This file is indexed.

/usr/include/boost/rational.hpp is in libboost1.65-dev 1.65.1+dfsg-0ubuntu5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
//  Boost rational.hpp header file  ------------------------------------------//

//  (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and
//  distribute this software is granted provided this copyright notice appears
//  in all copies. This software is provided "as is" without express or
//  implied warranty, and with no claim as to its suitability for any purpose.

// boostinspect:nolicense (don't complain about the lack of a Boost license)
// (Paul Moore hasn't been in contact for years, so there's no way to change the
// license.)

//  See http://www.boost.org/libs/rational for documentation.

//  Credits:
//  Thanks to the boost mailing list in general for useful comments.
//  Particular contributions included:
//    Andrew D Jewell, for reminding me to take care to avoid overflow
//    Ed Brey, for many comments, including picking up on some dreadful typos
//    Stephen Silver contributed the test suite and comments on user-defined
//    IntType
//    Nickolay Mladenov, for the implementation of operator+=

//  Revision History
//  02 Sep 13  Remove unneeded forward declarations; tweak private helper
//             function (Daryle Walker)
//  30 Aug 13  Improve exception safety of "assign"; start modernizing I/O code
//             (Daryle Walker)
//  27 Aug 13  Add cross-version constructor template, plus some private helper
//             functions; add constructor to exception class to take custom
//             messages (Daryle Walker)
//  25 Aug 13  Add constexpr qualification wherever possible (Daryle Walker)
//  05 May 12  Reduced use of implicit gcd (Mario Lang)
//  05 Nov 06  Change rational_cast to not depend on division between different
//             types (Daryle Walker)
//  04 Nov 06  Off-load GCD and LCM to Boost.Integer; add some invariant checks;
//             add std::numeric_limits<> requirement to help GCD (Daryle Walker)
//  31 Oct 06  Recoded both operator< to use round-to-negative-infinity
//             divisions; the rational-value version now uses continued fraction
//             expansion to avoid overflows, for bug #798357 (Daryle Walker)
//  20 Oct 06  Fix operator bool_type for CW 8.3 (Joaquín M López Muñoz)
//  18 Oct 06  Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config
//             (Joaquín M López Muñoz)
//  27 Dec 05  Add Boolean conversion operator (Daryle Walker)
//  28 Sep 02  Use _left versions of operators from operators.hpp
//  05 Jul 01  Recode gcd(), avoiding std::swap (Helmut Zeisel)
//  03 Mar 01  Workarounds for Intel C++ 5.0 (David Abrahams)
//  05 Feb 01  Update operator>> to tighten up input syntax
//  05 Feb 01  Final tidy up of gcd code prior to the new release
//  27 Jan 01  Recode abs() without relying on abs(IntType)
//  21 Jan 01  Include Nickolay Mladenov's operator+= algorithm,
//             tidy up a number of areas, use newer features of operators.hpp
//             (reduces space overhead to zero), add operator!,
//             introduce explicit mixed-mode arithmetic operations
//  12 Jan 01  Include fixes to handle a user-defined IntType better
//  19 Nov 00  Throw on divide by zero in operator /= (John (EBo) David)
//  23 Jun 00  Incorporate changes from Mark Rodgers for Borland C++
//  22 Jun 00  Change _MSC_VER to BOOST_MSVC so other compilers are not
//             affected (Beman Dawes)
//   6 Mar 00  Fix operator-= normalization, #include <string> (Jens Maurer)
//  14 Dec 99  Modifications based on comments from the boost list
//  09 Dec 99  Initial Version (Paul Moore)

