This file is indexed.

/usr/include/boost/graph/subgraph.hpp is in libboost1.65-dev 1.65.1+dfsg-0ubuntu5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
//=======================================================================
// Copyright 2001 University of Notre Dame.
// Authors: Jeremy G. Siek and Lie-Quan Lee
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================

#ifndef BOOST_SUBGRAPH_HPP
#define BOOST_SUBGRAPH_HPP

// UNDER CONSTRUCTION

#include <boost/config.hpp>
#include <list>
#include <vector>
#include <map>
#include <boost/assert.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/graph_mutability_traits.hpp>
#include <boost/graph/properties.hpp>
#include <boost/iterator/indirect_iterator.hpp>

#include <boost/static_assert.hpp>
#include <boost/assert.hpp>
#include <boost/type_traits.hpp>
#include <boost/mpl/if.hpp>
#include <boost/mpl/or.hpp>

namespace boost {

struct subgraph_tag { };

/** @name Property Lookup
 * The local_property and global_property functions are used to create
 * structures that determine the lookup strategy for properties in subgraphs.
 * Note that the nested kind member is used to help interoperate with actual
 * Property types.
 */
//@{
template <typename T>
struct local_property
{
    typedef T kind;
    local_property(T x) : value(x) { }
    T value;
};

template <typename T>
inline local_property<T> local(T x)
{ return local_property<T>(x); }

template <typename T>
struct global_property
{
    typedef T kind;
    global_property(T x) : value(x) { }
    T value;
};

template <typename T>
inline global_property<T> global(T x)
{ return global_property<T>(x); }
//@}

// Invariants of an induced subgraph:
//   - If vertex u is in subgraph g, then u must be in g.parent().
//   - If edge e is in subgraph g, then e must be in g.parent().
//   - If edge e=(u,v) is in the root graph, then edge e
//     is also in any subgraph that contains both vertex u and v.

// The Graph template parameter must have a vertex_index and edge_index
// internal property. It is assumed that the vertex indices are assigned
// automatically by the graph during a call to add_vertex(). It is not
// assumed that the edge vertices are assigned automatically, they are
// explicitly assigned here.

template <typename Graph>
class subgraph {
    typedef graph_traits<Graph> Traits;
    typedef std::list<subgraph<Graph>*> ChildrenList;
public:
    // Graph requirements
    typedef typename Traits::vertex_descriptor         vertex_descriptor;
    typedef typename Traits::edge_descriptor           edge_descriptor;
    typedef typename Traits::directed_category         directed_category;
    typedef typename Traits::edge_parallel_category    edge_parallel_category;
    typedef typename Traits::traversal_category        traversal_category;

    // IncidenceGraph requirements
    typedef typename Traits::out_edge_iterator         out_edge_iterator;
    typedef typename Traits::degree_size_type          degree_size_type;

    // AdjacencyGraph requirements
    typedef typename Traits::adjacency_iterator        adjacency_iterator;

    // VertexListGraph requirements
    typedef typename Traits::vertex_iterator           vertex_iterator;
    typedef typename Traits::vertices_size_type        vertices_size_type;

    // EdgeListGraph requirements
    typedef typename Traits::edge_iterator             edge_iterator;
    typedef typename Traits::edges_size_type           edges_size_type;

    typedef typename Traits::in_edge_iterator          in_edge_iterator;

    typedef typename edge_property_type<Graph>::type   edge_property_type;
    typedef typename vertex_property_type<Graph>::type vertex_property_type;
    typedef subgraph_tag                               graph_tag;
    typedef Graph                                      graph_type;
    typedef typename graph_property_type<Graph>::type  graph_property_type;

    // Create the main graph, the root of the subgraph tree
    subgraph()
        : m_parent(0), m_edge_counter(0)
    { }

    subgraph(const graph_property_type& p)
        : m_graph(p), m_parent(0), m_edge_counter(0)
    { }

    subgraph(vertices_size_type n, const graph_property_type& p = graph_property_type())
        : m_graph(n, p), m_parent(0), m_edge_counter(0), m_global_vertex(n)
    {
        typename Graph::vertex_iterator v, v_end;
        vertices_size_type i = 0;
        for(boost::tie(v, v_end) = vertices(m_graph); v != v_end; ++v)
            m_global_vertex[i++] = *v;
    }

