/usr/include/math.h is in libc6-dev 2.27-3ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 | /* Declarations for math functions.
Copyright (C) 1991-2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
/*
* ISO C99 Standard: 7.12 Mathematics <math.h>
*/
#ifndef _MATH_H
#define _MATH_H 1
#define __GLIBC_INTERNAL_STARTING_HEADER_IMPLEMENTATION
#include <bits/libc-header-start.h>
#if defined log && defined __GNUC__
# warning A macro called log was already defined when <math.h> was included.
# warning This will cause compilation problems.
#endif
__BEGIN_DECLS
/* Get definitions of __intmax_t and __uintmax_t. */
#include <bits/types.h>
/* Get machine-dependent vector math functions declarations. */
#include <bits/math-vector.h>
/* Gather machine dependent type support. */
#include <bits/floatn.h>
/* Value returned on overflow. With IEEE 754 floating point, this is
+Infinity, otherwise the largest representable positive value. */
#if __GNUC_PREREQ (3, 3)
# define HUGE_VAL (__builtin_huge_val ())
#else
/* This may provoke compiler warnings, and may not be rounded to
+Infinity in all IEEE 754 rounding modes, but is the best that can
be done in ISO C while remaining a constant expression. 10,000 is
greater than the maximum (decimal) exponent for all supported
floating-point formats and widths. */
# define HUGE_VAL 1e10000
#endif
#ifdef __USE_ISOC99
# if __GNUC_PREREQ (3, 3)
# define HUGE_VALF (__builtin_huge_valf ())
# define HUGE_VALL (__builtin_huge_vall ())
# else
# define HUGE_VALF 1e10000f
# define HUGE_VALL 1e10000L
# endif
#endif
#if __HAVE_FLOAT16 && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define HUGE_VAL_F16 (__builtin_huge_valf16 ())
#endif
#if __HAVE_FLOAT32 && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define HUGE_VAL_F32 (__builtin_huge_valf32 ())
#endif
#if __HAVE_FLOAT64 && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define HUGE_VAL_F64 (__builtin_huge_valf64 ())
#endif
#if __HAVE_FLOAT128 && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define HUGE_VAL_F128 (__builtin_huge_valf128 ())
#endif
#if __HAVE_FLOAT32X && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define HUGE_VAL_F32X (__builtin_huge_valf32x ())
#endif
#if __HAVE_FLOAT64X && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define HUGE_VAL_F64X (__builtin_huge_valf64x ())
#endif
#if __HAVE_FLOAT128X && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define HUGE_VAL_F128X (__builtin_huge_valf128x ())
#endif
#ifdef __USE_ISOC99
/* IEEE positive infinity. */
# if __GNUC_PREREQ (3, 3)
# define INFINITY (__builtin_inff ())
# else
# define INFINITY HUGE_VALF
# endif
/* IEEE Not A Number. */
# if __GNUC_PREREQ (3, 3)
# define NAN (__builtin_nanf (""))
# else
/* This will raise an "invalid" exception outside static initializers,
but is the best that can be done in ISO C while remaining a
constant expression. */
# define NAN (0.0f / 0.0f)
# endif
#endif /* __USE_ISOC99 */
#if __GLIBC_USE (IEC_60559_BFP_EXT)
/* Signaling NaN macros, if supported. */
# if __GNUC_PREREQ (3, 3)
# define SNANF (__builtin_nansf (""))
# define SNAN (__builtin_nans (""))
# define SNANL (__builtin_nansl (""))
# endif
#endif
#if __HAVE_FLOAT16 && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define SNANF16 (__builtin_nansf16 (""))
#endif
#if __HAVE_FLOAT32 && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define SNANF32 (__builtin_nansf32 (""))
#endif
#if __HAVE_FLOAT64 && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define SNANF64 (__builtin_nansf64 (""))
#endif
#if __HAVE_FLOAT128 && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define SNANF128 (__builtin_nansf128 (""))
#endif
#if __HAVE_FLOAT32X && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define SNANF32X (__builtin_nansf32x (""))
#endif
#if __HAVE_FLOAT64X && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define SNANF64X (__builtin_nansf64x (""))
#endif
#if __HAVE_FLOAT128X && __GLIBC_USE (IEC_60559_TYPES_EXT)
# define SNANF128X (__builtin_nansf128x (""))
#endif
/* Get __GLIBC_FLT_EVAL_METHOD. */
#include <bits/flt-eval-method.h>
#ifdef __USE_ISOC99
/* Define the following typedefs.
float_t floating-point type at least as wide as `float' used
to evaluate `float' expressions
double_t floating-point type at least as wide as `double' used
to evaluate `double' expressions
*/
# if __GLIBC_FLT_EVAL_METHOD == 0 || __GLIBC_FLT_EVAL_METHOD == 16
typedef float float_t;
typedef double double_t;
# elif __GLIBC_FLT_EVAL_METHOD == 1
typedef double float_t;
typedef double double_t;
# elif __GLIBC_FLT_EVAL_METHOD == 2
typedef long double float_t;
typedef long double double_t;
# elif __GLIBC_FLT_EVAL_METHOD == 32
typedef _Float32 float_t;
typedef double double_t;
# elif __GLIBC_FLT_EVAL_METHOD == 33
typedef _Float32x float_t;
typedef _Float32x double_t;
# elif __GLIBC_FLT_EVAL_METHOD == 64
typedef _Float64 float_t;
typedef _Float64 double_t;
# elif __GLIBC_FLT_EVAL_METHOD == 65
typedef _Float64x float_t;
typedef _Float64x double_t;
# elif __GLIBC_FLT_EVAL_METHOD == 128
typedef _Float128 float_t;
typedef _Float128 double_t;
# elif __GLIBC_FLT_EVAL_METHOD == 129
typedef _Float128x float_t;
typedef _Float128x double_t;
# else
# error "Unknown __GLIBC_FLT_EVAL_METHOD"
# endif
#endif
/* Define macros for the return values of ilogb and llogb, based on
__FP_LOGB0_IS_MIN and __FP_LOGBNAN_IS_MIN.
FP_ILOGB0 Expands to a value returned by `ilogb (0.0)'.
FP_ILOGBNAN Expands to a value returned by `ilogb (NAN)'.
FP_LLOGB0 Expands to a value returned by `llogb (0.0)'.
FP_LLOGBNAN Expands to a value returned by `llogb (NAN)'.
