1 SUPPORT
You can find documentation for this module with the perldoc command.
perldoc bigint
For more information, see the SUPPORT section in the documentation available
with the perldoc command.
perldoc bignum
=head1 LICENSE
This program is free software; you may redistribute it and/or modify it under
the same terms as Perl itself.
=head1 SEE ALSO
L<bignum> and L<bigrat>.
L<Math::BigInt>, L<Math::BigFloat>, L<Math::BigRat> and L<Math::Big> as well as
L<Math::BigInt::FastCalc>, L<Math::BigInt::Pari> and L<Math::BigInt::GMP>.
=head1 AUTHORS
=over 4
=item *
(C) by Tels L<http://bloodgate.com/> in early 2002 - 2007.
=item *
Maintained by Peter John Acklam E<lt>pjacklam@gmail.com<gt>, 2014-.
=back
=cut
|