#ifndef BOOST_RATIONAL_HPP
#define BOOST_RATIONAL_HPP

#include <boost/config.hpp>      // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC, etc
#ifndef BOOST_NO_IOSTREAM
#include <iomanip>               // for std::setw
#include <ios>                   // for std::noskipws, streamsize
#include <istream>               // for std::istream
#include <ostream>               // for std::ostream
#include <sstream>               // for std::ostringstream
#endif
#include <cstddef>               // for NULL
#include <stdexcept>             // for std::domain_error
#include <string>                // for std::string implicit constructor
#include <boost/operators.hpp>   // for boost::addable etc
#include <cstdlib>               // for std::abs
#include <boost/call_traits.hpp> // for boost::call_traits
#include <boost/detail/workaround.hpp> // for BOOST_WORKAROUND
#include <boost/assert.hpp>      // for BOOST_ASSERT
#include <boost/integer/common_factor_rt.hpp> // for boost::integer::gcd, lcm
#include <limits>                // for std::numeric_limits
#include <boost/static_assert.hpp>  // for BOOST_STATIC_ASSERT
#include <boost/throw_exception.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_convertible.hpp>
#include <boost/type_traits/is_class.hpp>
#include <boost/type_traits/is_same.hpp>

// Control whether depreciated GCD and LCM functions are included (default: yes)
#ifndef BOOST_CONTROL_RATIONAL_HAS_GCD
#define BOOST_CONTROL_RATIONAL_HAS_GCD  1
#endif

namespace boost {

#if BOOST_CONTROL_RATIONAL_HAS_GCD
template <typename IntType>
IntType gcd(IntType n, IntType m)
{
    // Defer to the version in Boost.Integer
    return integer::gcd( n, m );
}

template <typename IntType>
IntType lcm(IntType n, IntType m)
{
    // Defer to the version in Boost.Integer
    return integer::lcm( n, m );
}
#endif  // BOOST_CONTROL_RATIONAL_HAS_GCD

namespace rational_detail{

   template <class FromInt, class ToInt>
   struct is_compatible_integer
   {
      BOOST_STATIC_CONSTANT(bool, value = ((std::numeric_limits<FromInt>::is_specialized && std::numeric_limits<FromInt>::is_integer
         && (std::numeric_limits<FromInt>::digits <= std::numeric_limits<ToInt>::digits)
         && (std::numeric_limits<FromInt>::radix == std::numeric_limits<ToInt>::radix)
         && ((std::numeric_limits<FromInt>::is_signed == false) || (std::numeric_limits<ToInt>::is_signed == true))
         && is_convertible<FromInt, ToInt>::value)
         || is_same<FromInt, ToInt>::value)
         || (is_class<ToInt>::value && is_class<FromInt>::value && is_convertible<FromInt, ToInt>::value));
   };

}

class bad_rational : public std::domain_error
{
public:
    explicit bad_rational() : std::domain_error("bad rational: zero denominator") {}
    explicit bad_rational( char const *what ) : std::domain_error( what ) {}
};

template <typename IntType>
class rational
{
    // Class-wide pre-conditions
    BOOST_STATIC_ASSERT( ::std::numeric_limits<IntType>::is_specialized );

    // Helper types
    typedef typename boost::call_traits<IntType>::param_type param_type;

    struct helper { IntType parts[2]; };
    typedef IntType (helper::* bool_type)[2];

public:
    // Component type
    typedef IntType int_type;

    BOOST_CONSTEXPR
    rational() : num(0), den(1) {}
    template <class T>
    BOOST_CONSTEXPR rational(const T& n, typename enable_if_c<
       rational_detail::is_compatible_integer<T, IntType>::value
    >::type const* = 0) : num(n), den(1) {}
    template <class T, class U>
    rational(const T& n, const U& d, typename enable_if_c<
       rational_detail::is_compatible_integer<T, IntType>::value && rational_detail::is_compatible_integer<U, IntType>::value
    >::type const* = 0) : num(n), den(d) {
       normalize();
    }

    template < typename NewType >
    BOOST_CONSTEXPR explicit
       rational(rational<NewType> const &r, typename enable_if_c<rational_detail::is_compatible_integer<NewType, IntType>::value>::type const* = 0)
       : num(r.numerator()), den(is_normalized(int_type(r.numerator()),
       int_type(r.denominator())) ? r.denominator() :
       (BOOST_THROW_EXCEPTION(bad_rational("bad rational: denormalized conversion")), 0)){}

    template < typename NewType >
    BOOST_CONSTEXPR explicit
       rational(rational<NewType> const &r, typename disable_if_c<rational_detail::is_compatible_integer<NewType, IntType>::value>::type const* = 0)
       : num(r.numerator()), den(is_normalized(int_type(r.numerator()),
       int_type(r.denominator())) && is_safe_narrowing_conversion(r.denominator()) && is_safe_narrowing_conversion(r.numerator()) ? r.denominator() :
       (BOOST_THROW_EXCEPTION(bad_rational("bad rational: denormalized conversion")), 0)){}
    // Default copy constructor and assignment are fine