*/
#include <bits/fp-logb.h>
#ifdef __USE_ISOC99
# if __FP_LOGB0_IS_MIN
# define FP_ILOGB0 (-2147483647 - 1)
# else
# define FP_ILOGB0 (-2147483647)
# endif
# if __FP_LOGBNAN_IS_MIN
# define FP_ILOGBNAN (-2147483647 - 1)
# else
# define FP_ILOGBNAN 2147483647
# endif
#endif
#if __GLIBC_USE (IEC_60559_BFP_EXT)
# if __WORDSIZE == 32
# define __FP_LONG_MAX 0x7fffffffL
# else
# define __FP_LONG_MAX 0x7fffffffffffffffL
# endif
# if __FP_LOGB0_IS_MIN
# define FP_LLOGB0 (-__FP_LONG_MAX - 1)
# else
# define FP_LLOGB0 (-__FP_LONG_MAX)
# endif
# if __FP_LOGBNAN_IS_MIN
# define FP_LLOGBNAN (-__FP_LONG_MAX - 1)
# else
# define FP_LLOGBNAN __FP_LONG_MAX
# endif
#endif
/* Get the architecture specific values describing the floating-point
evaluation. The following symbols will get defined:
FP_FAST_FMA
FP_FAST_FMAF
FP_FAST_FMAL
If defined it indicates that the `fma' function
generally executes about as fast as a multiply and an add.
This macro is defined only iff the `fma' function is
implemented directly with a hardware multiply-add instructions.
*/
#include <bits/fp-fast.h>
#if __GLIBC_USE (IEC_60559_BFP_EXT)
/* Rounding direction macros for fromfp functions. */
enum
{
FP_INT_UPWARD =
# define FP_INT_UPWARD 0
FP_INT_UPWARD,
FP_INT_DOWNWARD =
# define FP_INT_DOWNWARD 1
FP_INT_DOWNWARD,
FP_INT_TOWARDZERO =
# define FP_INT_TOWARDZERO 2
FP_INT_TOWARDZERO,
FP_INT_TONEARESTFROMZERO =
# define FP_INT_TONEARESTFROMZERO 3
FP_INT_TONEARESTFROMZERO,
FP_INT_TONEAREST =
# define FP_INT_TONEAREST 4
FP_INT_TONEAREST,
};
#endif
/* The file <bits/mathcalls.h> contains the prototypes for all the
actual math functions. These macros are used for those prototypes,
so we can easily declare each function as both `name' and `__name',
and can declare the float versions `namef' and `__namef'. */
#define __SIMD_DECL(function) __CONCAT (__DECL_SIMD_, function)
#define __MATHCALL_VEC(function, suffix, args) \
__SIMD_DECL (__MATH_PRECNAME (function, suffix)) \
__MATHCALL (function, suffix, args)
#define __MATHDECL_VEC(type, function,suffix, args) \
__SIMD_DECL (__MATH_PRECNAME (function, suffix)) \
__MATHDECL(type, function,suffix, args)
#define __MATHCALL(function,suffix, args) \
__MATHDECL (_Mdouble_,function,suffix, args)
#define __MATHDECL(type, function,suffix, args) \
__MATHDECL_1(type, function,suffix, args); \
__MATHDECL_1(type, __CONCAT(__,function),suffix, args)
#define __MATHCALLX(function,suffix, args, attrib) \
__MATHDECLX (_Mdouble_,function,suffix, args, attrib)
#define __MATHDECLX(type, function,suffix, args, attrib) \
__MATHDECL_1(type, function,suffix, args) __attribute__ (attrib); \
__MATHDECL_1(type, __CONCAT(__,function),suffix, args) __attribute__ (attrib)
#define __MATHDECL_1(type, function,suffix, args) \
extern type __MATH_PRECNAME(function,suffix) args __THROW
#define _Mdouble_ double
#define __MATH_PRECNAME(name,r) __CONCAT(name,r)
#define __MATH_DECLARING_DOUBLE 1
#define __MATH_DECLARING_FLOATN 0
#include <bits/mathcalls-helper-functions.h>
#include <bits/mathcalls.h>
#undef _Mdouble_
#undef __MATH_PRECNAME
#undef __MATH_DECLARING_DOUBLE
#undef __MATH_DECLARING_FLOATN
#ifdef __USE_ISOC99
/* Include the file of declarations again, this time using `float'
instead of `double' and appending f to each function name. */
# define _Mdouble_ float
# define __MATH_PRECNAME(name,r) name##f##r
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 0
# include <bits/mathcalls-helper-functions.h>
# include <bits/mathcalls.h>
# undef _Mdouble_
# undef __MATH_PRECNAME
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
# if !(defined __NO_LONG_DOUBLE_MATH && defined _LIBC) \
|| defined __LDBL_COMPAT \
|| defined _LIBC_TEST
# ifdef __LDBL_COMPAT
# ifdef __USE_ISOC99
extern float __nldbl_nexttowardf (float __x, long double __y)
__THROW __attribute__ ((__const__));
# ifdef __REDIRECT_NTH
extern float __REDIRECT_NTH (nexttowardf, (float __x, long double __y),
__nldbl_nexttowardf)
__attribute__ ((__const__));
extern double __REDIRECT_NTH (nexttoward, (double __x, long double __y),
nextafter) __attribute__ ((__const__));
extern long double __REDIRECT_NTH (nexttowardl,
(long double __x, long double __y),
nextafter) __attribute__ ((__const__));
# endif
# endif
# undef __MATHDECL_1
# define __MATHDECL_2(type, function,suffix, args, alias) \
extern type __REDIRECT_NTH(__MATH_PRECNAME(function,suffix), \
args, alias)
# define __MATHDECL_1(type, function,suffix, args) \
__MATHDECL_2(type, function,suffix, args, __CONCAT(function,suffix))
# endif
/* Include the file of declarations again, this time using `long double'
instead of `double' and appending l to each function name. */
# define _Mdouble_ long double
# define __MATH_PRECNAME(name,r) name##l##r
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 0
# define __MATH_DECLARE_LDOUBLE 1
# include <bits/mathcalls-helper-functions.h>
# include <bits/mathcalls.h>
# undef _Mdouble_
# undef __MATH_PRECNAME
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
# endif /* !(__NO_LONG_DOUBLE_MATH && _LIBC) || __LDBL_COMPAT */
#endif /* Use ISO C99. */
/* Include the file of declarations for _FloatN and _FloatNx
types. */
#if __HAVE_DISTINCT_FLOAT16 || (__HAVE_FLOAT16 && !defined _LIBC)
# define _Mdouble_ _Float16
# define __MATH_PRECNAME(name,r) name##f16##r
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 1
