This file is indexed.

/usr/include/capnp/common.h is in libcapnp-dev 0.6.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

// This file contains types which are intended to help detect incorrect usage at compile
// time, but should then be optimized down to basic primitives (usually, integers) by the
// compiler.

#ifndef CAPNP_COMMON_H_
#define CAPNP_COMMON_H_

#if defined(__GNUC__) && !defined(CAPNP_HEADER_WARNINGS)
#pragma GCC system_header
#endif

#include <inttypes.h>
#include <kj/string.h>
#include <kj/memory.h>

#if CAPNP_DEBUG_TYPES
#include <kj/units.h>
#endif

namespace capnp {

#define CAPNP_VERSION_MAJOR 0
#define CAPNP_VERSION_MINOR 6
#define CAPNP_VERSION_MICRO 1

#define CAPNP_VERSION \
  (CAPNP_VERSION_MAJOR * 1000000 + CAPNP_VERSION_MINOR * 1000 + CAPNP_VERSION_MICRO)

#ifndef CAPNP_LITE
#define CAPNP_LITE 0
#endif

typedef unsigned int uint;

struct Void {
  // Type used for Void fields.  Using C++'s "void" type creates a bunch of issues since it behaves
  // differently from other types.

  inline constexpr bool operator==(Void other) const { return true; }
  inline constexpr bool operator!=(Void other) const { return false; }
};

static constexpr Void VOID = Void();
// Constant value for `Void`,  which is an empty struct.

inline kj::StringPtr KJ_STRINGIFY(Void) { return "void"; }

struct Text;
struct Data;

enum class Kind: uint8_t {
  PRIMITIVE,
  BLOB,
  ENUM,
  STRUCT,
  UNION,
  INTERFACE,
  LIST,

  OTHER
  // Some other type which is often a type parameter to Cap'n Proto templates, but which needs
  // special handling. This includes types like AnyPointer, Dynamic*, etc.
};

enum class Style: uint8_t {
  PRIMITIVE,
  POINTER,      // other than struct
  STRUCT,
  CAPABILITY
};

enum class ElementSize: uint8_t {
  // Size of a list element.

  VOID = 0,
  BIT = 1,
  BYTE = 2,
  TWO_BYTES = 3,
  FOUR_BYTES = 4,
  EIGHT_BYTES = 5,

  POINTER = 6,

  INLINE_COMPOSITE = 7
};

enum class PointerType {
  // Various wire types a pointer field can take

  NULL_,
  // Should be NULL, but that's #defined in stddef.h

  STRUCT,
  LIST,
  CAPABILITY
};

namespace schemas {

template <typename T>
struct EnumInfo;

}  // namespace schemas

namespace _ {  // private

template <typename T, typename = void> struct Kind_;

template <> struct Kind_<Void> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<bool> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int8_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int16_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int32_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int64_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint8_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint16_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint32_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint64_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<float> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<double> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<Text> { static constexpr Kind kind = Kind::BLOB; };
template <> struct Kind_<Data> { static constexpr Kind kind = Kind::BLOB; };

template <typename T> struct Kind_<T, kj::VoidSfinae<typename T::_capnpPrivate::IsStruct>> {
  static constexpr Kind kind = Kind::STRUCT;
};
template <typename T> struct Kind_<T, kj::VoidSfinae<typename T::_capnpPrivate::IsInterface>> {
  static constexpr Kind kind = Kind::INTERFACE;
};
template <typename T> struct Kind_<T, kj::VoidSfinae<typename schemas::EnumInfo<T>::IsEnum>> {
  static constexpr Kind kind = Kind::ENUM;
};

}  // namespace _ (private)

template <typename T, Kind k = _::Kind_<T>::kind>
inline constexpr Kind kind() {
  // This overload of kind() matches types which have a Kind_ specialization.

  return k;
}

#if _MSC_VER

#define CAPNP_KIND(T) ::capnp::_::Kind_<T>::kind
// Avoid constexpr methods in MSVC (it remains buggy in many situations).