    // copy constructor
    subgraph(const subgraph& x)
        : m_parent(x.m_parent), m_edge_counter(x.m_edge_counter)
        , m_global_vertex(x.m_global_vertex), m_global_edge(x.m_global_edge)
    {
        if(x.is_root())
        {
         m_graph = x.m_graph;
        }
        // Do a deep copy (recursive).
        // Only the root graph is copied, the subgraphs contain
        // only references to the global vertices they own.
        typename subgraph<Graph>::children_iterator i,i_end;
        boost::tie(i,i_end) = x.children();
        for(; i != i_end; ++i)
        {         
         subgraph<Graph> child = this->create_subgraph();
         child = *i;
         vertex_iterator vi,vi_end;   
         boost::tie(vi,vi_end) = vertices(*i);
         for (;vi!=vi_end;++vi)  
         {
          add_vertex(*vi,child);
         }
       }
    }


    ~subgraph() {
      for(typename ChildrenList::iterator i = m_children.begin();
          i != m_children.end(); ++i)
        {
            delete *i;
        }
    }

    // Return a null vertex descriptor for the graph.
    static vertex_descriptor null_vertex()
    { return Traits::null_vertex(); }


    // Create a subgraph
    subgraph<Graph>& create_subgraph() {
        m_children.push_back(new subgraph<Graph>());
        m_children.back()->m_parent = this;
        return *m_children.back();
    }

    // Create a subgraph with the specified vertex set.
    template <typename VertexIterator>
    subgraph<Graph>& create_subgraph(VertexIterator first, VertexIterator last) {
        m_children.push_back(new subgraph<Graph>());
        m_children.back()->m_parent = this;
        for(; first != last; ++first) {
            add_vertex(*first, *m_children.back());
        }
        return *m_children.back();
    }

    // local <-> global descriptor conversion functions
    vertex_descriptor local_to_global(vertex_descriptor u_local) const
    { return is_root() ? u_local : m_global_vertex[u_local]; }

    vertex_descriptor global_to_local(vertex_descriptor u_global) const {
        vertex_descriptor u_local; bool in_subgraph;
        if (is_root()) return u_global;
        boost::tie(u_local, in_subgraph) = this->find_vertex(u_global);
        BOOST_ASSERT(in_subgraph == true);
        return u_local;
    }

    edge_descriptor local_to_global(edge_descriptor e_local) const
    { return is_root() ? e_local : m_global_edge[get(get(edge_index, m_graph), e_local)]; }

    edge_descriptor global_to_local(edge_descriptor e_global) const
    { return is_root() ? e_global : (*m_local_edge.find(get(get(edge_index, root().m_graph), e_global))).second; }

    // Is vertex u (of the root graph) contained in this subgraph?
    // If so, return the matching local vertex.
    std::pair<vertex_descriptor, bool>
    find_vertex(vertex_descriptor u_global) const {
        if (is_root()) return std::make_pair(u_global, true);
        typename LocalVertexMap::const_iterator i = m_local_vertex.find(u_global);
        bool valid = i != m_local_vertex.end();
        return std::make_pair((valid ? (*i).second : null_vertex()), valid);
    }

    // Is edge e (of the root graph) contained in this subgraph?
    // If so, return the matching local edge.
    std::pair<edge_descriptor, bool>
    find_edge(edge_descriptor e_global) const {
        if (is_root()) return std::make_pair(e_global, true);
        typename LocalEdgeMap::const_iterator i =
          m_local_edge.find(get(get(edge_index, root().m_graph), e_global));
        bool valid = i != m_local_edge.end();
        return std::make_pair((valid ? (*i).second : edge_descriptor()), valid);
    }

    // Return the parent graph.
    subgraph& parent() { return *m_parent; }
    const subgraph& parent() const { return *m_parent; }

    // Return true if this is the root subgraph
    bool is_root() const { return m_parent == 0; }

    // Return the root graph of the subgraph tree.
    subgraph& root()
    { return is_root() ? *this : m_parent->root(); }

    const subgraph& root() const
    { return is_root() ? *this : m_parent->root(); }

    // Return the children subgraphs of this graph/subgraph.
    // Use a list of pointers because the VC++ std::list doesn't like
    // storing incomplete type.
    typedef indirect_iterator<
        typename ChildrenList::const_iterator
      , subgraph<Graph>
      , std::bidirectional_iterator_tag
    >
    children_iterator;

    typedef indirect_iterator<
        typename ChildrenList::const_iterator
      , subgraph<Graph> const
      , std::bidirectional_iterator_tag
    >
    const_children_iterator;

    std::pair<const_children_iterator, const_children_iterator> children() const {
      return std::make_pair(const_children_iterator(m_children.begin()),
                            const_children_iterator(m_children.end()));
    }

    std::pair<children_iterator, children_iterator> children() {
      return std::make_pair(children_iterator(m_children.begin()),
                            children_iterator(m_children.end()));
    }

    std::size_t num_children() const { return m_children.size(); }

#ifndef BOOST_GRAPH_NO_BUNDLED_PROPERTIES
    // Defualt property access delegates the lookup to global properties.
    template <typename Descriptor>
    typename graph::detail::bundled_result<Graph, Descriptor>::type&
    operator[](Descriptor x)
    { return is_root() ? m_graph[x] : root().m_graph[local_to_global(x)]; }

    template <typename Descriptor>
    typename graph::detail::bundled_result<Graph, Descriptor>::type const&
    operator[](Descriptor x) const
    { return is_root() ? m_graph[x] : root().m_graph[local_to_global(x)]; }