# if __HAVE_DISTINCT_FLOAT16
# include <bits/mathcalls-helper-functions.h>
# endif
# if __GLIBC_USE (IEC_60559_TYPES_EXT)
# include <bits/mathcalls.h>
# endif
# undef _Mdouble_
# undef __MATH_PRECNAME
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
#endif /* __HAVE_DISTINCT_FLOAT16 || (__HAVE_FLOAT16 && !_LIBC). */
#if __HAVE_DISTINCT_FLOAT32 || (__HAVE_FLOAT32 && !defined _LIBC)
# define _Mdouble_ _Float32
# define __MATH_PRECNAME(name,r) name##f32##r
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 1
# if __HAVE_DISTINCT_FLOAT32
# include <bits/mathcalls-helper-functions.h>
# endif
# if __GLIBC_USE (IEC_60559_TYPES_EXT)
# include <bits/mathcalls.h>
# endif
# undef _Mdouble_
# undef __MATH_PRECNAME
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
#endif /* __HAVE_DISTINCT_FLOAT32 || (__HAVE_FLOAT32 && !_LIBC). */
#if __HAVE_DISTINCT_FLOAT64 || (__HAVE_FLOAT64 && !defined _LIBC)
# define _Mdouble_ _Float64
# define __MATH_PRECNAME(name,r) name##f64##r
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 1
# if __HAVE_DISTINCT_FLOAT64
# include <bits/mathcalls-helper-functions.h>
# endif
# if __GLIBC_USE (IEC_60559_TYPES_EXT)
# include <bits/mathcalls.h>
# endif
# undef _Mdouble_
# undef __MATH_PRECNAME
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
#endif /* __HAVE_DISTINCT_FLOAT64 || (__HAVE_FLOAT64 && !_LIBC). */
#if __HAVE_DISTINCT_FLOAT128 || (__HAVE_FLOAT128 && !defined _LIBC)
# define _Mdouble_ _Float128
# define __MATH_PRECNAME(name,r) name##f128##r
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 1
# if __HAVE_DISTINCT_FLOAT128
# include <bits/mathcalls-helper-functions.h>
# endif
# if __GLIBC_USE (IEC_60559_TYPES_EXT)
# include <bits/mathcalls.h>
# endif
# undef _Mdouble_
# undef __MATH_PRECNAME
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
#endif /* __HAVE_DISTINCT_FLOAT128 || (__HAVE_FLOAT128 && !_LIBC). */
#if __HAVE_DISTINCT_FLOAT32X || (__HAVE_FLOAT32X && !defined _LIBC)
# define _Mdouble_ _Float32x
# define __MATH_PRECNAME(name,r) name##f32x##r
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 1
# if __HAVE_DISTINCT_FLOAT32X
# include <bits/mathcalls-helper-functions.h>
# endif
# if __GLIBC_USE (IEC_60559_TYPES_EXT)
# include <bits/mathcalls.h>
# endif
# undef _Mdouble_
# undef __MATH_PRECNAME
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
#endif /* __HAVE_DISTINCT_FLOAT32X || (__HAVE_FLOAT32X && !_LIBC). */
#if __HAVE_DISTINCT_FLOAT64X || (__HAVE_FLOAT64X && !defined _LIBC)
# define _Mdouble_ _Float64x
# define __MATH_PRECNAME(name,r) name##f64x##r
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 1
# if __HAVE_DISTINCT_FLOAT64X
# include <bits/mathcalls-helper-functions.h>
# endif
# if __GLIBC_USE (IEC_60559_TYPES_EXT)
# include <bits/mathcalls.h>
# endif
# undef _Mdouble_
# undef __MATH_PRECNAME
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
#endif /* __HAVE_DISTINCT_FLOAT64X || (__HAVE_FLOAT64X && !_LIBC). */
#if __HAVE_DISTINCT_FLOAT128X || (__HAVE_FLOAT128X && !defined _LIBC)
# define _Mdouble_ _Float128x
# define __MATH_PRECNAME(name,r) name##f128x##r
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 1
# if __HAVE_DISTINCT_FLOAT128X
# include <bits/mathcalls-helper-functions.h>
# endif
# if __GLIBC_USE (IEC_60559_TYPES_EXT)
# include <bits/mathcalls.h>
# endif
# undef _Mdouble_
# undef __MATH_PRECNAME
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
#endif /* __HAVE_DISTINCT_FLOAT128X || (__HAVE_FLOAT128X && !_LIBC). */
#undef __MATHDECL_1
#undef __MATHDECL
#undef __MATHCALL
#if defined __USE_MISC || defined __USE_XOPEN
/* This variable is used by `gamma' and `lgamma'. */
extern int signgam;
#endif
#if (__HAVE_DISTINCT_FLOAT16 \
|| __HAVE_DISTINCT_FLOAT32 \
|| __HAVE_DISTINCT_FLOAT64 \
|| __HAVE_DISTINCT_FLOAT32X \
|| __HAVE_DISTINCT_FLOAT64X \
|| __HAVE_DISTINCT_FLOAT128X)
# error "Unsupported _FloatN or _FloatNx types for <math.h>."
#endif
/* Depending on the type of TG_ARG, call an appropriately suffixed
version of FUNC with arguments (including parentheses) ARGS.
Suffixed functions may not exist for long double if it has the same
format as double, or for other types with the same format as float,
double or long double. The behavior is undefined if the argument
does not have a real floating type. The definition may use a
conditional expression, so all suffixed versions of FUNC must
return the same type (FUNC may include a cast if necessary rather
than being a single identifier). */
#ifdef __NO_LONG_DOUBLE_MATH
# if __HAVE_DISTINCT_FLOAT128
# error "Distinct _Float128 without distinct long double not supported."
# endif
# define __MATH_TG(TG_ARG, FUNC, ARGS) \
(sizeof (TG_ARG) == sizeof (float) ? FUNC ## f ARGS : FUNC ARGS)
#elif __HAVE_DISTINCT_FLOAT128
# if __HAVE_GENERIC_SELECTION
# if __HAVE_FLOATN_NOT_TYPEDEF && __HAVE_FLOAT32
# define __MATH_TG_F32(FUNC, ARGS) _Float32: FUNC ## f ARGS,
# else
# define __MATH_TG_F32(FUNC, ARGS)
# endif
# if __HAVE_FLOATN_NOT_TYPEDEF && __HAVE_FLOAT64X
# if __HAVE_FLOAT64X_LONG_DOUBLE
# define __MATH_TG_F64X(FUNC, ARGS) _Float64x: FUNC ## l ARGS,
# else
# define __MATH_TG_F64X(FUNC, ARGS) _Float64x: FUNC ## f128 ARGS,
# endif
# else
# define __MATH_TG_F64X(FUNC, ARGS)
# endif
# define __MATH_TG(TG_ARG, FUNC, ARGS) \
_Generic ((TG_ARG), \
float: FUNC ## f ARGS, \
__MATH_TG_F32 (FUNC, ARGS) \
default: FUNC ARGS, \
long double: FUNC ## l ARGS, \
__MATH_TG_F64X (FUNC, ARGS) \
_Float128: FUNC ## f128 ARGS)