#else  // _MSC_VER

#define CAPNP_KIND(T) ::capnp::kind<T>()
// Use this macro rather than kind<T>() in any code which must work in MSVC.

#endif  // _MSC_VER, else

#if !CAPNP_LITE

template <typename T, Kind k = kind<T>()>
inline constexpr Style style() {
  return k == Kind::PRIMITIVE || k == Kind::ENUM ? Style::PRIMITIVE
       : k == Kind::STRUCT ? Style::STRUCT
       : k == Kind::INTERFACE ? Style::CAPABILITY : Style::POINTER;
}

#endif  // !CAPNP_LITE

template <typename T, Kind k = CAPNP_KIND(T)>
struct List;

#if _MSC_VER

template <typename T, Kind k>
struct List {};
// For some reason, without this declaration, MSVC will error out on some uses of List
// claiming that "T" -- as used in the default initializer for the second template param, "k" --
// is not defined. I do not understand this error, but adding this empty default declaration fixes
// it.

#endif

template <typename T> struct ListElementType_;
template <typename T> struct ListElementType_<List<T>> { typedef T Type; };
template <typename T> using ListElementType = typename ListElementType_<T>::Type;

namespace _ {  // private
template <typename T, Kind k> struct Kind_<List<T, k>> {
  static constexpr Kind kind = Kind::LIST;
};
}  // namespace _ (private)

template <typename T, Kind k = CAPNP_KIND(T)> struct ReaderFor_ { typedef typename T::Reader Type; };
template <typename T> struct ReaderFor_<T, Kind::PRIMITIVE> { typedef T Type; };
template <typename T> struct ReaderFor_<T, Kind::ENUM> { typedef T Type; };
template <typename T> struct ReaderFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
template <typename T> using ReaderFor = typename ReaderFor_<T>::Type;
// The type returned by List<T>::Reader::operator[].

template <typename T, Kind k = CAPNP_KIND(T)> struct BuilderFor_ { typedef typename T::Builder Type; };
template <typename T> struct BuilderFor_<T, Kind::PRIMITIVE> { typedef T Type; };
template <typename T> struct BuilderFor_<T, Kind::ENUM> { typedef T Type; };
template <typename T> struct BuilderFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
template <typename T> using BuilderFor = typename BuilderFor_<T>::Type;
// The type returned by List<T>::Builder::operator[].

template <typename T, Kind k = CAPNP_KIND(T)> struct PipelineFor_ { typedef typename T::Pipeline Type;};
template <typename T> struct PipelineFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
template <typename T> using PipelineFor = typename PipelineFor_<T>::Type;

template <typename T, Kind k = CAPNP_KIND(T)> struct TypeIfEnum_;
template <typename T> struct TypeIfEnum_<T, Kind::ENUM> { typedef T Type; };

template <typename T>
using TypeIfEnum = typename TypeIfEnum_<kj::Decay<T>>::Type;

template <typename T>
using FromReader = typename kj::Decay<T>::Reads;
// FromReader<MyType::Reader> = MyType (for any Cap'n Proto type).

template <typename T>
using FromBuilder = typename kj::Decay<T>::Builds;
// FromBuilder<MyType::Builder> = MyType (for any Cap'n Proto type).

template <typename T>
using FromPipeline = typename kj::Decay<T>::Pipelines;
// FromBuilder<MyType::Pipeline> = MyType (for any Cap'n Proto type).

template <typename T>
using FromClient = typename kj::Decay<T>::Calls;
// FromReader<MyType::Client> = MyType (for any Cap'n Proto interface type).

template <typename T>
using FromServer = typename kj::Decay<T>::Serves;
// FromBuilder<MyType::Server> = MyType (for any Cap'n Proto interface type).