    // Local property access returns the local property of the given descripor.
    template <typename Descriptor>
    typename graph::detail::bundled_result<Graph, Descriptor>::type&
    operator[](local_property<Descriptor> x)
    { return m_graph[x.value]; }

    template <typename Descriptor>
    typename graph::detail::bundled_result<Graph, Descriptor>::type const&
    operator[](local_property<Descriptor> x) const
    { return m_graph[x.value]; }

    // Global property access returns the global property associated with the
    // given descriptor. This is an alias for the default bundled property
    // access operations.
    template <typename Descriptor>
    typename graph::detail::bundled_result<Graph, Descriptor>::type&
    operator[](global_property<Descriptor> x)
    { return (*this)[x.value]; }

    template <typename Descriptor>
    typename graph::detail::bundled_result<Graph, Descriptor>::type const&
    operator[](global_property<Descriptor> x) const
    { return (*this)[x.value]; }

#endif // BOOST_GRAPH_NO_BUNDLED_PROPERTIES

    //  private:
    typedef typename property_map<Graph, edge_index_t>::type EdgeIndexMap;
    typedef typename property_traits<EdgeIndexMap>::value_type edge_index_type;
    BOOST_STATIC_ASSERT((!is_same<edge_index_type,
                        boost::detail::error_property_not_found>::value));

private:
    typedef std::vector<vertex_descriptor> GlobalVertexList;
    typedef std::vector<edge_descriptor> GlobalEdgeList;
    typedef std::map<vertex_descriptor, vertex_descriptor> LocalVertexMap;
    typedef std::map<edge_index_type, edge_descriptor> LocalEdgeMap;
    // TODO: Should the LocalVertexMap be: map<index_type, descriptor>?
    // TODO: Can we relax the indexing requirement if both descriptors are
    // LessThanComparable?
    // TODO: Should we really be using unorderd_map for improved lookup times?

public: // Probably shouldn't be public....
    Graph m_graph;
    subgraph<Graph>* m_parent;
    edge_index_type m_edge_counter; // for generating unique edge indices
    ChildrenList m_children;
    GlobalVertexList m_global_vertex; // local -> global
    LocalVertexMap m_local_vertex;  // global -> local
    GlobalEdgeList m_global_edge;              // local -> global
    LocalEdgeMap m_local_edge; // global -> local

    edge_descriptor local_add_edge(vertex_descriptor u_local,
                                   vertex_descriptor v_local,
                                   edge_descriptor e_global)
    {
        edge_descriptor e_local;
        bool inserted;
        boost::tie(e_local, inserted) = add_edge(u_local, v_local, m_graph);
        put(edge_index, m_graph, e_local, m_edge_counter++);
        m_global_edge.push_back(e_global);
        m_local_edge[get(get(edge_index, this->root()), e_global)] = e_local;
        return e_local;
    }
};

template <typename Graph>
struct vertex_bundle_type<subgraph<Graph> >
    : vertex_bundle_type<Graph>
{ };

template<typename Graph>
struct edge_bundle_type<subgraph<Graph> >
    : edge_bundle_type<Graph>
{ };

template<typename Graph>
struct graph_bundle_type<subgraph<Graph> >
    : graph_bundle_type<Graph>
{ };

//===========================================================================
// Functions special to the Subgraph Class

template <typename G>
typename subgraph<G>::vertex_descriptor
add_vertex(typename subgraph<G>::vertex_descriptor u_global,
           subgraph<G>& g)
{
    BOOST_ASSERT(!g.is_root());
    typename subgraph<G>::vertex_descriptor u_local, v_global;
    typename subgraph<G>::edge_descriptor e_global;

    u_local = add_vertex(g.m_graph);
    g.m_global_vertex.push_back(u_global);
    g.m_local_vertex[u_global] = u_local;

    subgraph<G>& r = g.root();

