/usr/include/apr-1.0/apr_crypto.h is in libaprutil1-dev 1.6.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 | /* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef APR_CRYPTO_H
#define APR_CRYPTO_H
#include "apu.h"
#include "apr_pools.h"
#include "apr_tables.h"
#include "apr_hash.h"
#include "apu_errno.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @file apr_crypto.h
* @brief APR-UTIL Crypto library
*/
/**
* @defgroup APR_Util_Crypto Crypto routines
* @ingroup APR_Util
* @{
*/
#if APU_HAVE_CRYPTO
#ifndef APU_CRYPTO_RECOMMENDED_DRIVER
#if APU_HAVE_COMMONCRYPTO
#define APU_CRYPTO_RECOMMENDED_DRIVER "commoncrypto"
#else
#if APU_HAVE_OPENSSL
#define APU_CRYPTO_RECOMMENDED_DRIVER "openssl"
#else
#if APU_HAVE_NSS
#define APU_CRYPTO_RECOMMENDED_DRIVER "nss"
#else
#if APU_HAVE_MSCNG
#define APU_CRYPTO_RECOMMENDED_DRIVER "mscng"
#else
#if APU_HAVE_MSCAPI
#define APU_CRYPTO_RECOMMENDED_DRIVER "mscapi"
#else
#endif
#endif
#endif
#endif
#endif
#endif
/**
* Symmetric Key types understood by the library.
*
* NOTE: It is expected that this list will grow over time.
*
* Interoperability Matrix:
*
* The matrix is based on the testcrypto.c unit test, which attempts to
* test whether a simple encrypt/decrypt will succeed, as well as testing
* whether an encrypted string by one library can be decrypted by the
* others.
*
* Some libraries will successfully encrypt and decrypt their own data,
* but won't decrypt data from another library. It is hoped that over
* time these anomalies will be found and fixed, but until then it is
* recommended that ciphers are chosen that interoperate across platform.
*
* An X below means the test passes, it does not necessarily mean that
* encryption performed is correct or secure. Applications should stick
* to ciphers that pass the interoperablity tests on the right hand side
* of the table.
*
* Aligned data is data whose length is a multiple of the block size for
* the chosen cipher. Padded data is data that is not aligned by block
* size and must be padded by the crypto library.
*
* OpenSSL CommonCrypto NSS Interop
* Align Pad Align Pad Align Pad Align Pad
* 3DES_192/CBC X X X X X X X X
* 3DES_192/ECB X X X X
* AES_256/CBC X X X X X X X X
* AES_256/ECB X X X X X X
* AES_192/CBC X X X X X X
* AES_192/ECB X X X X X
* AES_128/CBC X X X X X X
* AES_128/ECB X X X X X
*
* Conclusion: for padded data, use 3DES_192/CBC or AES_256/CBC. For
* aligned data, use 3DES_192/CBC, AES_256/CBC or AES_256/ECB.
*/
typedef enum
{
APR_KEY_NONE, APR_KEY_3DES_192, /** 192 bit (3-Key) 3DES */
APR_KEY_AES_128, /** 128 bit AES */
APR_KEY_AES_192, /** 192 bit AES */
APR_KEY_AES_256
/** 256 bit AES */
} apr_crypto_block_key_type_e;
typedef enum
{
APR_MODE_NONE, /** An error condition */
APR_MODE_ECB, /** Electronic Code Book */
APR_MODE_CBC
/** Cipher Block Chaining */
} apr_crypto_block_key_mode_e;
/* These are opaque structs. Instantiation is up to each backend */
typedef struct apr_crypto_driver_t apr_crypto_driver_t;
typedef struct apr_crypto_t apr_crypto_t;
typedef struct apr_crypto_config_t apr_crypto_config_t;
typedef struct apr_crypto_key_t apr_crypto_key_t;
typedef struct apr_crypto_block_t apr_crypto_block_t;
typedef struct apr_crypto_block_key_type_t {
apr_crypto_block_key_type_e type;
int keysize;
int blocksize;
int ivsize;
} apr_crypto_block_key_type_t;
typedef struct apr_crypto_block_key_mode_t {
apr_crypto_block_key_mode_e mode;
} apr_crypto_block_key_mode_t;
typedef struct apr_crypto_passphrase_t {
const char *pass;
apr_size_t passLen;
const unsigned char * salt;
apr_size_t saltLen;
int iterations;
} apr_crypto_passphrase_t;
typedef struct apr_crypto_secret_t {
const unsigned char *secret;
apr_size_t secretLen;
} apr_crypto_secret_t;
typedef enum {
/** Key is derived from a passphrase */
APR_CRYPTO_KTYPE_PASSPHRASE = 1,
/** Key is derived from a raw key */
APR_CRYPTO_KTYPE_SECRET = 2,
} apr_crypto_key_type;
typedef struct apr_crypto_key_rec_t {
apr_crypto_key_type ktype;
apr_crypto_block_key_type_e type;
apr_crypto_block_key_mode_e mode;
int pad;
union {
apr_crypto_passphrase_t passphrase;
apr_crypto_secret_t secret;
} k;
} apr_crypto_key_rec_t;
/**
* @brief Perform once-only initialisation. Call once only.