template <typename T, typename = void>
struct FromAny_;

template <typename T>
struct FromAny_<T, kj::VoidSfinae<FromReader<T>>> {
  using Type = FromReader<T>;
};

template <typename T>
struct FromAny_<T, kj::VoidSfinae<FromBuilder<T>>> {
  using Type = FromBuilder<T>;
};

template <typename T>
struct FromAny_<T, kj::VoidSfinae<FromPipeline<T>>> {
  using Type = FromPipeline<T>;
};

// Note that T::Client is covered by FromReader

template <typename T>
struct FromAny_<kj::Own<T>, kj::VoidSfinae<FromServer<T>>> {
  using Type = FromServer<T>;
};

template <typename T>
struct FromAny_<T,
    kj::EnableIf<_::Kind_<T>::kind == Kind::PRIMITIVE || _::Kind_<T>::kind == Kind::ENUM>> {
  // TODO(msvc): Ideally the EnableIf condition would be `style<T>() == Style::PRIMITIVE`, but MSVC
  // cannot yet use style<T>() in this constexpr context.

  using Type = kj::Decay<T>;
};

template <typename T>
using FromAny = typename FromAny_<T>::Type;
// Given any Cap'n Proto value type as an input, return the Cap'n Proto base type. That is:
//
//     Foo::Reader -> Foo
//     Foo::Builder -> Foo
//     Foo::Pipeline -> Foo
//     Foo::Client -> Foo
//     Own<Foo::Server> -> Foo
//     uint32_t -> uint32_t

namespace _ {  // private

template <typename T, Kind k = CAPNP_KIND(T)>
struct PointerHelpers;

#if _MSC_VER

template <typename T, Kind k>
struct PointerHelpers {};
// For some reason, without this declaration, MSVC will error out on some uses of PointerHelpers
// claiming that "T" -- as used in the default initializer for the second template param, "k" --
// is not defined. I do not understand this error, but adding this empty default declaration fixes
// it.

#endif

}  // namespace _ (private)

struct MessageSize {
  // Size of a message.  Every struct type has a method `.totalSize()` that returns this.
  uint64_t wordCount;
  uint capCount;
};

// =======================================================================================
// Raw memory types and measures

using kj::byte;

class word { uint64_t content KJ_UNUSED_MEMBER; KJ_DISALLOW_COPY(word); public: word() = default; };
// word is an opaque type with size of 64 bits.  This type is useful only to make pointer
// arithmetic clearer.  Since the contents are private, the only way to access them is to first
// reinterpret_cast to some other pointer type.
//
// Copying is disallowed because you should always use memcpy().  Otherwise, you may run afoul of
// aliasing rules.
//
// A pointer of type word* should always be word-aligned even if won't actually be dereferenced as
// that type.

static_assert(sizeof(byte) == 1, "uint8_t is not one byte?");
static_assert(sizeof(word) == 8, "uint64_t is not 8 bytes?");

#if CAPNP_DEBUG_TYPES
// Set CAPNP_DEBUG_TYPES to 1 to use kj::Quantity for "count" types.  Otherwise, plain integers are
// used.  All the code should still operate exactly the same, we just lose compile-time checking.
// Note that this will also change symbol names, so it's important that the library and any clients
// be compiled with the same setting here.
//
// We disable this by default to reduce symbol name size and avoid any possibility of the compiler
// failing to fully-optimize the types, but anyone modifying Cap'n Proto itself should enable this
// during development and testing.