    // remember edge global and local maps
    {
        typename subgraph<G>::out_edge_iterator ei, ei_end;
        for (boost::tie(ei, ei_end) = out_edges(u_global, r);
            ei != ei_end; ++ei) {
            e_global = *ei;
            v_global = target(e_global, r);
            if (g.find_vertex(v_global).second == true)
            g.local_add_edge(u_local, g.global_to_local(v_global), e_global);
        }
    }
    if (is_directed(g)) { // not necessary for undirected graph
        typename subgraph<G>::vertex_iterator vi, vi_end;
        typename subgraph<G>::out_edge_iterator ei, ei_end;
        for(boost::tie(vi, vi_end) = vertices(r); vi != vi_end; ++vi) {
            v_global = *vi;
            if (v_global == u_global)
                continue; // don't insert self loops twice!
            if (!g.find_vertex(v_global).second)
                continue; // not a subgraph vertex => try next one
            for(boost::tie(ei, ei_end) = out_edges(*vi, r); ei != ei_end; ++ei) {
                e_global = *ei;
                if(target(e_global, r) == u_global) {
                    g.local_add_edge(g.global_to_local(v_global), u_local, e_global);
                }
            }
        }
    }

    return u_local;
}

// NOTE: Descriptors are local unless otherwise noted.

//===========================================================================
// Functions required by the IncidenceGraph concept

template <typename G>
std::pair<typename graph_traits<G>::out_edge_iterator,
          typename graph_traits<G>::out_edge_iterator>
out_edges(typename graph_traits<G>::vertex_descriptor v, const subgraph<G>& g)
{ return out_edges(v, g.m_graph); }

template <typename G>
typename graph_traits<G>::degree_size_type
out_degree(typename graph_traits<G>::vertex_descriptor v, const subgraph<G>& g)
{ return out_degree(v, g.m_graph); }

template <typename G>
typename graph_traits<G>::vertex_descriptor
source(typename graph_traits<G>::edge_descriptor e, const subgraph<G>& g)
{ return source(e, g.m_graph); }

template <typename G>
typename graph_traits<G>::vertex_descriptor
target(typename graph_traits<G>::edge_descriptor e, const subgraph<G>& g)
{ return target(e, g.m_graph); }

//===========================================================================
// Functions required by the BidirectionalGraph concept

template <typename G>
std::pair<typename graph_traits<G>::in_edge_iterator,
          typename graph_traits<G>::in_edge_iterator>
in_edges(typename graph_traits<G>::vertex_descriptor v, const subgraph<G>& g)
{ return in_edges(v, g.m_graph); }

template <typename G>
typename graph_traits<G>::degree_size_type
in_degree(typename graph_traits<G>::vertex_descriptor v, const subgraph<G>& g)
{ return in_degree(v, g.m_graph); }

template <typename G>
typename graph_traits<G>::degree_size_type
degree(typename graph_traits<G>::vertex_descriptor v, const subgraph<G>& g)
{ return degree(v, g.m_graph); }

//===========================================================================
// Functions required by the AdjacencyGraph concept

template <typename G>
std::pair<typename subgraph<G>::adjacency_iterator,
          typename subgraph<G>::adjacency_iterator>
adjacent_vertices(typename subgraph<G>::vertex_descriptor v, const subgraph<G>& g)
{ return adjacent_vertices(v, g.m_graph); }

//===========================================================================
// Functions required by the VertexListGraph concept

template <typename G>
std::pair<typename subgraph<G>::vertex_iterator,
          typename subgraph<G>::vertex_iterator>
vertices(const subgraph<G>& g)
{ return vertices(g.m_graph); }

template <typename G>
typename subgraph<G>::vertices_size_type
num_vertices(const subgraph<G>& g)
{ return num_vertices(g.m_graph); }

//===========================================================================
// Functions required by the EdgeListGraph concept

template <typename G>
std::pair<typename subgraph<G>::edge_iterator,
          typename subgraph<G>::edge_iterator>
edges(const subgraph<G>& g)
{ return edges(g.m_graph); }

template <typename G>
typename subgraph<G>::edges_size_type
num_edges(const subgraph<G>& g)
{ return num_edges(g.m_graph); }

//===========================================================================
// Functions required by the AdjacencyMatrix concept

template <typename G>
std::pair<typename subgraph<G>::edge_descriptor, bool>
edge(typename subgraph<G>::vertex_descriptor u,
     typename subgraph<G>::vertex_descriptor v,
     const subgraph<G>& g)
{ return edge(u, v, g.m_graph); }