# else
# if __HAVE_FLOATN_NOT_TYPEDEF
# error "Non-typedef _FloatN but no _Generic."
# endif
# define __MATH_TG(TG_ARG, FUNC, ARGS) \
__builtin_choose_expr \
(__builtin_types_compatible_p (__typeof (TG_ARG), float), \
FUNC ## f ARGS, \
__builtin_choose_expr \
(__builtin_types_compatible_p (__typeof (TG_ARG), double), \
FUNC ARGS, \
__builtin_choose_expr \
(__builtin_types_compatible_p (__typeof (TG_ARG), long double), \
FUNC ## l ARGS, \
FUNC ## f128 ARGS)))
# endif
#else
# define __MATH_TG(TG_ARG, FUNC, ARGS) \
(sizeof (TG_ARG) == sizeof (float) \
? FUNC ## f ARGS \
: sizeof (TG_ARG) == sizeof (double) \
? FUNC ARGS \
: FUNC ## l ARGS)
#endif
/* ISO C99 defines some generic macros which work on any data type. */
#ifdef __USE_ISOC99
/* All floating-point numbers can be put in one of these categories. */
enum
{
FP_NAN =
# define FP_NAN 0
FP_NAN,
FP_INFINITE =
# define FP_INFINITE 1
FP_INFINITE,
FP_ZERO =
# define FP_ZERO 2
FP_ZERO,
FP_SUBNORMAL =
# define FP_SUBNORMAL 3
FP_SUBNORMAL,
FP_NORMAL =
# define FP_NORMAL 4
FP_NORMAL
};
/* GCC bug 66462 means we cannot use the math builtins with -fsignaling-nan,
so disable builtins if this is enabled. When fixed in a newer GCC,
the __SUPPORT_SNAN__ check may be skipped for those versions. */
/* Return number of classification appropriate for X. */
# if __GNUC_PREREQ (4,4) && !defined __SUPPORT_SNAN__ \
&& (!defined __OPTIMIZE_SIZE__ || defined __cplusplus)
/* The check for __cplusplus allows the use of the builtin, even
when optimization for size is on. This is provided for
libstdc++, only to let its configure test work when it is built
with -Os. No further use of this definition of fpclassify is
expected in C++ mode, since libstdc++ provides its own version
of fpclassify in cmath (which undefines fpclassify). */
# define fpclassify(x) __builtin_fpclassify (FP_NAN, FP_INFINITE, \
FP_NORMAL, FP_SUBNORMAL, FP_ZERO, x)
# else
# define fpclassify(x) __MATH_TG ((x), __fpclassify, (x))
# endif
/* Return nonzero value if sign of X is negative. */
# if __GNUC_PREREQ (6,0)
# define signbit(x) __builtin_signbit (x)
# elif defined __cplusplus
/* In C++ mode, __MATH_TG cannot be used, because it relies on
__builtin_types_compatible_p, which is a C-only builtin.
The check for __cplusplus allows the use of the builtin instead of
__MATH_TG. This is provided for libstdc++, only to let its configure
test work. No further use of this definition of signbit is expected
in C++ mode, since libstdc++ provides its own version of signbit
in cmath (which undefines signbit). */
# define signbit(x) __builtin_signbitl (x)
# elif __GNUC_PREREQ (4,0)
# define signbit(x) __MATH_TG ((x), __builtin_signbit, (x))
# else
# define signbit(x) __MATH_TG ((x), __signbit, (x))
# endif
/* Return nonzero value if X is not +-Inf or NaN. */
# if __GNUC_PREREQ (4,4) && !defined __SUPPORT_SNAN__
# define isfinite(x) __builtin_isfinite (x)
# else
# define isfinite(x) __MATH_TG ((x), __finite, (x))
# endif
/* Return nonzero value if X is neither zero, subnormal, Inf, nor NaN. */
# if __GNUC_PREREQ (4,4) && !defined __SUPPORT_SNAN__
# define isnormal(x) __builtin_isnormal (x)
# else
# define isnormal(x) (fpclassify (x) == FP_NORMAL)
# endif
/* Return nonzero value if X is a NaN. We could use `fpclassify' but
we already have this functions `__isnan' and it is faster. */
# if __GNUC_PREREQ (4,4) && !defined __SUPPORT_SNAN__
# define isnan(x) __builtin_isnan (x)
# else
# define isnan(x) __MATH_TG ((x), __isnan, (x))
# endif
/* Return nonzero value if X is positive or negative infinity. */
# if __HAVE_DISTINCT_FLOAT128 && !__GNUC_PREREQ (7,0) \
&& !defined __SUPPORT_SNAN__ && !defined __cplusplus
/* Since __builtin_isinf_sign is broken for float128 before GCC 7.0,
use the helper function, __isinff128, with older compilers. This is
only provided for C mode, because in C++ mode, GCC has no support
for __builtin_types_compatible_p (and when in C++ mode, this macro is
not used anyway, because libstdc++ headers undefine it). */
# define isinf(x) \
(__builtin_types_compatible_p (__typeof (x), _Float128) \
? __isinff128 (x) : __builtin_isinf_sign (x))
# elif __GNUC_PREREQ (4,4) && !defined __SUPPORT_SNAN__
# define isinf(x) __builtin_isinf_sign (x)
# else
# define isinf(x) __MATH_TG ((x), __isinf, (x))
# endif
/* Bitmasks for the math_errhandling macro. */
# define MATH_ERRNO 1 /* errno set by math functions. */
# define MATH_ERREXCEPT 2 /* Exceptions raised by math functions. */
/* By default all math functions support both errno and exception handling
(except for soft floating point implementations which may only support
errno handling). If errno handling is disabled, exceptions are still
supported by GLIBC. Set math_errhandling to 0 with -ffast-math (this is
nonconforming but it is more useful than leaving it undefined). */
# ifdef __FAST_MATH__
# define math_errhandling 0
# elif defined __NO_MATH_ERRNO__
# define math_errhandling (MATH_ERREXCEPT)
# else
# define math_errhandling (MATH_ERRNO | MATH_ERREXCEPT)
# endif
#endif /* Use ISO C99. */
#if __GLIBC_USE (IEC_60559_BFP_EXT)
# include <bits/iscanonical.h>
/* Return nonzero value if X is a signaling NaN. */
# ifndef __cplusplus
# define issignaling(x) __MATH_TG ((x), __issignaling, (x))
# else
/* In C++ mode, __MATH_TG cannot be used, because it relies on