    // Add assignment from IntType
    template <class T>
    typename enable_if_c<
       rational_detail::is_compatible_integer<T, IntType>::value, rational &
    >::type operator=(const T& n) { return assign(static_cast<IntType>(n), static_cast<IntType>(1)); }

    // Assign in place
    template <class T, class U>
    typename enable_if_c<
       rational_detail::is_compatible_integer<T, IntType>::value && rational_detail::is_compatible_integer<U, IntType>::value, rational &
    >::type assign(const T& n, const U& d)
    {
       return *this = rational<IntType>(static_cast<IntType>(n), static_cast<IntType>(d));
    }
    //
    // The following overloads should probably *not* be provided - 
    // but are provided for backwards compatibity reasons only.
    // These allow for construction/assignment from types that
    // are wider than IntType only if there is an implicit
    // conversion from T to IntType, they will throw a bad_rational
    // if the conversion results in loss of precision or undefined behaviour.
    //
    template <class T>
    rational(const T& n, typename enable_if_c<
       std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
       && !rational_detail::is_compatible_integer<T, IntType>::value
       && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
       && is_convertible<T, IntType>::value
    >::type const* = 0)
    {
       assign(n, static_cast<T>(1));
    }
    template <class T, class U>
    rational(const T& n, const U& d, typename enable_if_c<
       (!rational_detail::is_compatible_integer<T, IntType>::value
       || !rational_detail::is_compatible_integer<U, IntType>::value)
       && std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
       && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
       && is_convertible<T, IntType>::value &&
       std::numeric_limits<U>::is_specialized && std::numeric_limits<U>::is_integer
       && (std::numeric_limits<U>::radix == std::numeric_limits<IntType>::radix)
       && is_convertible<U, IntType>::value
    >::type const* = 0)
    {
       assign(n, d);
    }
    template <class T>
    typename enable_if_c<
       std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
       && !rational_detail::is_compatible_integer<T, IntType>::value
       && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
       && is_convertible<T, IntType>::value,
       rational &
    >::type operator=(const T& n) { return assign(n, static_cast<T>(1)); }

    template <class T, class U>
    typename enable_if_c<
       (!rational_detail::is_compatible_integer<T, IntType>::value
          || !rational_detail::is_compatible_integer<U, IntType>::value)
       && std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
       && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
       && is_convertible<T, IntType>::value &&
       std::numeric_limits<U>::is_specialized && std::numeric_limits<U>::is_integer
       && (std::numeric_limits<U>::radix == std::numeric_limits<IntType>::radix)
       && is_convertible<U, IntType>::value,
       rational &
    >::type assign(const T& n, const U& d)
    {
       if(!is_safe_narrowing_conversion(n) || !is_safe_narrowing_conversion(d))
          BOOST_THROW_EXCEPTION(bad_rational());
       return *this = rational<IntType>(static_cast<IntType>(n), static_cast<IntType>(d));
    }

    // Access to representation
    BOOST_CONSTEXPR
    const IntType& numerator() const { return num; }
    BOOST_CONSTEXPR
    const IntType& denominator() const { return den; }