namespace _ { class BitLabel; class ElementLabel; struct WirePointer; }

template <uint width, typename T = uint>
using BitCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, _::BitLabel>;
template <uint width, typename T = uint>
using ByteCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, byte>;
template <uint width, typename T = uint>
using WordCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, word>;
template <uint width, typename T = uint>
using ElementCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, _::ElementLabel>;
template <uint width, typename T = uint>
using WirePointerCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, _::WirePointer>;

typedef BitCountN<8, uint8_t> BitCount8;
typedef BitCountN<16, uint16_t> BitCount16;
typedef BitCountN<32, uint32_t> BitCount32;
typedef BitCountN<64, uint64_t> BitCount64;
typedef BitCountN<sizeof(uint) * 8, uint> BitCount;

typedef ByteCountN<8, uint8_t> ByteCount8;
typedef ByteCountN<16, uint16_t> ByteCount16;
typedef ByteCountN<32, uint32_t> ByteCount32;
typedef ByteCountN<64, uint64_t> ByteCount64;
typedef ByteCountN<sizeof(uint) * 8, uint> ByteCount;

typedef WordCountN<8, uint8_t> WordCount8;
typedef WordCountN<16, uint16_t> WordCount16;
typedef WordCountN<32, uint32_t> WordCount32;
typedef WordCountN<64, uint64_t> WordCount64;
typedef WordCountN<sizeof(uint) * 8, uint> WordCount;

typedef ElementCountN<8, uint8_t> ElementCount8;
typedef ElementCountN<16, uint16_t> ElementCount16;
typedef ElementCountN<32, uint32_t> ElementCount32;
typedef ElementCountN<64, uint64_t> ElementCount64;
typedef ElementCountN<sizeof(uint) * 8, uint> ElementCount;

typedef WirePointerCountN<8, uint8_t> WirePointerCount8;
typedef WirePointerCountN<16, uint16_t> WirePointerCount16;
typedef WirePointerCountN<32, uint32_t> WirePointerCount32;
typedef WirePointerCountN<64, uint64_t> WirePointerCount64;
typedef WirePointerCountN<sizeof(uint) * 8, uint> WirePointerCount;

template <uint width>
using BitsPerElementN = decltype(BitCountN<width>() / ElementCountN<width>());
template <uint width>
using BytesPerElementN = decltype(ByteCountN<width>() / ElementCountN<width>());
template <uint width>
using WordsPerElementN = decltype(WordCountN<width>() / ElementCountN<width>());
template <uint width>
using PointersPerElementN = decltype(WirePointerCountN<width>() / ElementCountN<width>());

using kj::bounded;
using kj::unbound;
using kj::unboundAs;
using kj::unboundMax;
using kj::unboundMaxBits;
using kj::assertMax;
using kj::assertMaxBits;
using kj::upgradeBound;
using kj::ThrowOverflow;
using kj::assumeBits;
using kj::assumeMax;
using kj::subtractChecked;
using kj::trySubtract;

template <typename T, typename U>
inline constexpr U* operator+(U* ptr, kj::Quantity<T, U> offset) {
  return ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>());
}
template <typename T, typename U>
inline constexpr const U* operator+(const U* ptr, kj::Quantity<T, U> offset) {
  return ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>());
}
template <typename T, typename U>
inline constexpr U* operator+=(U*& ptr, kj::Quantity<T, U> offset) {
  return ptr = ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>());
}
template <typename T, typename U>
inline constexpr const U* operator+=(const U*& ptr, kj::Quantity<T, U> offset) {
  return ptr = ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>());
}

template <typename T, typename U>
inline constexpr U* operator-(U* ptr, kj::Quantity<T, U> offset) {
  return ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>());
}
template <typename T, typename U>
inline constexpr const U* operator-(const U* ptr, kj::Quantity<T, U> offset) {
  return ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>());
}
template <typename T, typename U>
inline constexpr U* operator-=(U*& ptr, kj::Quantity<T, U> offset) {
  return ptr = ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>());
}
template <typename T, typename U>
inline constexpr const U* operator-=(const U*& ptr, kj::Quantity<T, U> offset) {
  return ptr = ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>());
}

constexpr auto BITS = kj::unit<BitCountN<1>>();
constexpr auto BYTES = kj::unit<ByteCountN<1>>();
constexpr auto WORDS = kj::unit<WordCountN<1>>();
constexpr auto ELEMENTS = kj::unit<ElementCountN<1>>();
constexpr auto POINTERS = kj::unit<WirePointerCountN<1>>();

constexpr auto ZERO = kj::bounded<0>();
constexpr auto ONE = kj::bounded<1>();