//===========================================================================
// Functions required by the MutableGraph concept

namespace detail {

    template <typename Vertex, typename Edge, typename Graph>
    void add_edge_recur_down(Vertex u_global, Vertex v_global, Edge e_global,
                             subgraph<Graph>& g);

    template <typename Vertex, typename Edge, typename Children, typename G>
    void children_add_edge(Vertex u_global, Vertex v_global, Edge e_global,
                           Children& c, subgraph<G>* orig)
    {
        for(typename Children::iterator i = c.begin(); i != c.end(); ++i) {
            if ((*i)->find_vertex(u_global).second &&
                (*i)->find_vertex(v_global).second)
            {
                add_edge_recur_down(u_global, v_global, e_global, **i, orig);
            }
        }
    }

    template <typename Vertex, typename Edge, typename Graph>
    void add_edge_recur_down(Vertex u_global, Vertex v_global, Edge e_global,
                             subgraph<Graph>& g, subgraph<Graph>* orig)
    {
        if(&g != orig ) {
            // add local edge only if u_global and v_global are in subgraph g
            Vertex u_local, v_local;
            bool u_in_subgraph, v_in_subgraph;
            boost::tie(u_local, u_in_subgraph) = g.find_vertex(u_global);
            boost::tie(v_local, v_in_subgraph) = g.find_vertex(v_global);
            if(u_in_subgraph && v_in_subgraph) {
                g.local_add_edge(u_local, v_local, e_global);
            }
        }
        children_add_edge(u_global, v_global, e_global, g.m_children, orig);
    }

    template <typename Vertex, typename Graph>
    std::pair<typename subgraph<Graph>::edge_descriptor, bool>
    add_edge_recur_up(Vertex u_global, Vertex v_global,
                      const typename Graph::edge_property_type& ep,
                      subgraph<Graph>& g, subgraph<Graph>* orig)
    {
        if(g.is_root()) {
            typename subgraph<Graph>::edge_descriptor e_global;
            bool inserted;
            boost::tie(e_global, inserted) = add_edge(u_global, v_global, ep, g.m_graph);
            put(edge_index, g.m_graph, e_global, g.m_edge_counter++);
            g.m_global_edge.push_back(e_global);
            children_add_edge(u_global, v_global, e_global, g.m_children, orig);
            return std::make_pair(e_global, inserted);
        } else {
            return add_edge_recur_up(u_global, v_global, ep, *g.m_parent, orig);
        }
    }

} // namespace detail

// Add an edge to the subgraph g, specified by the local vertex descriptors u
// and v. In addition, the edge will be added to any (all) other subgraphs that
// contain vertex descriptors u and v.

template <typename G>
std::pair<typename subgraph<G>::edge_descriptor, bool>
add_edge(typename subgraph<G>::vertex_descriptor u,
         typename subgraph<G>::vertex_descriptor v,
         const typename G::edge_property_type& ep,
         subgraph<G>& g)
{
    if (g.is_root()) {
        // u and v are really global
        return detail::add_edge_recur_up(u, v, ep, g, &g);
    } else {
        typename subgraph<G>::edge_descriptor e_local, e_global;
        bool inserted;
        boost::tie(e_global, inserted) =
            detail::add_edge_recur_up(g.local_to_global(u),
                                      g.local_to_global(v),
                                      ep, g, &g);
        e_local = g.local_add_edge(u, v, e_global);
        return std::make_pair(e_local, inserted);
    }
}

template <typename G>
std::pair<typename subgraph<G>::edge_descriptor, bool>
add_edge(typename subgraph<G>::vertex_descriptor u,
         typename subgraph<G>::vertex_descriptor v,
         subgraph<G>& g)
{ return add_edge(u, v, typename G::edge_property_type(), g); }

namespace detail {
    //-------------------------------------------------------------------------
    // implementation of remove_edge(u,v,g)
    template <typename Vertex, typename Graph>
    void remove_edge_recur_down(Vertex u_global, Vertex v_global,
                                subgraph<Graph>& g);

    template <typename Vertex, typename Children>
    void children_remove_edge(Vertex u_global, Vertex v_global,
                              Children& c)
    {
        for(typename Children::iterator i = c.begin(); i != c.end(); ++i) {
            if((*i)->find_vertex(u_global).second &&
               (*i)->find_vertex(v_global).second)
            {
                remove_edge_recur_down(u_global, v_global, **i);
            }
        }
    }

    template <typename Vertex, typename Graph>
    void remove_edge_recur_down(Vertex u_global, Vertex v_global,
                                subgraph<Graph>& g)
    {
        Vertex u_local, v_local;
        u_local = g.m_local_vertex[u_global];
        v_local = g.m_local_vertex[v_global];
        remove_edge(u_local, v_local, g.m_graph);
        children_remove_edge(u_global, v_global, g.m_children);
    }

    template <typename Vertex, typename Graph>
    void remove_edge_recur_up(Vertex u_global, Vertex v_global,
                              subgraph<Graph>& g)
    {
        if(g.is_root()) {
            remove_edge(u_global, v_global, g.m_graph);
            children_remove_edge(u_global, v_global, g.m_children);
        } else {
            remove_edge_recur_up(u_global, v_global, *g.m_parent);
        }
    }