    // Arithmetic assignment operators
    rational& operator+= (const rational& r);
    rational& operator-= (const rational& r);
    rational& operator*= (const rational& r);
    rational& operator/= (const rational& r);

    template <class T>
    typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator+= (const T& i)
    {
       num += i * den;
       return *this;
    }
    template <class T>
    typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator-= (const T& i)
    {
       num -= i * den;
       return *this;
    }
    template <class T>
    typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator*= (const T& i)
    {
       // Avoid overflow and preserve normalization
       IntType gcd = integer::gcd(static_cast<IntType>(i), den);
       num *= i / gcd;
       den /= gcd;
       return *this;
    }
    template <class T>
    typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator/= (const T& i)
    {
       // Avoid repeated construction
       IntType const zero(0);

       if(i == zero) BOOST_THROW_EXCEPTION(bad_rational());
       if(num == zero) return *this;

       // Avoid overflow and preserve normalization
       IntType const gcd = integer::gcd(num, static_cast<IntType>(i));
       num /= gcd;
       den *= i / gcd;

       if(den < zero) {
          num = -num;
          den = -den;
       }

       return *this;
    }

    // Increment and decrement
    const rational& operator++() { num += den; return *this; }
    const rational& operator--() { num -= den; return *this; }

    rational operator++(int)
    {
       rational t(*this);
       ++(*this);
       return t;
    }
    rational operator--(int)
    {
       rational t(*this);
       --(*this);
       return t;
    }

    // Operator not
    BOOST_CONSTEXPR
    bool operator!() const { return !num; }

    // Boolean conversion
    
#if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
    // The "ISO C++ Template Parser" option in CW 8.3 chokes on the
    // following, hence we selectively disable that option for the
    // offending memfun.
#pragma parse_mfunc_templ off
#endif

    BOOST_CONSTEXPR
    operator bool_type() const { return operator !() ? 0 : &helper::parts; }

#if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
#pragma parse_mfunc_templ reset
#endif

    // Comparison operators
    bool operator< (const rational& r) const;
    bool operator> (const rational& r) const { return r < *this; }
    BOOST_CONSTEXPR
    bool operator== (const rational& r) const;

    template <class T>
    typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator< (const T& i) const
    {
       // Avoid repeated construction
       int_type const  zero(0);

       // Break value into mixed-fraction form, w/ always-nonnegative remainder
       BOOST_ASSERT(this->den > zero);
       int_type  q = this->num / this->den, r = this->num % this->den;
       while(r < zero)  { r += this->den; --q; }

       // Compare with just the quotient, since the remainder always bumps the
       // value up.  [Since q = floor(n/d), and if n/d < i then q < i, if n/d == i
       // then q == i, if n/d == i + r/d then q == i, and if n/d >= i + 1 then
       // q >= i + 1 > i; therefore n/d < i iff q < i.]
       return q < i;
    }
    template <class T>
    typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator>(const T& i) const
    {
       return operator==(i) ? false : !operator<(i);
    }
    template <class T>
    BOOST_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator== (const T& i) const
    {
       return ((den == IntType(1)) && (num == i));
    }

private:
    // Implementation - numerator and denominator (normalized).
    // Other possibilities - separate whole-part, or sign, fields?
    IntType num;
    IntType den;

    // Helper functions
    static BOOST_CONSTEXPR
    int_type inner_gcd( param_type a, param_type b, int_type const &zero =
     int_type(0) )
    { return b == zero ? a : inner_gcd(b, a % b, zero); }

    static BOOST_CONSTEXPR
    int_type inner_abs( param_type x, int_type const &zero = int_type(0) )
    { return x < zero ? -x : +x; }

    // Representation note: Fractions are kept in normalized form at all
    // times. normalized form is defined as gcd(num,den) == 1 and den > 0.
    // In particular, note that the implementation of abs() below relies
    // on den always being positive.
    bool test_invariant() const;
    void normalize();