// GCC 4.7 actually gives unused warnings on these constants in opt mode...
constexpr auto BITS_PER_BYTE KJ_UNUSED = bounded<8>() * BITS / BYTES;
constexpr auto BITS_PER_WORD KJ_UNUSED = bounded<64>() * BITS / WORDS;
constexpr auto BYTES_PER_WORD KJ_UNUSED = bounded<8>() * BYTES / WORDS;

constexpr auto BITS_PER_POINTER KJ_UNUSED = bounded<64>() * BITS / POINTERS;
constexpr auto BYTES_PER_POINTER KJ_UNUSED = bounded<8>() * BYTES / POINTERS;
constexpr auto WORDS_PER_POINTER KJ_UNUSED = ONE * WORDS / POINTERS;

constexpr auto POINTER_SIZE_IN_WORDS = ONE * POINTERS * WORDS_PER_POINTER;

constexpr uint SEGMENT_WORD_COUNT_BITS = 29;      // Number of words in a segment.
constexpr uint LIST_ELEMENT_COUNT_BITS = 29;      // Number of elements in a list.
constexpr uint STRUCT_DATA_WORD_COUNT_BITS = 16;  // Number of words in a Struct data section.
constexpr uint STRUCT_POINTER_COUNT_BITS = 16;    // Number of pointers in a Struct pointer section.
constexpr uint BLOB_SIZE_BITS = 29;               // Number of bytes in a blob.

typedef WordCountN<SEGMENT_WORD_COUNT_BITS> SegmentWordCount;
typedef ElementCountN<LIST_ELEMENT_COUNT_BITS> ListElementCount;
typedef WordCountN<STRUCT_DATA_WORD_COUNT_BITS, uint16_t> StructDataWordCount;
typedef WirePointerCountN<STRUCT_POINTER_COUNT_BITS, uint16_t> StructPointerCount;
typedef ByteCountN<BLOB_SIZE_BITS> BlobSize;

constexpr auto MAX_SEGMENT_WORDS =
    bounded<kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>()>() * WORDS;
constexpr auto MAX_LIST_ELEMENTS =
    bounded<kj::maxValueForBits<LIST_ELEMENT_COUNT_BITS>()>() * ELEMENTS;
constexpr auto MAX_STUCT_DATA_WORDS =
    bounded<kj::maxValueForBits<STRUCT_DATA_WORD_COUNT_BITS>()>() * WORDS;
constexpr auto MAX_STRUCT_POINTER_COUNT =
    bounded<kj::maxValueForBits<STRUCT_POINTER_COUNT_BITS>()>() * POINTERS;

using StructDataBitCount = decltype(WordCountN<STRUCT_POINTER_COUNT_BITS>() * BITS_PER_WORD);
// Number of bits in a Struct data segment (should come out to BitCountN<22>).

using StructDataOffset = decltype(StructDataBitCount() * (ONE * ELEMENTS / BITS));
using StructPointerOffset = StructPointerCount;
// Type of a field offset.

inline StructDataOffset assumeDataOffset(uint32_t offset) {
  return assumeMax(MAX_STUCT_DATA_WORDS * BITS_PER_WORD * (ONE * ELEMENTS / BITS),
                   bounded(offset) * ELEMENTS);
}

inline StructPointerOffset assumePointerOffset(uint32_t offset) {
  return assumeMax(MAX_STRUCT_POINTER_COUNT, bounded(offset) * POINTERS);
}

constexpr uint MAX_TEXT_SIZE = kj::maxValueForBits<BLOB_SIZE_BITS>() - 1;
typedef kj::Quantity<kj::Bounded<MAX_TEXT_SIZE, uint>, byte> TextSize;
// Not including NUL terminator.