__builtin_types_compatible_p, which is a C-only builtin. On the
other hand, overloading provides the means to distinguish between
the floating-point types. The overloading resolution will match
the correct parameter (regardless of type qualifiers (i.e.: const
and volatile)). */
extern "C++" {
inline int issignaling (float __val) { return __issignalingf (__val); }
inline int issignaling (double __val) { return __issignaling (__val); }
inline int
issignaling (long double __val)
{
# ifdef __NO_LONG_DOUBLE_MATH
return __issignaling (__val);
# else
return __issignalingl (__val);
# endif
}
# if __HAVE_DISTINCT_FLOAT128
inline int issignaling (_Float128 __val) { return __issignalingf128 (__val); }
# endif
} /* extern C++ */
# endif
/* Return nonzero value if X is subnormal. */
# define issubnormal(x) (fpclassify (x) == FP_SUBNORMAL)
/* Return nonzero value if X is zero. */
# ifndef __cplusplus
# ifdef __SUPPORT_SNAN__
# define iszero(x) (fpclassify (x) == FP_ZERO)
# else
# define iszero(x) (((__typeof (x)) (x)) == 0)
# endif
# else /* __cplusplus */
extern "C++" {
# ifdef __SUPPORT_SNAN__
inline int
iszero (float __val)
{
return __fpclassifyf (__val) == FP_ZERO;
}
inline int
iszero (double __val)
{
return __fpclassify (__val) == FP_ZERO;
}
inline int
iszero (long double __val)
{
# ifdef __NO_LONG_DOUBLE_MATH
return __fpclassify (__val) == FP_ZERO;
# else
return __fpclassifyl (__val) == FP_ZERO;
# endif
}
# if __HAVE_DISTINCT_FLOAT128
inline int
iszero (_Float128 __val)
{
return __fpclassifyf128 (__val) == FP_ZERO;
}
# endif
# else
template <class __T> inline bool
iszero (__T __val)
{
return __val == 0;
}
# endif
} /* extern C++ */
# endif /* __cplusplus */
#endif /* Use IEC_60559_BFP_EXT. */
#ifdef __USE_XOPEN
/* X/Open wants another strange constant. */
# define MAXFLOAT 3.40282347e+38F
#endif
/* Some useful constants. */
#if defined __USE_MISC || defined __USE_XOPEN
# define M_E 2.7182818284590452354 /* e */
# define M_LOG2E 1.4426950408889634074 /* log_2 e */
# define M_LOG10E 0.43429448190325182765 /* log_10 e */
# define M_LN2 0.69314718055994530942 /* log_e 2 */
# define M_LN10 2.30258509299404568402 /* log_e 10 */
# define M_PI 3.14159265358979323846 /* pi */
# define M_PI_2 1.57079632679489661923 /* pi/2 */
# define M_PI_4 0.78539816339744830962 /* pi/4 */
# define M_1_PI 0.31830988618379067154 /* 1/pi */
# define M_2_PI 0.63661977236758134308 /* 2/pi */
# define M_2_SQRTPI 1.12837916709551257390 /* 2/sqrt(pi) */
# define M_SQRT2 1.41421356237309504880 /* sqrt(2) */
# define M_SQRT1_2 0.70710678118654752440 /* 1/sqrt(2) */
#endif
/* The above constants are not adequate for computation using `long double's.
Therefore we provide as an extension constants with similar names as a
GNU extension. Provide enough digits for the 128-bit IEEE quad. */
#ifdef __USE_GNU
# define M_El 2.718281828459045235360287471352662498L /* e */
# define M_LOG2El 1.442695040888963407359924681001892137L /* log_2 e */
# define M_LOG10El 0.434294481903251827651128918916605082L /* log_10 e */
# define M_LN2l 0.693147180559945309417232121458176568L /* log_e 2 */
# define M_LN10l 2.302585092994045684017991454684364208L /* log_e 10 */
# define M_PIl 3.141592653589793238462643383279502884L /* pi */
# define M_PI_2l 1.570796326794896619231321691639751442L /* pi/2 */
# define M_PI_4l 0.785398163397448309615660845819875721L /* pi/4 */
# define M_1_PIl 0.318309886183790671537767526745028724L /* 1/pi */
# define M_2_PIl 0.636619772367581343075535053490057448L /* 2/pi */
# define M_2_SQRTPIl 1.128379167095512573896158903121545172L /* 2/sqrt(pi) */
# define M_SQRT2l 1.414213562373095048801688724209698079L /* sqrt(2) */
# define M_SQRT1_2l 0.707106781186547524400844362104849039L /* 1/sqrt(2) */
#endif
#if __HAVE_FLOAT16 && defined __USE_GNU
# define M_Ef16 __f16 (2.718281828459045235360287471352662498) /* e */
# define M_LOG2Ef16 __f16 (1.442695040888963407359924681001892137) /* log_2 e */
# define M_LOG10Ef16 __f16 (0.434294481903251827651128918916605082) /* log_10 e */
# define M_LN2f16 __f16 (0.693147180559945309417232121458176568) /* log_e 2 */
# define M_LN10f16 __f16 (2.302585092994045684017991454684364208) /* log_e 10 */
# define M_PIf16 __f16 (3.141592653589793238462643383279502884) /* pi */
# define M_PI_2f16 __f16 (1.570796326794896619231321691639751442) /* pi/2 */
# define M_PI_4f16 __f16 (0.785398163397448309615660845819875721) /* pi/4 */
# define M_1_PIf16 __f16 (0.318309886183790671537767526745028724) /* 1/pi */
# define M_2_PIf16 __f16 (0.636619772367581343075535053490057448) /* 2/pi */
# define M_2_SQRTPIf16 __f16 (1.128379167095512573896158903121545172) /* 2/sqrt(pi) */
# define M_SQRT2f16 __f16 (1.414213562373095048801688724209698079) /* sqrt(2) */
# define M_SQRT1_2f16 __f16 (0.707106781186547524400844362104849039) /* 1/sqrt(2) */
#endif
#if __HAVE_FLOAT32 && defined __USE_GNU
# define M_Ef32 __f32 (2.718281828459045235360287471352662498) /* e */
# define M_LOG2Ef32 __f32 (1.442695040888963407359924681001892137) /* log_2 e */
# define M_LOG10Ef32 __f32 (0.434294481903251827651128918916605082) /* log_10 e */
# define M_LN2f32 __f32 (0.693147180559945309417232121458176568) /* log_e 2 */
# define M_LN10f32 __f32 (2.302585092994045684017991454684364208) /* log_e 10 */
# define M_PIf32 __f32 (3.141592653589793238462643383279502884) /* pi */
# define M_PI_2f32 __f32 (1.570796326794896619231321691639751442) /* pi/2 */
# define M_PI_4f32 __f32 (0.785398163397448309615660845819875721) /* pi/4 */
# define M_1_PIf32 __f32 (0.318309886183790671537767526745028724) /* 1/pi */
# define M_2_PIf32 __f32 (0.636619772367581343075535053490057448) /* 2/pi */
# define M_2_SQRTPIf32 __f32 (1.128379167095512573896158903121545172) /* 2/sqrt(pi) */
# define M_SQRT2f32 __f32 (1.414213562373095048801688724209698079) /* sqrt(2) */
# define M_SQRT1_2f32 __f32 (0.707106781186547524400844362104849039) /* 1/sqrt(2) */
#endif