    static BOOST_CONSTEXPR
    bool is_normalized( param_type n, param_type d, int_type const &zero =
     int_type(0), int_type const &one = int_type(1) )
    {
        return d > zero && ( n != zero || d == one ) && inner_abs( inner_gcd(n,
         d, zero), zero ) == one;
    }
    //
    // Conversion checks:
    //
    // (1) From an unsigned type with more digits than IntType:
    //
    template <class T>
    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)
    {
       return val < (T(1) << std::numeric_limits<IntType>::digits);
    }
    //
    // (2) From a signed type with more digits than IntType, and IntType also signed:
    //
    template <class T>
    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T& val)
    {
       // Note that this check assumes IntType has a 2's complement representation,
       // we don't want to try to convert a std::numeric_limits<IntType>::min() to
       // a T because that conversion may not be allowed (this happens when IntType
       // is from Boost.Multiprecision).
       return (val < (T(1) << std::numeric_limits<IntType>::digits)) && (val >= -(T(1) << std::numeric_limits<IntType>::digits));
    }
    //
    // (3) From a signed type with more digits than IntType, and IntType unsigned:
    //
    template <class T>
    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)
    {
       return (val < (T(1) << std::numeric_limits<IntType>::digits)) && (val >= 0);
    }
    //
    // (4) From a signed type with fewer digits than IntType, and IntType unsigned:
    //
    template <class T>
    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)
    {
       return val >= 0;
    }
    //
    // (5) From an unsigned type with fewer digits than IntType, and IntType signed:
    //
    template <class T>
    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T&)
    {
       return true;
    }
    //
    // (6) From an unsigned type with fewer digits than IntType, and IntType unsigned:
    //
    template <class T>
    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T&)
    {
       return true;
    }
    //
    // (7) From an signed type with fewer digits than IntType, and IntType signed:
    //
    template <class T>
    BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T&)
    {
       return true;
    }
};

// Unary plus and minus
template <typename IntType>
BOOST_CONSTEXPR
inline rational<IntType> operator+ (const rational<IntType>& r)
{
    return r;
}

template <typename IntType>
inline rational<IntType> operator- (const rational<IntType>& r)
{
    return rational<IntType>(static_cast<IntType>(-r.numerator()), r.denominator());
}

// Arithmetic assignment operators
template <typename IntType>
rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r)
{
    // This calculation avoids overflow, and minimises the number of expensive
    // calculations. Thanks to Nickolay Mladenov for this algorithm.
    //
    // Proof:
    // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1.
    // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1
    //
    // The result is (a*d1 + c*b1) / (b1*d1*g).
    // Now we have to normalize this ratio.
    // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1
    // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a.
    // But since gcd(a,b1)=1 we have h=1.
    // Similarly h|d1 leads to h=1.
    // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g
    // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g)
    // Which proves that instead of normalizing the result, it is better to
    // divide num and den by gcd((a*d1 + c*b1), g)

    // Protect against self-modification
    IntType r_num = r.num;
    IntType r_den = r.den;

    IntType g = integer::gcd(den, r_den);
    den /= g;  // = b1 from the calculations above
    num = num * (r_den / g) + r_num * den;
    g = integer::gcd(num, g);
    num /= g;
    den *= r_den/g;

    return *this;
}

template <typename IntType>
rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r)
{
    // Protect against self-modification
    IntType r_num = r.num;
    IntType r_den = r.den;

    // This calculation avoids overflow, and minimises the number of expensive
    // calculations. It corresponds exactly to the += case above
    IntType g = integer::gcd(den, r_den);
    den /= g;
    num = num * (r_den / g) - r_num * den;
    g = integer::gcd(num, g);
    num /= g;
    den *= r_den/g;

    return *this;
}

template <typename IntType>
rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r)
{
    // Protect against self-modification
    IntType r_num = r.num;
    IntType r_den = r.den;

    // Avoid overflow and preserve normalization
    IntType gcd1 = integer::gcd(num, r_den);
    IntType gcd2 = integer::gcd(r_num, den);
    num = (num/gcd1) * (r_num/gcd2);
    den = (den/gcd2) * (r_den/gcd1);
    return *this;
}

template <typename IntType>
rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r)
{
    // Protect against self-modification
    IntType r_num = r.num;
    IntType r_den = r.den;

    // Avoid repeated construction
    IntType zero(0);

    // Trap division by zero
    if (r_num == zero)
        BOOST_THROW_EXCEPTION(bad_rational());
    if (num == zero)
        return *this;