*
* @param pool - pool to register any shutdown cleanups, etc
* @return APR_NOTIMPL in case of no crypto support.
*/
APU_DECLARE(apr_status_t) apr_crypto_init(apr_pool_t *pool);
/**
* @brief Zero out the buffer provided when the pool is cleaned up.
*
* @param pool - pool to register the cleanup
* @param buffer - buffer to zero out
* @param size - size of the buffer to zero out
*/
APU_DECLARE(apr_status_t) apr_crypto_clear(apr_pool_t *pool, void *buffer,
apr_size_t size);
/**
* @brief Always zero out the buffer provided, without being optimized out by
* the compiler.
*
* @param buffer - buffer to zero out
* @param size - size of the buffer to zero out
*/
APU_DECLARE(apr_status_t) apr_crypto_memzero(void *buffer, apr_size_t size);
/**
* @brief Timing attacks safe buffers comparison, where the executing time does
* not depend on the bytes compared but solely on the number of bytes.
*
* @param buf1 - first buffer to compare
* @param buf2 - second buffer to compare
* @param size - size of the buffers to compare
* @return 1 if the buffers are equals, 0 otherwise.
*/
APU_DECLARE(int) apr_crypto_equals(const void *buf1, const void *buf2,
apr_size_t size);
/**
* @brief Get the driver struct for a name
*
* @param driver - pointer to driver struct.
* @param name - driver name
* @param params - array of initialisation parameters
* @param result - result and error message on failure
* @param pool - (process) pool to register cleanup
* @return APR_SUCCESS for success
* @return APR_ENOTIMPL for no driver (when DSO not enabled)
* @return APR_EDSOOPEN if DSO driver file can't be opened
* @return APR_ESYMNOTFOUND if the driver file doesn't contain a driver
* @remarks NSS: the params can have "dir", "key3", "cert7" and "secmod"
* keys, each followed by an equal sign and a value. Such key/value pairs can
* be delimited by space or tab. If the value contains a space, surround the
* whole key value pair in quotes: "dir=My Directory".
* @remarks OpenSSL: currently no params are supported.
*/
APU_DECLARE(apr_status_t) apr_crypto_get_driver(
const apr_crypto_driver_t **driver,
const char *name, const char *params, const apu_err_t **result,
apr_pool_t *pool);
/**
* @brief Return the name of the driver.
*
* @param driver - The driver in use.
* @return The name of the driver.
*/
APU_DECLARE(const char *) apr_crypto_driver_name(
const apr_crypto_driver_t *driver);
/**
* @brief Get the result of the last operation on a context. If the result
* is NULL, the operation was successful.
* @param result - the result structure
* @param f - context pointer
* @return APR_SUCCESS for success
*/
APU_DECLARE(apr_status_t) apr_crypto_error(const apu_err_t **result,
const apr_crypto_t *f);
/**
* @brief Create a context for supporting encryption. Keys, certificates,
* algorithms and other parameters will be set per context. More than
* one context can be created at one time. A cleanup will be automatically
* registered with the given pool to guarantee a graceful shutdown.
* @param f - context pointer will be written here
* @param driver - driver to use
* @param params - array of key parameters
* @param pool - process pool
* @return APR_ENOENGINE when the engine specified does not exist. APR_EINITENGINE
* if the engine cannot be initialised.
* @remarks NSS: currently no params are supported.
* @remarks OpenSSL: the params can have "engine" as a key, followed by an equal
* sign and a value.
*/
APU_DECLARE(apr_status_t) apr_crypto_make(apr_crypto_t **f,
const apr_crypto_driver_t *driver, const char *params,
apr_pool_t *pool);
/**
* @brief Get a hash table of key types, keyed by the name of the type against
* a pointer to apr_crypto_block_key_type_t, which in turn begins with an
* integer.
*
* @param types - hashtable of key types keyed to constants.
* @param f - encryption context
* @return APR_SUCCESS for success
*/
APU_DECLARE(apr_status_t) apr_crypto_get_block_key_types(apr_hash_t **types,
const apr_crypto_t *f);
/**
* @brief Get a hash table of key modes, keyed by the name of the mode against
* a pointer to apr_crypto_block_key_mode_t, which in turn begins with an
* integer.
