/usr/lib/python2.7/dist-packages/xappy/highlight.py is in python-xappy 0.5-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 | #!/usr/bin/env python
#
# Copyright (C) 2007 Lemur Consulting Ltd
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
r"""highlight.py: Highlight and summarise text.
"""
__docformat__ = "restructuredtext en"
import re
import xapian
class Highlighter(object):
"""Class for highlighting text and creating contextual summaries.
>>> hl = Highlighter("en")
>>> hl.makeSample('Hello world.', ['world'])
'Hello world.'
>>> hl.highlight('Hello world', ['world'], ('<', '>'))
'Hello <world>'
"""
# split string into words, spaces, punctuation and markup tags
_split_re = re.compile(r'<\w+[^>]*>|</\w+>|[\w\']+|\s+|[^\w\'\s<>/]+')
def __init__(self, language_code='en', stemmer=None):
"""Create a new highlighter for the specified language.
"""
if stemmer is not None:
self.stem = stemmer
else:
self.stem = xapian.Stem(language_code)
def _split_text(self, text, strip_tags=False):
"""Split some text into words and non-words.
- `text` is the text to process. It may be a unicode object or a utf-8
encoded simple string.
- `strip_tags` is a flag - False to keep tags, True to strip all tags
from the output.
Returns a list of utf-8 encoded simple strings.
"""
if isinstance(text, unicode):
text = text.encode('utf-8')
words = self._split_re.findall(text)
if strip_tags:
return [w for w in words if w[0] != '<']
else:
return words
def _strip_prefix(self, term):
"""Strip the prefix off a term.
Prefixes are any initial capital letters, with the exception that R always
ends a prefix, even if followed by capital letters.
>>> hl = Highlighter("en")
>>> print hl._strip_prefix('hello')
hello
>>> print hl._strip_prefix('Rhello')
hello
>>> print hl._strip_prefix('XARHello')
Hello
>>> print hl._strip_prefix('XAhello')
hello
>>> print hl._strip_prefix('XAh')
h
>>> print hl._strip_prefix('XA')
<BLANKLINE>
"""
for p in xrange(len(term)):
if term[p].islower():
return term[p:]
elif term[p] == 'R':
return term[p+1:]
return ''
def _query_to_stemmed_words(self, query):
"""Convert a query to a list of stemmed words.
- `query` is the query to parse: it may be xapian.Query object, or a
sequence of terms.
"""
if isinstance(query, xapian.Query):
return [self._strip_prefix(t) for t in query]
else:
return [self.stem(q.lower()) for q in query]
def makeSample(self, text, query, maxlen=600, hl=None):
"""Make a contextual summary from the supplied text.
This basically works by splitting the text into phrases, counting the query
terms in each, and keeping those with the most.
Any markup tags in the text will be stripped.
`text` is the source text to summarise.
`query` is either a Xapian query object or a list of (unstemmed) term strings.
`maxlen` is the maximum length of the generated summary.
`hl` is a pair of strings to insert around highlighted terms, e.g. ('<b>', '</b>')
"""
# coerce maxlen into an int, otherwise truncation doesn't happen
maxlen = int(maxlen)
words = self._split_text(text, True)
terms = self._query_to_stemmed_words(query)
# build blocks delimited by puncuation, and count matching words in each block
# blocks[n] is a block [firstword, endword, charcount, termcount, selected]
blocks = []
start = end = count = blockchars = 0
while end < len(words):
blockchars += len(words[end])
if words[end].isalnum():
if self.stem(words[end].lower()) in terms:
count += 1
end += 1
elif words[end] in ',.;:?!\n':
end += 1
blocks.append([start, end, blockchars, count, False])
start = end
blockchars = 0
count = 0
else:
end += 1
if start != end:
blocks.append([start, end, blockchars, count, False])
if len(blocks) == 0:
return ''
# select high-scoring blocks first, down to zero-scoring
chars = 0
for count in xrange(3, -1, -1):
for b in blocks:
if b[3] >= count:
b[4] = True
chars += b[2]
if chars >= maxlen: break
if chars >= maxlen: break
# assemble summary
words2 = []
lastblock = -1
for i, b in enumerate(blocks):
if b[4]:
if i != lastblock + 1:
words2.append('..')
words2.extend(words[b[0]:b[1]])
lastblock = i
if not blocks[-1][4]:
words2.append('..')