    // Avoid overflow and preserve normalization
    IntType gcd1 = integer::gcd(num, r_num);
    IntType gcd2 = integer::gcd(r_den, den);
    num = (num/gcd1) * (r_den/gcd2);
    den = (den/gcd2) * (r_num/gcd1);

    if (den < zero) {
        num = -num;
        den = -den;
    }
    return *this;
}


//
// Non-member operators: previously these were provided by Boost.Operator, but these had a number of
// drawbacks, most notably, that in order to allow inter-operability with IntType code such as this:
//
// rational<int> r(3);
// assert(r == 3.5); // compiles and passes!!
//
// Happens to be allowed as well :-(
//
// There are three possible cases for each operator:
// 1) rational op rational.
// 2) rational op integer
// 3) integer op rational
// Cases (1) and (2) are folded into the one function.
//
template <class IntType, class Arg>
inline typename boost::enable_if_c <
   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
   operator + (const rational<IntType>& a, const Arg& b)
{
      rational<IntType> t(a);
      return t += b;
}
template <class Arg, class IntType>
inline typename boost::enable_if_c <
   rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
   operator + (const Arg& b, const rational<IntType>& a)
{
      rational<IntType> t(a);
      return t += b;
}

template <class IntType, class Arg>
inline typename boost::enable_if_c <
   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
   operator - (const rational<IntType>& a, const Arg& b)
{
      rational<IntType> t(a);
      return t -= b;
}
template <class Arg, class IntType>
inline typename boost::enable_if_c <
   rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
   operator - (const Arg& b, const rational<IntType>& a)
{
      rational<IntType> t(a);
      return -(t -= b);
}

template <class IntType, class Arg>
inline typename boost::enable_if_c <
   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
   operator * (const rational<IntType>& a, const Arg& b)
{
      rational<IntType> t(a);
      return t *= b;
}
template <class Arg, class IntType>
inline typename boost::enable_if_c <
   rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
   operator * (const Arg& b, const rational<IntType>& a)
{
      rational<IntType> t(a);
      return t *= b;
}

template <class IntType, class Arg>
inline typename boost::enable_if_c <
   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
   operator / (const rational<IntType>& a, const Arg& b)
{
      rational<IntType> t(a);
      return t /= b;
}
template <class Arg, class IntType>
inline typename boost::enable_if_c <
   rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
   operator / (const Arg& b, const rational<IntType>& a)
{
      rational<IntType> t(b);
      return t /= a;
}

template <class IntType, class Arg>
inline typename boost::enable_if_c <
   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type
   operator <= (const rational<IntType>& a, const Arg& b)
{
      return !(a > b);
}
template <class Arg, class IntType>
inline typename boost::enable_if_c <
   rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
   operator <= (const Arg& b, const rational<IntType>& a)
{
      return a >= b;
}

template <class IntType, class Arg>
inline typename boost::enable_if_c <
   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type
   operator >= (const rational<IntType>& a, const Arg& b)
{
      return !(a < b);
}
template <class Arg, class IntType>
inline typename boost::enable_if_c <
   rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
   operator >= (const Arg& b, const rational<IntType>& a)
{
      return a <= b;
}

template <class IntType, class Arg>
inline typename boost::enable_if_c <
   rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type
   operator != (const rational<IntType>& a, const Arg& b)
{
      return !(a == b);
}
template <class Arg, class IntType>
inline typename boost::enable_if_c <
   rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
   operator != (const Arg& b, const rational<IntType>& a)
{
      return !(b == a);
}

template <class Arg, class IntType>
inline typename boost::enable_if_c <
   rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
   operator < (const Arg& b, const rational<IntType>& a)
{
      return a > b;
}
template <class Arg, class IntType>
inline typename boost::enable_if_c <
   rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
   operator > (const Arg& b, const rational<IntType>& a)
{
      return a < b;
}
template <class Arg, class IntType>
inline typename boost::enable_if_c <
   rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
   operator == (const Arg& b, const rational<IntType>& a)
{
      return a == b;
}

