This file is indexed.

/usr/include/boost/compute/buffer.hpp is in libboost1.65-dev 1.65.1+dfsg-0ubuntu5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
//---------------------------------------------------------------------------//
// Copyright (c) 2013 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//

#ifndef BOOST_COMPUTE_BUFFER_HPP
#define BOOST_COMPUTE_BUFFER_HPP

#include <boost/compute/config.hpp>
#include <boost/compute/context.hpp>
#include <boost/compute/exception.hpp>
#include <boost/compute/memory_object.hpp>
#include <boost/compute/detail/get_object_info.hpp>

namespace boost {
namespace compute {

// forward declarations
class command_queue;

/// \class buffer
/// \brief A memory buffer on a compute device.
///
/// The buffer class represents a memory buffer on a compute device.
///
/// Buffers are allocated within a compute context. For example, to allocate
/// a memory buffer for 32 float's:
///
/// \snippet test/test_buffer.cpp constructor
///
/// Once created, data can be copied to and from the buffer using the
/// \c enqueue_*_buffer() methods in the command_queue class. For example, to
/// copy a set of \c int values from the host to the device:
/// \code
/// int data[] = { 1, 2, 3, 4 };
///
/// queue.enqueue_write_buffer(buf, 0, 4 * sizeof(int), data);
/// \endcode
///
/// Also see the copy() algorithm for a higher-level interface to copying data
/// between the host and the device. For a higher-level, dynamically-resizable,
/// type-safe container for data on a compute device, use the vector<T> class.
///
/// Buffer objects have reference semantics. Creating a copy of a buffer
/// object simply creates another reference to the underlying OpenCL memory
/// object. To create an actual copy use the buffer::clone() method.
///
/// \see context, command_queue
class buffer : public memory_object
{
public:
    /// Creates a null buffer object.
    buffer()
        : memory_object()
    {
    }

    /// Creates a buffer object for \p mem. If \p retain is \c true, the
    /// reference count for \p mem will be incremented.
    explicit buffer(cl_mem mem, bool retain = true)
        : memory_object(mem, retain)
    {
    }

    /// Create a new memory buffer in of \p size with \p flags in
    /// \p context.
    ///
    /// \see_opencl_ref{clCreateBuffer}
    buffer(const context &context,
           size_t size,
           cl_mem_flags flags = read_write,
           void *host_ptr = 0)
    {
        cl_int error = 0;
        m_mem = clCreateBuffer(context,
                               flags,
                               (std::max)(size, size_t(1)),
                               host_ptr,
                               &error);
        if(!m_mem){
            BOOST_THROW_EXCEPTION(opencl_error(error));
        }
    }

    /// Creates a new buffer object as a copy of \p other.
    buffer(const buffer &other)
        : memory_object(other)
    {
    }

    /// Copies the buffer object from \p other to \c *this.
    buffer& operator=(const buffer &other)
    {
        if(this != &other){
            memory_object::operator=(other);
        }

        return *this;
    }

    #ifndef BOOST_COMPUTE_NO_RVALUE_REFERENCES
    /// Move-constructs a new buffer object from \p other.
    buffer(buffer&& other) BOOST_NOEXCEPT
        : memory_object(std::move(other))
    {
    }

    /// Move-assigns the buffer from \p other to \c *this.
    buffer& operator=(buffer&& other) BOOST_NOEXCEPT
    {
        memory_object::operator=(std::move(other));

        return *this;
    }
    #endif // BOOST_COMPUTE_NO_RVALUE_REFERENCES

    /// Destroys the buffer object.
    ~buffer()
    {
    }

    /// Returns the size of the buffer in bytes.
    size_t size() const
    {
        return get_memory_size();
    }

    /// \internal_
    size_t max_size() const
    {
        return get_context().get_device().max_memory_alloc_size();
    }

    /// Returns information about the buffer.
    ///
    /// \see_opencl_ref{clGetMemObjectInfo}
    template<class T>
    T get_info(cl_mem_info info) const
    {
        return get_memory_info<T>(info);
    }

    /// \overload
    template<int Enum>
    typename detail::get_object_info_type<buffer, Enum>::type
    get_info() const;

    /// Creates a new buffer with a copy of the data in \c *this. Uses
    /// \p queue to perform the copy.
    buffer clone(command_queue &queue) const;

    #if defined(BOOST_COMPUTE_CL_VERSION_1_1) || defined(BOOST_COMPUTE_DOXYGEN_INVOKED)
    /// Creates a new buffer out of this buffer.
    /// The new buffer is a sub region of this buffer.
    /// \p flags The mem_flags which should be used to create the new buffer
    /// \p origin The start index in this buffer
    /// \p size The size of the new sub buffer
    ///
    /// \see_opencl_ref{clCreateSubBuffer}
    ///
    /// \opencl_version_warning{1,1}
    buffer create_subbuffer(cl_mem_flags flags, size_t origin,
                            size_t size)
    {
        BOOST_ASSERT(origin + size <= this->size());
        BOOST_ASSERT(origin % (get_context().
                               get_device().
                               get_info<CL_DEVICE_MEM_BASE_ADDR_ALIGN>() / 8) == 0);
        cl_int error = 0;

        cl_buffer_region region = { origin, size };

        cl_mem mem = clCreateSubBuffer(m_mem,
                                       flags,
                                       CL_BUFFER_CREATE_TYPE_REGION,
                                       &region,
                                       &error);

        if(!mem){
            BOOST_THROW_EXCEPTION(opencl_error(error));
        }

        return buffer(mem, false);
    }
  #endif // BOOST_COMPUTE_CL_VERSION_1_1
};

/// \internal_ define get_info() specializations for buffer
BOOST_COMPUTE_DETAIL_DEFINE_GET_INFO_SPECIALIZATIONS(buffer,
    ((cl_mem_object_type, CL_MEM_TYPE))
    ((cl_mem_flags, CL_MEM_FLAGS))
    ((size_t, CL_MEM_SIZE))
    ((void *, CL_MEM_HOST_PTR))
    ((cl_uint, CL_MEM_MAP_COUNT))
    ((cl_uint, CL_MEM_REFERENCE_COUNT))
    ((cl_context, CL_MEM_CONTEXT))
)

#ifdef BOOST_COMPUTE_CL_VERSION_1_1
BOOST_COMPUTE_DETAIL_DEFINE_GET_INFO_SPECIALIZATIONS(buffer,
    ((cl_mem, CL_MEM_ASSOCIATED_MEMOBJECT))
    ((size_t, CL_MEM_OFFSET))
)
#endif // BOOST_COMPUTE_CL_VERSION_1_1

namespace detail {

// set_kernel_arg specialization for buffer
template<>
struct set_kernel_arg<buffer>
{
    void operator()(kernel &kernel_, size_t index, const buffer &buffer_)
    {
        kernel_.set_arg(index, buffer_.get());
    }
};

} // end detail namespace
} // end compute namespace
} // end boost namespace

#endif // BOOST_COMPUTE_BUFFER_HPP