    //-------------------------------------------------------------------------
    // implementation of remove_edge(e,g)

    template <typename G, typename Edge, typename Children>
    void children_remove_edge(Edge e_global, Children& c)
    {
        for(typename Children::iterator i = c.begin(); i != c.end(); ++i) {
            std::pair<typename subgraph<G>::edge_descriptor, bool> found =
              (*i)->find_edge(e_global);
            if (!found.second) {
              continue;
            }
            children_remove_edge<G>(e_global, (*i)->m_children);
            remove_edge(found.first, (*i)->m_graph);
        }
    }

} // namespace detail

template <typename G>
void
remove_edge(typename subgraph<G>::vertex_descriptor u,
            typename subgraph<G>::vertex_descriptor v,
            subgraph<G>& g)
{
    if(g.is_root()) {
        detail::remove_edge_recur_up(u, v, g);
    } else {
        detail::remove_edge_recur_up(g.local_to_global(u),
                                     g.local_to_global(v), g);
    }
}

template <typename G>
void
remove_edge(typename subgraph<G>::edge_descriptor e, subgraph<G>& g)
{
    typename subgraph<G>::edge_descriptor e_global = g.local_to_global(e);
#ifndef NDEBUG
    std::pair<typename subgraph<G>::edge_descriptor, bool> fe = g.find_edge(e_global);
    BOOST_ASSERT(fe.second && fe.first == e);
#endif //NDEBUG
    subgraph<G> &root = g.root(); // chase to root
    detail::children_remove_edge<G>(e_global, root.m_children);
    remove_edge(e_global, root.m_graph); // kick edge from root
}

// This is slow, but there may not be a good way to do it safely otherwise
template <typename Predicate, typename G>
void
remove_edge_if(Predicate p, subgraph<G>& g) {
  while (true) {
    bool any_removed = false;
    typedef typename subgraph<G>::edge_iterator ei_type;
    for (std::pair<ei_type, ei_type> ep = edges(g);
         ep.first != ep.second; ++ep.first) {
      if (p(*ep.first)) {
        any_removed = true;
        remove_edge(*ep.first, g);
        break; /* Since iterators may be invalidated */
      }
    }
    if (!any_removed) break;
  }
}

template <typename G>
void
clear_vertex(typename subgraph<G>::vertex_descriptor v, subgraph<G>& g) {
  while (true) {
    typedef typename subgraph<G>::out_edge_iterator oei_type;
    std::pair<oei_type, oei_type> p = out_edges(v, g);
    if (p.first == p.second) break;
    remove_edge(*p.first, g);
  }
}

namespace detail {
    template <typename G>
    typename subgraph<G>::vertex_descriptor
    add_vertex_recur_up(subgraph<G>& g)
    {
        typename subgraph<G>::vertex_descriptor u_local, u_global;
        if (g.is_root()) {
            u_global = add_vertex(g.m_graph);
            g.m_global_vertex.push_back(u_global);
        } else {
            u_global = add_vertex_recur_up(*g.m_parent);
            u_local = add_vertex(g.m_graph);
            g.m_global_vertex.push_back(u_global);
            g.m_local_vertex[u_global] = u_local;
        }
        return u_global;
    }
} // namespace detail

template <typename G>
typename subgraph<G>::vertex_descriptor
add_vertex(subgraph<G>& g)
{
    typename subgraph<G>::vertex_descriptor  u_local, u_global;
    if(g.is_root()) {
        u_global = add_vertex(g.m_graph);
        g.m_global_vertex.push_back(u_global);
        u_local = u_global;
    } else {
        u_global = detail::add_vertex_recur_up(g.parent());
        u_local = add_vertex(g.m_graph);
        g.m_global_vertex.push_back(u_global);
        g.m_local_vertex[u_global] = u_local;
    }
    return u_local;
}


#if 0
// TODO: Under Construction
template <typename G>
void remove_vertex(typename subgraph<G>::vertex_descriptor u, subgraph<G>& g)
{ BOOST_ASSERT(false); }
#endif

//===========================================================================
// Functions required by the PropertyGraph concept

/**
 * The global property map returns the global properties associated with local
 * descriptors.
 */
template <typename GraphPtr, typename PropertyMap, typename Tag>
class subgraph_global_property_map
    : public put_get_helper<
        typename property_traits<PropertyMap>::reference,
        subgraph_global_property_map<GraphPtr, PropertyMap, Tag>
    >
{
    typedef property_traits<PropertyMap> Traits;
public:
    typedef typename mpl::if_<is_const<typename remove_pointer<GraphPtr>::type>,
                              readable_property_map_tag,
                              typename Traits::category>::type
      category;
    typedef typename Traits::value_type value_type;
    typedef typename Traits::key_type key_type;
    typedef typename Traits::reference reference;

    subgraph_global_property_map()
    { }

    subgraph_global_property_map(GraphPtr g, Tag tag)
        : m_g(g), m_tag(tag)
    { }

    reference operator[](key_type e) const {
        PropertyMap pmap = get(m_tag, m_g->root().m_graph);
        return m_g->is_root()
            ? pmap[e]
            : pmap[m_g->local_to_global(e)];
    }