// Comparison operators
template <typename IntType>
bool rational<IntType>::operator< (const rational<IntType>& r) const
{
    // Avoid repeated construction
    int_type const  zero( 0 );

    // This should really be a class-wide invariant.  The reason for these
    // checks is that for 2's complement systems, INT_MIN has no corresponding
    // positive, so negating it during normalization keeps it INT_MIN, which
    // is bad for later calculations that assume a positive denominator.
    BOOST_ASSERT( this->den > zero );
    BOOST_ASSERT( r.den > zero );

    // Determine relative order by expanding each value to its simple continued
    // fraction representation using the Euclidian GCD algorithm.
    struct { int_type  n, d, q, r; }
     ts = { this->num, this->den, static_cast<int_type>(this->num / this->den),
     static_cast<int_type>(this->num % this->den) },
     rs = { r.num, r.den, static_cast<int_type>(r.num / r.den),
     static_cast<int_type>(r.num % r.den) };
    unsigned  reverse = 0u;

    // Normalize negative moduli by repeatedly adding the (positive) denominator
    // and decrementing the quotient.  Later cycles should have all positive
    // values, so this only has to be done for the first cycle.  (The rules of
    // C++ require a nonnegative quotient & remainder for a nonnegative dividend
    // & positive divisor.)
    while ( ts.r < zero )  { ts.r += ts.d; --ts.q; }
    while ( rs.r < zero )  { rs.r += rs.d; --rs.q; }

    // Loop through and compare each variable's continued-fraction components
    for ( ;; )
    {
        // The quotients of the current cycle are the continued-fraction
        // components.  Comparing two c.f. is comparing their sequences,
        // stopping at the first difference.
        if ( ts.q != rs.q )
        {
            // Since reciprocation changes the relative order of two variables,
            // and c.f. use reciprocals, the less/greater-than test reverses
            // after each index.  (Start w/ non-reversed @ whole-number place.)
            return reverse ? ts.q > rs.q : ts.q < rs.q;
        }

        // Prepare the next cycle
        reverse ^= 1u;

        if ( (ts.r == zero) || (rs.r == zero) )
        {
            // At least one variable's c.f. expansion has ended
            break;
        }

        ts.n = ts.d;         ts.d = ts.r;
        ts.q = ts.n / ts.d;  ts.r = ts.n % ts.d;
        rs.n = rs.d;         rs.d = rs.r;
        rs.q = rs.n / rs.d;  rs.r = rs.n % rs.d;
    }

    // Compare infinity-valued components for otherwise equal sequences
    if ( ts.r == rs.r )
    {
        // Both remainders are zero, so the next (and subsequent) c.f.
        // components for both sequences are infinity.  Therefore, the sequences
        // and their corresponding values are equal.
        return false;
    }
    else
    {
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4800)
#endif
        // Exactly one of the remainders is zero, so all following c.f.
        // components of that variable are infinity, while the other variable
        // has a finite next c.f. component.  So that other variable has the
        // lesser value (modulo the reversal flag!).
        return ( ts.r != zero ) != static_cast<bool>( reverse );
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
    }
}

template <typename IntType>
BOOST_CONSTEXPR
inline bool rational<IntType>::operator== (const rational<IntType>& r) const
{
    return ((num == r.num) && (den == r.den));
}

// Invariant check
template <typename IntType>
inline bool rational<IntType>::test_invariant() const
{
    return ( this->den > int_type(0) ) && ( integer::gcd(this->num, this->den) ==
     int_type(1) );
}

// Normalisation
template <typename IntType>
void rational<IntType>::normalize()
{
    // Avoid repeated construction
    IntType zero(0);

    if (den == zero)
       BOOST_THROW_EXCEPTION(bad_rational());

    // Handle the case of zero separately, to avoid division by zero
    if (num == zero) {
        den = IntType(1);
        return;
    }

    IntType g = integer::gcd(num, den);

    num /= g;
    den /= g;

    // Ensure that the denominator is positive
    if (den < zero) {
        num = -num;
        den = -den;
    }