#if __HAVE_FLOAT64 && defined __USE_GNU
# define M_Ef64 __f64 (2.718281828459045235360287471352662498) /* e */
# define M_LOG2Ef64 __f64 (1.442695040888963407359924681001892137) /* log_2 e */
# define M_LOG10Ef64 __f64 (0.434294481903251827651128918916605082) /* log_10 e */
# define M_LN2f64 __f64 (0.693147180559945309417232121458176568) /* log_e 2 */
# define M_LN10f64 __f64 (2.302585092994045684017991454684364208) /* log_e 10 */
# define M_PIf64 __f64 (3.141592653589793238462643383279502884) /* pi */
# define M_PI_2f64 __f64 (1.570796326794896619231321691639751442) /* pi/2 */
# define M_PI_4f64 __f64 (0.785398163397448309615660845819875721) /* pi/4 */
# define M_1_PIf64 __f64 (0.318309886183790671537767526745028724) /* 1/pi */
# define M_2_PIf64 __f64 (0.636619772367581343075535053490057448) /* 2/pi */
# define M_2_SQRTPIf64 __f64 (1.128379167095512573896158903121545172) /* 2/sqrt(pi) */
# define M_SQRT2f64 __f64 (1.414213562373095048801688724209698079) /* sqrt(2) */
# define M_SQRT1_2f64 __f64 (0.707106781186547524400844362104849039) /* 1/sqrt(2) */
#endif
#if __HAVE_FLOAT128 && defined __USE_GNU
# define M_Ef128 __f128 (2.718281828459045235360287471352662498) /* e */
# define M_LOG2Ef128 __f128 (1.442695040888963407359924681001892137) /* log_2 e */
# define M_LOG10Ef128 __f128 (0.434294481903251827651128918916605082) /* log_10 e */
# define M_LN2f128 __f128 (0.693147180559945309417232121458176568) /* log_e 2 */
# define M_LN10f128 __f128 (2.302585092994045684017991454684364208) /* log_e 10 */
# define M_PIf128 __f128 (3.141592653589793238462643383279502884) /* pi */
# define M_PI_2f128 __f128 (1.570796326794896619231321691639751442) /* pi/2 */
# define M_PI_4f128 __f128 (0.785398163397448309615660845819875721) /* pi/4 */
# define M_1_PIf128 __f128 (0.318309886183790671537767526745028724) /* 1/pi */
# define M_2_PIf128 __f128 (0.636619772367581343075535053490057448) /* 2/pi */
# define M_2_SQRTPIf128 __f128 (1.128379167095512573896158903121545172) /* 2/sqrt(pi) */
# define M_SQRT2f128 __f128 (1.414213562373095048801688724209698079) /* sqrt(2) */
# define M_SQRT1_2f128 __f128 (0.707106781186547524400844362104849039) /* 1/sqrt(2) */
#endif
#if __HAVE_FLOAT32X && defined __USE_GNU
# define M_Ef32x __f32x (2.718281828459045235360287471352662498) /* e */
# define M_LOG2Ef32x __f32x (1.442695040888963407359924681001892137) /* log_2 e */
# define M_LOG10Ef32x __f32x (0.434294481903251827651128918916605082) /* log_10 e */
# define M_LN2f32x __f32x (0.693147180559945309417232121458176568) /* log_e 2 */
# define M_LN10f32x __f32x (2.302585092994045684017991454684364208) /* log_e 10 */
# define M_PIf32x __f32x (3.141592653589793238462643383279502884) /* pi */
# define M_PI_2f32x __f32x (1.570796326794896619231321691639751442) /* pi/2 */
# define M_PI_4f32x __f32x (0.785398163397448309615660845819875721) /* pi/4 */
# define M_1_PIf32x __f32x (0.318309886183790671537767526745028724) /* 1/pi */
# define M_2_PIf32x __f32x (0.636619772367581343075535053490057448) /* 2/pi */
# define M_2_SQRTPIf32x __f32x (1.128379167095512573896158903121545172) /* 2/sqrt(pi) */
# define M_SQRT2f32x __f32x (1.414213562373095048801688724209698079) /* sqrt(2) */
# define M_SQRT1_2f32x __f32x (0.707106781186547524400844362104849039) /* 1/sqrt(2) */
#endif
#if __HAVE_FLOAT64X && defined __USE_GNU
# define M_Ef64x __f64x (2.718281828459045235360287471352662498) /* e */
# define M_LOG2Ef64x __f64x (1.442695040888963407359924681001892137) /* log_2 e */
# define M_LOG10Ef64x __f64x (0.434294481903251827651128918916605082) /* log_10 e */
# define M_LN2f64x __f64x (0.693147180559945309417232121458176568) /* log_e 2 */
# define M_LN10f64x __f64x (2.302585092994045684017991454684364208) /* log_e 10 */
# define M_PIf64x __f64x (3.141592653589793238462643383279502884) /* pi */
# define M_PI_2f64x __f64x (1.570796326794896619231321691639751442) /* pi/2 */
# define M_PI_4f64x __f64x (0.785398163397448309615660845819875721) /* pi/4 */
# define M_1_PIf64x __f64x (0.318309886183790671537767526745028724) /* 1/pi */
# define M_2_PIf64x __f64x (0.636619772367581343075535053490057448) /* 2/pi */
# define M_2_SQRTPIf64x __f64x (1.128379167095512573896158903121545172) /* 2/sqrt(pi) */
# define M_SQRT2f64x __f64x (1.414213562373095048801688724209698079) /* sqrt(2) */
# define M_SQRT1_2f64x __f64x (0.707106781186547524400844362104849039) /* 1/sqrt(2) */
#endif
#if __HAVE_FLOAT128X && defined __USE_GNU
# error "M_* values needed for _Float128x"
#endif
/* When compiling in strict ISO C compatible mode we must not use the
inline functions since they, among other things, do not set the
`errno' variable correctly. */
#if defined __STRICT_ANSI__ && !defined __NO_MATH_INLINES
# define __NO_MATH_INLINES 1
#endif
#ifdef __USE_ISOC99
# if __GNUC_PREREQ (3, 1)
/* ISO C99 defines some macros to compare number while taking care for