    GraphPtr m_g;
    Tag m_tag;
};

/**
 * The local property map returns the local property associated with the local
 * descriptors.
 */
template <typename GraphPtr, typename PropertyMap, typename Tag>
class subgraph_local_property_map
    : public put_get_helper<
        typename property_traits<PropertyMap>::reference,
        subgraph_local_property_map<GraphPtr, PropertyMap, Tag>
    >
{
    typedef property_traits<PropertyMap> Traits;
public:
    typedef typename mpl::if_<is_const<typename remove_pointer<GraphPtr>::type>,
                              readable_property_map_tag,
                              typename Traits::category>::type
      category;
    typedef typename Traits::value_type value_type;
    typedef typename Traits::key_type key_type;
    typedef typename Traits::reference reference;

    typedef Tag tag;
    typedef PropertyMap pmap;

    subgraph_local_property_map()
    { }

    subgraph_local_property_map(GraphPtr g, Tag tag)
        : m_g(g), m_tag(tag)
    { }

    reference operator[](key_type e) const {
        // Get property map on the underlying graph.
        PropertyMap pmap = get(m_tag, m_g->m_graph);
        return pmap[e];
    }

    GraphPtr m_g;
    Tag m_tag;
};

namespace detail {
    // Extract the actual tags from local or global property maps so we don't
    // try to find non-properties.
    template <typename P> struct extract_lg_tag { typedef P type; };
    template <typename P> struct extract_lg_tag< local_property<P> > {
        typedef P type;
    };
    template <typename P> struct extract_lg_tag< global_property<P> > {
        typedef P type;
    };

    // NOTE: Mysterious Property template parameter unused in both metafunction
    // classes.
    struct subgraph_global_pmap {
        template <class Tag, class SubGraph, class Property>
        struct bind_ {
            typedef typename SubGraph::graph_type Graph;
            typedef SubGraph* SubGraphPtr;
            typedef const SubGraph* const_SubGraphPtr;
            typedef typename extract_lg_tag<Tag>::type TagType;
            typedef typename property_map<Graph, TagType>::type PMap;
            typedef typename property_map<Graph, TagType>::const_type const_PMap;
        public:
            typedef subgraph_global_property_map<SubGraphPtr, PMap, TagType> type;
            typedef subgraph_global_property_map<const_SubGraphPtr, const_PMap, TagType>
            const_type;
        };
    };

    struct subgraph_local_pmap {
        template <class Tag, class SubGraph, class Property>
        struct bind_ {
            typedef typename SubGraph::graph_type Graph;
            typedef SubGraph* SubGraphPtr;
            typedef const SubGraph* const_SubGraphPtr;
            typedef typename extract_lg_tag<Tag>::type TagType;
            typedef typename property_map<Graph, TagType>::type PMap;
            typedef typename property_map<Graph, TagType>::const_type const_PMap;
        public:
            typedef subgraph_local_property_map<SubGraphPtr, PMap, TagType> type;
            typedef subgraph_local_property_map<const_SubGraphPtr, const_PMap, TagType>
            const_type;
        };
    };

    // These metafunctions select the corresponding metafunctions above, and
    // are used by the choose_pmap metafunction below to specialize the choice
    // of local/global property map. By default, we defer to the global
    // property.
    template <class Tag>
    struct subgraph_choose_pmap_helper {
        typedef subgraph_global_pmap type;
    };
    template <class Tag>
    struct subgraph_choose_pmap_helper< local_property<Tag> > {
        typedef subgraph_local_pmap type;
    };
    template <class Tag>
    struct subgraph_choose_pmap_helper< global_property<Tag> > {
        typedef subgraph_global_pmap type;
    };

    // As above, unless we're requesting vertex_index_t. Then it's always a
    // local property map. This enables the correct translation of descriptors
    // between local and global layers.
    template <>
    struct subgraph_choose_pmap_helper<vertex_index_t> {
        typedef subgraph_local_pmap type;
    };
    template <>
    struct subgraph_choose_pmap_helper< local_property<vertex_index_t> > {
        typedef subgraph_local_pmap type;
    };
    template <>
    struct subgraph_choose_pmap_helper< global_property<vertex_index_t> > {
        typedef subgraph_local_pmap type;
    };