# trim down to maxlen
l = 0
for i in xrange (len (words2)):
l += len (words2[i])
if l >= maxlen:
words2[i:] = ['..']
break
if hl is None:
return ''.join(words2)
else:
return self._hl(words2, terms, hl)
def highlight(self, text, query, hl, strip_tags=False):
"""Add highlights (string prefix/postfix) to a string.
`text` is the source to highlight.
`query` is either a Xapian query object or a list of (unstemmed) term strings.
`hl` is a pair of highlight strings, e.g. ('<i>', '</i>')
`strip_tags` strips HTML markout iff True
>>> hl = Highlighter()
>>> qp = xapian.QueryParser()
>>> q = qp.parse_query('cat dog')
>>> tags = ('[[', ']]')
>>> hl.highlight('The cat went Dogging; but was <i>dog tired</i>.', q, tags)
'The [[cat]] went [[Dogging]]; but was <i>[[dog]] tired</i>.'
"""
words = self._split_text(text, strip_tags)
terms = self._query_to_stemmed_words(query)
return self._hl(words, terms, hl)
def _hl(self, words, terms, hl):
"""Add highlights to a list of words.
`words` is the list of words and non-words to be highlighted..
`terms` is the list of stemmed words to look for.
"""
for i, w in enumerate(words):
# HACK - more forgiving about stemmed terms
wl = w.lower()
if wl in terms or self.stem (wl) in terms:
words[i] = ''.join((hl[0], w, hl[1]))
return ''.join(words)
__test__ = {
'no_punc': r'''
Test the highlighter's behaviour when there is no punctuation in the sample
text (regression test - used to return no output):
>>> hl = Highlighter("en")
>>> hl.makeSample('Hello world', ['world'])
'Hello world'
''',
'stem_levels': r'''
Test highlighting of words, and how it works with stemming:
>>> hl = Highlighter("en")
# "word" and "wording" stem to "word", so the following 4 calls all return
# the same thing
>>> hl.makeSample('Hello. word. wording. wordinging.', ['word'], hl='<>')
'Hello. <word>. <wording>. wordinging.'
>>> hl.highlight('Hello. word. wording. wordinging.', ['word'], '<>')
'Hello. <word>. <wording>. wordinging.'
>>> hl.makeSample('Hello. word. wording. wordinging.', ['wording'], hl='<>')
'Hello. <word>. <wording>. wordinging.'
>>> hl.highlight('Hello. word. wording. wordinging.', ['wording'], '<>')
'Hello. <word>. <wording>. wordinging.'
# "wordinging" stems to "wording", so only the last two words are
# highlighted for this one.
>>> hl.makeSample('Hello. word. wording. wordinging.', ['wordinging'], hl='<>')
'Hello. word. <wording>. <wordinging>.'
>>> hl.highlight('Hello. word. wording. wordinging.', ['wordinging'], '<>')
'Hello. word. <wording>. <wordinging>.'
''',
'supplied_stemmer': r'''
Test behaviour if we pass in our own stemmer:
>>> stem = xapian.Stem('en')
>>> hl = Highlighter(stemmer=stem)
>>> hl.highlight('Hello. word. wording. wordinging.', ['word'], '<>')
'Hello. <word>. <wording>. wordinging.'
''',
'unicode': r'''
Test behaviour if we pass in unicode input:
>>> hl = Highlighter('en')
>>> hl.highlight(u'Hello\xf3. word. wording. wordinging.', ['word'], '<>')
'Hello\xc3\xb3. <word>. <wording>. wordinging.'
''',
'no_sample': r'''
Test behaviour if we pass in unicode input:
>>> hl = Highlighter('en')
>>> hl.makeSample(u'', ['word'])
''
''',
'short_samples': r'''
>>> hl = Highlighter('en')
>>> hl.makeSample("A boring start. Hello world indeed. A boring end.", ['hello'], 20, ('<', '>'))
'.. <Hello> world ..'
>>> hl.makeSample("A boring start. Hello world indeed. A boring end.", ['hello'], 40, ('<', '>'))
'A boring start. <Hello> world indeed...'
>>> hl.makeSample("A boring start. Hello world indeed. A boring end.", ['boring'], 40, ('<', '>'))
'A <boring> start... A <boring> end.'
''',
'apostrophes': r'''
>>> hl = Highlighter('en')
>>> hl.makeSample("A boring start. Hello world's indeed. A boring end.", ['world'], 40, ('<', '>'))
"A boring start. Hello <world's> indeed..."
''',
}
if __name__ == '__main__':
import doctest, sys
doctest.testmod (sys.modules[__name__])
|