*
* @param modes - hashtable of key modes keyed to constants.
* @param f - encryption context
* @return APR_SUCCESS for success
*/
APU_DECLARE(apr_status_t) apr_crypto_get_block_key_modes(apr_hash_t **modes,
const apr_crypto_t *f);
/**
* @brief Create a key from the provided secret or passphrase. The key is cleaned
* up when the context is cleaned, and may be reused with multiple encryption
* or decryption operations.
* @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If
* *key is not NULL, *key must point at a previously created structure.
* @param key The key returned, see note.
* @param rec The key record, from which the key will be derived.
* @param f The context to use.
* @param p The pool to use.
* @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend
* error occurred while generating the key. APR_ENOCIPHER if the type or mode
* is not supported by the particular backend. APR_EKEYTYPE if the key type is
* not known. APR_EPADDING if padding was requested but is not supported.
* APR_ENOTIMPL if not implemented.
*/
APU_DECLARE(apr_status_t) apr_crypto_key(apr_crypto_key_t **key,
const apr_crypto_key_rec_t *rec, const apr_crypto_t *f, apr_pool_t *p);
/**
* @brief Create a key from the given passphrase. By default, the PBKDF2
* algorithm is used to generate the key from the passphrase. It is expected
* that the same pass phrase will generate the same key, regardless of the
* backend crypto platform used. The key is cleaned up when the context
* is cleaned, and may be reused with multiple encryption or decryption
* operations.
* @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If
* *key is not NULL, *key must point at a previously created structure.
* @param key The key returned, see note.
* @param ivSize The size of the initialisation vector will be returned, based
* on whether an IV is relevant for this type of crypto.
* @param pass The passphrase to use.
* @param passLen The passphrase length in bytes
* @param salt The salt to use.
* @param saltLen The salt length in bytes
* @param type 3DES_192, AES_128, AES_192, AES_256.
* @param mode Electronic Code Book / Cipher Block Chaining.
* @param doPad Pad if necessary.
* @param iterations Number of iterations to use in algorithm
* @param f The context to use.
* @param p The pool to use.
* @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend
* error occurred while generating the key. APR_ENOCIPHER if the type or mode
* is not supported by the particular backend. APR_EKEYTYPE if the key type is
* not known. APR_EPADDING if padding was requested but is not supported.
* APR_ENOTIMPL if not implemented.
* @deprecated Replaced by apr_crypto_key().
*/
APU_DECLARE(apr_status_t) apr_crypto_passphrase(apr_crypto_key_t **key,
apr_size_t *ivSize, const char *pass, apr_size_t passLen,
const unsigned char * salt, apr_size_t saltLen,
const apr_crypto_block_key_type_e type,
const apr_crypto_block_key_mode_e mode, const int doPad,
const int iterations, const apr_crypto_t *f, apr_pool_t *p);
/**
* @brief Initialise a context for encrypting arbitrary data using the given key.
* @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
* *ctx is not NULL, *ctx must point at a previously created structure.
* @param ctx The block context returned, see note.
* @param iv Optional initialisation vector. If the buffer pointed to is NULL,
* an IV will be created at random, in space allocated from the pool.
* If the buffer pointed to is not NULL, the IV in the buffer will be
* used.
* @param key The key structure to use.
* @param blockSize The block size of the cipher.
* @param p The pool to use.
* @return Returns APR_ENOIV if an initialisation vector is required but not specified.
* Returns APR_EINIT if the backend failed to initialise the context. Returns
* APR_ENOTIMPL if not implemented.
*/
APU_DECLARE(apr_status_t) apr_crypto_block_encrypt_init(
apr_crypto_block_t **ctx, const unsigned char **iv,
const apr_crypto_key_t *key, apr_size_t *blockSize, apr_pool_t *p);
/**
* @brief Encrypt data provided by in, write it to out.
* @note The number of bytes written will be written to outlen. If
* out is NULL, outlen will contain the maximum size of the
* buffer needed to hold the data, including any data
* generated by apr_crypto_block_encrypt_finish below. If *out points
* to NULL, a buffer sufficiently large will be created from
* the pool provided. If *out points to a not-NULL value, this
* value will be used as a buffer instead.
* @param out Address of a buffer to which data will be written,
* see note.
* @param outlen Length of the output will be written here.
* @param in Address of the buffer to read.
* @param inlen Length of the buffer to read.
* @param ctx The block context to use.
* @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
* not implemented.
*/
APU_DECLARE(apr_status_t) apr_crypto_block_encrypt(unsigned char **out,
apr_size_t *outlen, const unsigned char *in, apr_size_t inlen,
apr_crypto_block_t *ctx);
/**
* @brief Encrypt final data block, write it to out.