unordered numbers. Many FPUs provide special instructions to support
these operations. Generic support in GCC for these as builtins went
in 2.97, but not all cpus added their patterns until 3.1. Therefore
we enable the builtins from 3.1 onwards and use a generic implementation
othwerwise. */
# define isgreater(x, y) __builtin_isgreater(x, y)
# define isgreaterequal(x, y) __builtin_isgreaterequal(x, y)
# define isless(x, y) __builtin_isless(x, y)
# define islessequal(x, y) __builtin_islessequal(x, y)
# define islessgreater(x, y) __builtin_islessgreater(x, y)
# define isunordered(x, y) __builtin_isunordered(x, y)
# else
# define isgreater(x, y) \
(__extension__ ({ __typeof__ (x) __x = (x); __typeof__ (y) __y = (y); \
!isunordered (__x, __y) && __x > __y; }))
# define isgreaterequal(x, y) \
(__extension__ ({ __typeof__ (x) __x = (x); __typeof__ (y) __y = (y); \
!isunordered (__x, __y) && __x >= __y; }))
# define isless(x, y) \
(__extension__ ({ __typeof__ (x) __x = (x); __typeof__ (y) __y = (y); \
!isunordered (__x, __y) && __x < __y; }))
# define islessequal(x, y) \
(__extension__ ({ __typeof__ (x) __x = (x); __typeof__ (y) __y = (y); \
!isunordered (__x, __y) && __x <= __y; }))
# define islessgreater(x, y) \
(__extension__ ({ __typeof__ (x) __x = (x); __typeof__ (y) __y = (y); \
!isunordered (__x, __y) && __x != __y; }))
/* isunordered must always check both operands first for signaling NaNs. */
# define isunordered(x, y) \
(__extension__ ({ __typeof__ (x) __u = (x); __typeof__ (y) __v = (y); \
__u != __v && (__u != __u || __v != __v); }))
# endif
#endif
/* Get machine-dependent inline versions (if there are any). */
#ifdef __USE_EXTERN_INLINES
# include <bits/mathinline.h>
#endif
/* Define special entry points to use when the compiler got told to
only expect finite results. */
#if defined __FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0
/* Include bits/math-finite.h for double. */
# define _Mdouble_ double
# define __MATH_DECLARING_DOUBLE 1
# define __MATH_DECLARING_FLOATN 0
# define __REDIRFROM_X(function, reentrant) \
function ## reentrant
# define __REDIRTO_X(function, reentrant) \
__ ## function ## reentrant ## _finite
# include <bits/math-finite.h>
# undef _Mdouble_
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
# undef __REDIRFROM_X
# undef __REDIRTO_X
/* When __USE_ISOC99 is defined, include math-finite for float and
long double, as well. */
# ifdef __USE_ISOC99
/* Include bits/math-finite.h for float. */
# define _Mdouble_ float
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 0
# define __REDIRFROM_X(function, reentrant) \
function ## f ## reentrant
# define __REDIRTO_X(function, reentrant) \
__ ## function ## f ## reentrant ## _finite
# include <bits/math-finite.h>
# undef _Mdouble_
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
# undef __REDIRFROM_X
# undef __REDIRTO_X
/* Include bits/math-finite.h for long double. */
# ifdef __MATH_DECLARE_LDOUBLE
# define _Mdouble_ long double
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 0
# define __REDIRFROM_X(function, reentrant) \
function ## l ## reentrant
# ifdef __NO_LONG_DOUBLE_MATH
# define __REDIRTO_X(function, reentrant) \
__ ## function ## reentrant ## _finite
# else
# define __REDIRTO_X(function, reentrant) \
__ ## function ## l ## reentrant ## _finite
# endif
# include <bits/math-finite.h>
# undef _Mdouble_
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
# undef __REDIRFROM_X
# undef __REDIRTO_X
# endif
# endif /* __USE_ISOC99. */
/* Include bits/math-finite.h for _FloatN and _FloatNx. */
# if (__HAVE_DISTINCT_FLOAT16 || (__HAVE_FLOAT16 && !defined _LIBC)) \
&& __GLIBC_USE (IEC_60559_TYPES_EXT)
# define _Mdouble_ _Float16
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 1
# define __REDIRFROM_X(function, reentrant) \
function ## f16 ## reentrant
# if __HAVE_DISTINCT_FLOAT16
# define __REDIRTO_X(function, reentrant) \
__ ## function ## f16 ## reentrant ## _finite
# else
# error "non-disinct _Float16"
# endif
# include <bits/math-finite.h>
# undef _Mdouble_
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
# undef __REDIRFROM_X
# undef __REDIRTO_X
# endif
# if (__HAVE_DISTINCT_FLOAT32 || (__HAVE_FLOAT32 && !defined _LIBC)) \
&& __GLIBC_USE (IEC_60559_TYPES_EXT)
# define _Mdouble_ _Float32
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 1
# define __REDIRFROM_X(function, reentrant) \
function ## f32 ## reentrant
# if __HAVE_DISTINCT_FLOAT32
# define __REDIRTO_X(function, reentrant) \
__ ## function ## f32 ## reentrant ## _finite
# else
# define __REDIRTO_X(function, reentrant) \
__ ## function ## f ## reentrant ## _finite
# endif
# include <bits/math-finite.h>
# undef _Mdouble_
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
# undef __REDIRFROM_X
# undef __REDIRTO_X
# endif
# if (__HAVE_DISTINCT_FLOAT64 || (__HAVE_FLOAT64 && !defined _LIBC)) \
&& __GLIBC_USE (IEC_60559_TYPES_EXT)
# define _Mdouble_ _Float64
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 1
# define __REDIRFROM_X(function, reentrant) \
function ## f64 ## reentrant
# if __HAVE_DISTINCT_FLOAT64
# define __REDIRTO_X(function, reentrant) \
__ ## function ## f64 ## reentrant ## _finite
# else
# define __REDIRTO_X(function, reentrant) \
__ ## function ## reentrant ## _finite
# endif
# include <bits/math-finite.h>
# undef _Mdouble_
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