    // Determine the kind of property. If SameType<Tag, vertex_index_t>, then
    // the property lookup is always local. Otherwise, the lookup is global.
    // NOTE: Property parameter is basically unused.
    template <class Tag, class Graph, class Property>
    struct subgraph_choose_pmap {
        typedef typename subgraph_choose_pmap_helper<Tag>::type Helper;
        typedef typename Helper::template bind_<Tag, Graph, Property> Bind;
        typedef typename Bind::type type;
        typedef typename Bind::const_type const_type;
    };

    // Used by the vertex/edge property selectors to determine the kind(s) of
    // property maps used by the property_map type generator.
    struct subgraph_property_generator {
        template <class SubGraph, class Property, class Tag>
        struct bind_ {
            typedef subgraph_choose_pmap<Tag, SubGraph, Property> Choice;
            typedef typename Choice::type type;
            typedef typename Choice::const_type const_type;
        };
    };

  } // namespace detail

template <>
struct vertex_property_selector<subgraph_tag> {
    typedef detail::subgraph_property_generator type;
};

template <>
struct edge_property_selector<subgraph_tag> {
    typedef detail::subgraph_property_generator type;
};

// ==================================================
// get(p, g), get(p, g, k), and put(p, g, k, v)
// ==================================================
template <typename G, typename Property>
typename property_map<subgraph<G>, Property>::type
get(Property p, subgraph<G>& g) {
    typedef typename property_map< subgraph<G>, Property>::type PMap;
    return PMap(&g, p);
}

template <typename G, typename Property>
typename property_map<subgraph<G>, Property>::const_type
get(Property p, const subgraph<G>& g) {
    typedef typename property_map< subgraph<G>, Property>::const_type PMap;
    return PMap(&g, p);
}

template <typename G, typename Property, typename Key>
typename property_traits<
    typename property_map<subgraph<G>, Property>::const_type
>::value_type
get(Property p, const subgraph<G>& g, const Key& k) {
    typedef typename property_map< subgraph<G>, Property>::const_type PMap;
    PMap pmap(&g, p);
    return pmap[k];
}

template <typename G, typename Property, typename Key, typename Value>
void put(Property p, subgraph<G>& g, const Key& k, const Value& val) {
    typedef typename property_map< subgraph<G>, Property>::type PMap;
    PMap pmap(&g, p);
    pmap[k] = val;
}

// ==================================================
// get(global(p), g)
// NOTE: get(global(p), g, k) and put(global(p), g, k, v) not supported
// ==================================================
template <typename G, typename Property>
typename property_map<subgraph<G>, global_property<Property> >::type
get(global_property<Property> p, subgraph<G>& g) {
    typedef typename property_map<
        subgraph<G>, global_property<Property>
    >::type Map;
    return Map(&g, p.value);
}

template <typename G, typename Property>
typename property_map<subgraph<G>, global_property<Property> >::const_type
get(global_property<Property> p, const subgraph<G>& g) {
    typedef typename property_map<
        subgraph<G>, global_property<Property>
    >::const_type Map;
    return Map(&g, p.value);
}

// ==================================================
// get(local(p), g)
// NOTE: get(local(p), g, k) and put(local(p), g, k, v) not supported
// ==================================================
template <typename G, typename Property>
typename property_map<subgraph<G>, local_property<Property> >::type
get(local_property<Property> p, subgraph<G>& g) {
    typedef typename property_map<
        subgraph<G>, local_property<Property>
    >::type Map;
    return Map(&g, p.value);
}

template <typename G, typename Property>
typename property_map<subgraph<G>, local_property<Property> >::const_type
get(local_property<Property> p, const subgraph<G>& g) {
    typedef typename property_map<
        subgraph<G>, local_property<Property>
    >::const_type Map;
    return Map(&g, p.value);
}

template <typename G, typename Tag>
inline typename graph_property<G, Tag>::type&
get_property(subgraph<G>& g, Tag tag) {
    return get_property(g.m_graph, tag);
}

template <typename G, typename Tag>
inline const typename graph_property<G, Tag>::type&
get_property(const subgraph<G>& g, Tag tag) {
    return get_property(g.m_graph, tag);
}

//===========================================================================
// Miscellaneous Functions

template <typename G>
typename subgraph<G>::vertex_descriptor
vertex(typename subgraph<G>::vertices_size_type n, const subgraph<G>& g)
{ return vertex(n, g.m_graph); }

//===========================================================================
// Mutability Traits
// Just pull the mutability traits form the underlying graph. Note that this
// will probably fail (badly) for labeled graphs.
template <typename G>
struct graph_mutability_traits< subgraph<G> > {
    typedef typename graph_mutability_traits<G>::category category;
};

} // namespace boost

#endif // BOOST_SUBGRAPH_HPP