    // ...But acknowledge that the previous step doesn't always work.
    // (Nominally, this should be done before the mutating steps, but this
    // member function is only called during the constructor, so we never have
    // to worry about zombie objects.)
    if (den < zero)
       BOOST_THROW_EXCEPTION(bad_rational("bad rational: non-zero singular denominator"));

    BOOST_ASSERT( this->test_invariant() );
}

#ifndef BOOST_NO_IOSTREAM
namespace detail {

    // A utility class to reset the format flags for an istream at end
    // of scope, even in case of exceptions
    struct resetter {
        resetter(std::istream& is) : is_(is), f_(is.flags()) {}
        ~resetter() { is_.flags(f_); }
        std::istream& is_;
        std::istream::fmtflags f_;      // old GNU c++ lib has no ios_base
    };

}

// Input and output
template <typename IntType>
std::istream& operator>> (std::istream& is, rational<IntType>& r)
{
    using std::ios;

    IntType n = IntType(0), d = IntType(1);
    char c = 0;
    detail::resetter sentry(is);

    if ( is >> n )
    {
        if ( is.get(c) )
        {
            if ( c == '/' )
            {
                if ( is >> std::noskipws >> d )
                    try {
                        r.assign( n, d );
                    } catch ( bad_rational & ) {        // normalization fail
                        try { is.setstate(ios::failbit); }
                        catch ( ... ) {}  // don't throw ios_base::failure...
                        if ( is.exceptions() & ios::failbit )
                            throw;   // ...but the original exception instead
                        // ELSE: suppress the exception, use just error flags
                    }
            }
            else
                is.setstate( ios::failbit );
        }
    }

    return is;
}

// Add manipulators for output format?
template <typename IntType>
std::ostream& operator<< (std::ostream& os, const rational<IntType>& r)
{
    // The slash directly precedes the denominator, which has no prefixes.
    std::ostringstream  ss;

    ss.copyfmt( os );
    ss.tie( NULL );
    ss.exceptions( std::ios::goodbit );
    ss.width( 0 );
    ss << std::noshowpos << std::noshowbase << '/' << r.denominator();

    // The numerator holds the showpos, internal, and showbase flags.
    std::string const   tail = ss.str();
    std::streamsize const  w =
        os.width() - static_cast<std::streamsize>( tail.size() );

    ss.clear();
    ss.str( "" );
    ss.flags( os.flags() );
    ss << std::setw( w < 0 || (os.flags() & std::ios::adjustfield) !=
                     std::ios::internal ? 0 : w ) << r.numerator();
    return os << ss.str() + tail;
}
#endif  // BOOST_NO_IOSTREAM

// Type conversion
template <typename T, typename IntType>
BOOST_CONSTEXPR
inline T rational_cast(const rational<IntType>& src)
{
    return static_cast<T>(src.numerator())/static_cast<T>(src.denominator());
}

// Do not use any abs() defined on IntType - it isn't worth it, given the
// difficulties involved (Koenig lookup required, there may not *be* an abs()
// defined, etc etc).
template <typename IntType>
inline rational<IntType> abs(const rational<IntType>& r)
{
    return r.numerator() >= IntType(0)? r: -r;
}

namespace integer {

template <typename IntType>
struct gcd_evaluator< rational<IntType> >
{
    typedef rational<IntType> result_type,
                              first_argument_type, second_argument_type;
    result_type operator() (  first_argument_type const &a
                           , second_argument_type const &b
                           ) const
    {
        return result_type(integer::gcd(a.numerator(), b.numerator()),
                           integer::lcm(a.denominator(), b.denominator()));
    }
};

template <typename IntType>
struct lcm_evaluator< rational<IntType> >
{
    typedef rational<IntType> result_type,
                              first_argument_type, second_argument_type;
    result_type operator() (  first_argument_type const &a
                           , second_argument_type const &b
                           ) const
    {
        return result_type(integer::lcm(a.numerator(), b.numerator()),
                           integer::gcd(a.denominator(), b.denominator()));
    }
};

} // namespace integer

} // namespace boost

#endif  // BOOST_RATIONAL_HPP