* @note If necessary the final block will be written out after being
* padded. Typically the final block will be written to the
* same buffer used by apr_crypto_block_encrypt, offset by the
* number of bytes returned as actually written by the
* apr_crypto_block_encrypt() call. After this call, the context
* is cleaned and can be reused by apr_crypto_block_encrypt_init().
* @param out Address of a buffer to which data will be written. This
* buffer must already exist, and is usually the same
* buffer used by apr_evp_crypt(). See note.
* @param outlen Length of the output will be written here.
* @param ctx The block context to use.
* @return APR_ECRYPT if an error occurred.
* @return APR_EPADDING if padding was enabled and the block was incorrectly
* formatted.
* @return APR_ENOTIMPL if not implemented.
*/
APU_DECLARE(apr_status_t) apr_crypto_block_encrypt_finish(unsigned char *out,
apr_size_t *outlen, apr_crypto_block_t *ctx);
/**
* @brief Initialise a context for decrypting arbitrary data using the given key.
* @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
* *ctx is not NULL, *ctx must point at a previously created structure.
* @param ctx The block context returned, see note.
* @param blockSize The block size of the cipher.
* @param iv Optional initialisation vector.
* @param key The key structure to use.
* @param p The pool to use.
* @return Returns APR_ENOIV if an initialisation vector is required but not specified.
* Returns APR_EINIT if the backend failed to initialise the context. Returns
* APR_ENOTIMPL if not implemented.
*/
APU_DECLARE(apr_status_t) apr_crypto_block_decrypt_init(
apr_crypto_block_t **ctx, apr_size_t *blockSize,
const unsigned char *iv, const apr_crypto_key_t *key, apr_pool_t *p);
/**
* @brief Decrypt data provided by in, write it to out.
* @note The number of bytes written will be written to outlen. If
* out is NULL, outlen will contain the maximum size of the
* buffer needed to hold the data, including any data
* generated by apr_crypto_block_decrypt_finish below. If *out points
* to NULL, a buffer sufficiently large will be created from
* the pool provided. If *out points to a not-NULL value, this
* value will be used as a buffer instead.
* @param out Address of a buffer to which data will be written,
* see note.
* @param outlen Length of the output will be written here.
* @param in Address of the buffer to read.
* @param inlen Length of the buffer to read.
* @param ctx The block context to use.
* @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
* not implemented.
*/
APU_DECLARE(apr_status_t) apr_crypto_block_decrypt(unsigned char **out,
apr_size_t *outlen, const unsigned char *in, apr_size_t inlen,
apr_crypto_block_t *ctx);
/**
* @brief Decrypt final data block, write it to out.
* @note If necessary the final block will be written out after being
* padded. Typically the final block will be written to the
* same buffer used by apr_crypto_block_decrypt, offset by the
* number of bytes returned as actually written by the
* apr_crypto_block_decrypt() call. After this call, the context
* is cleaned and can be reused by apr_crypto_block_decrypt_init().
* @param out Address of a buffer to which data will be written. This
* buffer must already exist, and is usually the same
* buffer used by apr_evp_crypt(). See note.
* @param outlen Length of the output will be written here.
* @param ctx The block context to use.
* @return APR_ECRYPT if an error occurred.
* @return APR_EPADDING if padding was enabled and the block was incorrectly
* formatted.
* @return APR_ENOTIMPL if not implemented.
*/
APU_DECLARE(apr_status_t) apr_crypto_block_decrypt_finish(unsigned char *out,
apr_size_t *outlen, apr_crypto_block_t *ctx);
/**
* @brief Clean encryption / decryption context.
* @note After cleanup, a context is free to be reused if necessary.
* @param ctx The block context to use.
* @return Returns APR_ENOTIMPL if not supported.
*/
APU_DECLARE(apr_status_t) apr_crypto_block_cleanup(apr_crypto_block_t *ctx);
/**
* @brief Clean encryption / decryption context.
* @note After cleanup, a context is free to be reused if necessary.
* @param f The context to use.
* @return Returns APR_ENOTIMPL if not supported.
*/
APU_DECLARE(apr_status_t) apr_crypto_cleanup(apr_crypto_t *f);
/**
* @brief Shutdown the crypto library.
* @note After shutdown, it is expected that the init function can be called again.
* @param driver - driver to use
* @return Returns APR_ENOTIMPL if not supported.
*/
APU_DECLARE(apr_status_t) apr_crypto_shutdown(
const apr_crypto_driver_t *driver);
#endif /* APU_HAVE_CRYPTO */
/** @} */
#ifdef __cplusplus
}
#endif
#endif
|