# undef __REDIRFROM_X
# undef __REDIRTO_X
# endif
# if (__HAVE_DISTINCT_FLOAT128 || (__HAVE_FLOAT128 && !defined _LIBC)) \
&& __GLIBC_USE (IEC_60559_TYPES_EXT)
# define _Mdouble_ _Float128
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 1
# define __REDIRFROM_X(function, reentrant) \
function ## f128 ## reentrant
# if __HAVE_DISTINCT_FLOAT128
# define __REDIRTO_X(function, reentrant) \
__ ## function ## f128 ## reentrant ## _finite
# else
# define __REDIRTO_X(function, reentrant) \
__ ## function ## l ## reentrant ## _finite
# endif
# include <bits/math-finite.h>
# undef _Mdouble_
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
# undef __REDIRFROM_X
# undef __REDIRTO_X
# endif
# if (__HAVE_DISTINCT_FLOAT32X || (__HAVE_FLOAT32X && !defined _LIBC)) \
&& __GLIBC_USE (IEC_60559_TYPES_EXT)
# define _Mdouble_ _Float32x
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 1
# define __REDIRFROM_X(function, reentrant) \
function ## f32x ## reentrant
# if __HAVE_DISTINCT_FLOAT32X
# define __REDIRTO_X(function, reentrant) \
__ ## function ## f32x ## reentrant ## _finite
# else
# define __REDIRTO_X(function, reentrant) \
__ ## function ## reentrant ## _finite
# endif
# include <bits/math-finite.h>
# undef _Mdouble_
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
# undef __REDIRFROM_X
# undef __REDIRTO_X
# endif
# if (__HAVE_DISTINCT_FLOAT64X || (__HAVE_FLOAT64X && !defined _LIBC)) \
&& __GLIBC_USE (IEC_60559_TYPES_EXT)
# define _Mdouble_ _Float64x
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 1
# define __REDIRFROM_X(function, reentrant) \
function ## f64x ## reentrant
# if __HAVE_DISTINCT_FLOAT64X
# define __REDIRTO_X(function, reentrant) \
__ ## function ## f64x ## reentrant ## _finite
# elif __HAVE_FLOAT64X_LONG_DOUBLE
# define __REDIRTO_X(function, reentrant) \
__ ## function ## l ## reentrant ## _finite
# else
# define __REDIRTO_X(function, reentrant) \
__ ## function ## f128 ## reentrant ## _finite
# endif
# include <bits/math-finite.h>
# undef _Mdouble_
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
# undef __REDIRFROM_X
# undef __REDIRTO_X
# endif
# if (__HAVE_DISTINCT_FLOAT128X || (__HAVE_FLOAT128X && !defined _LIBC)) \
&& __GLIBC_USE (IEC_60559_TYPES_EXT)
# define _Mdouble_ _Float128x
# define __MATH_DECLARING_DOUBLE 0
# define __MATH_DECLARING_FLOATN 1
# define __REDIRFROM_X(function, reentrant) \
function ## f128x ## reentrant
# if __HAVE_DISTINCT_FLOAT128X
# define __REDIRTO_X(function, reentrant) \
__ ## function ## f128x ## reentrant ## _finite
# else
# error "non-disinct _Float128x"
# endif
# include <bits/math-finite.h>
# undef _Mdouble_
# undef __MATH_DECLARING_DOUBLE
# undef __MATH_DECLARING_FLOATN
# undef __REDIRFROM_X
# undef __REDIRTO_X
# endif
#endif /* __FINITE_MATH_ONLY__ > 0. */
#if __GLIBC_USE (IEC_60559_BFP_EXT)
/* An expression whose type has the widest of the evaluation formats
of X and Y (which are of floating-point types). */
# if __FLT_EVAL_METHOD__ == 2 || __FLT_EVAL_METHOD__ > 64
# define __MATH_EVAL_FMT2(x, y) ((x) + (y) + 0.0L)
# elif __FLT_EVAL_METHOD__ == 1 || __FLT_EVAL_METHOD__ > 32
# define __MATH_EVAL_FMT2(x, y) ((x) + (y) + 0.0)
# elif __FLT_EVAL_METHOD__ == 0 || __FLT_EVAL_METHOD__ == 32
# define __MATH_EVAL_FMT2(x, y) ((x) + (y) + 0.0f)
# else
# define __MATH_EVAL_FMT2(x, y) ((x) + (y))
# endif
/* Return X == Y but raising "invalid" and setting errno if X or Y is
a NaN. */
# if !defined __cplusplus || (__cplusplus < 201103L && !defined __GNUC__)
# define iseqsig(x, y) \
__MATH_TG (__MATH_EVAL_FMT2 (x, y), __iseqsig, ((x), (y)))
# else
/* In C++ mode, __MATH_TG cannot be used, because it relies on
__builtin_types_compatible_p, which is a C-only builtin. Moreover,
the comparison macros from ISO C take two floating-point arguments,
which need not have the same type. Choosing what underlying function
to call requires evaluating the formats of the arguments, then
selecting which is wider. The macro __MATH_EVAL_FMT2 provides this
information, however, only the type of the macro expansion is
relevant (actually evaluating the expression would be incorrect).
Thus, the type is used as a template parameter for __iseqsig_type,
which calls the appropriate underlying function. */
extern "C++" {
template<typename> struct __iseqsig_type;
template<> struct __iseqsig_type<float>
{
static int __call (float __x, float __y) throw ()
{
return __iseqsigf (__x, __y);
}
};
template<> struct __iseqsig_type<double>
{
static int __call (double __x, double __y) throw ()
{
return __iseqsig (__x, __y);
}
};
template<> struct __iseqsig_type<long double>
{
static int __call (double __x, double __y) throw ()
{
# ifndef __NO_LONG_DOUBLE_MATH
return __iseqsigl (__x, __y);
# else
return __iseqsig (__x, __y);
# endif
}
};
# if __HAVE_DISTINCT_FLOAT128
template<> struct __iseqsig_type<_Float128>
{
static int __call (_Float128 __x, _Float128 __y) throw ()
{
return __iseqsigf128 (__x, __y);
}
};
# endif
template<typename _T1, typename _T2>
inline int
iseqsig (_T1 __x, _T2 __y) throw ()
{
# if __cplusplus >= 201103L
typedef decltype (__MATH_EVAL_FMT2 (__x, __y)) _T3;
# else
typedef __typeof (__MATH_EVAL_FMT2 (__x, __y)) _T3;
# endif
return __iseqsig_type<_T3>::__call (__x, __y);
}
} /* extern "C++" */
# endif /* __cplusplus */
#endif
__END_DECLS
#endif /* math.h */
|