template <typename T>
inline KJ_CONSTEXPR() decltype(bounded<sizeof(T)>() * BYTES / ELEMENTS) bytesPerElement() {
  return bounded<sizeof(T)>() * BYTES / ELEMENTS;
}

template <typename T>
inline KJ_CONSTEXPR() decltype(bounded<sizeof(T) * 8>() * BITS / ELEMENTS) bitsPerElement() {
  return bounded<sizeof(T) * 8>() * BITS / ELEMENTS;
}

template <typename T, uint maxN>
inline constexpr kj::Quantity<kj::Bounded<maxN, size_t>, T>
intervalLength(const T* a, const T* b, kj::Quantity<kj::BoundedConst<maxN>, T>) {
  return kj::assumeMax<maxN>(b - a) * kj::unit<kj::Quantity<kj::BoundedConst<1u>, T>>();
}

template <typename T, typename U>
inline constexpr kj::ArrayPtr<const U> arrayPtr(const U* ptr, kj::Quantity<T, U> size) {
  return kj::ArrayPtr<const U>(ptr, unbound(size / kj::unit<kj::Quantity<T, U>>()));
}
template <typename T, typename U>
inline constexpr kj::ArrayPtr<U> arrayPtr(U* ptr, kj::Quantity<T, U> size) {
  return kj::ArrayPtr<U>(ptr, unbound(size / kj::unit<kj::Quantity<T, U>>()));
}

#else

template <uint width, typename T = uint>
using BitCountN = T;
template <uint width, typename T = uint>
using ByteCountN = T;
template <uint width, typename T = uint>
using WordCountN = T;
template <uint width, typename T = uint>
using ElementCountN = T;
template <uint width, typename T = uint>
using WirePointerCountN = T;


// XXX
typedef BitCountN<8, uint8_t> BitCount8;
typedef BitCountN<16, uint16_t> BitCount16;
typedef BitCountN<32, uint32_t> BitCount32;
typedef BitCountN<64, uint64_t> BitCount64;
typedef BitCountN<sizeof(uint) * 8, uint> BitCount;

typedef ByteCountN<8, uint8_t> ByteCount8;
typedef ByteCountN<16, uint16_t> ByteCount16;
typedef ByteCountN<32, uint32_t> ByteCount32;
typedef ByteCountN<64, uint64_t> ByteCount64;
typedef ByteCountN<sizeof(uint) * 8, uint> ByteCount;

typedef WordCountN<8, uint8_t> WordCount8;
typedef WordCountN<16, uint16_t> WordCount16;
typedef WordCountN<32, uint32_t> WordCount32;
typedef WordCountN<64, uint64_t> WordCount64;
typedef WordCountN<sizeof(uint) * 8, uint> WordCount;

typedef ElementCountN<8, uint8_t> ElementCount8;
typedef ElementCountN<16, uint16_t> ElementCount16;
typedef ElementCountN<32, uint32_t> ElementCount32;
typedef ElementCountN<64, uint64_t> ElementCount64;
typedef ElementCountN<sizeof(uint) * 8, uint> ElementCount;

typedef WirePointerCountN<8, uint8_t> WirePointerCount8;
typedef WirePointerCountN<16, uint16_t> WirePointerCount16;
typedef WirePointerCountN<32, uint32_t> WirePointerCount32;
typedef WirePointerCountN<64, uint64_t> WirePointerCount64;
typedef WirePointerCountN<sizeof(uint) * 8, uint> WirePointerCount;

template <uint width>
using BitsPerElementN = decltype(BitCountN<width>() / ElementCountN<width>());
template <uint width>
using BytesPerElementN = decltype(ByteCountN<width>() / ElementCountN<width>());
template <uint width>
using WordsPerElementN = decltype(WordCountN<width>() / ElementCountN<width>());
template <uint width>
using PointersPerElementN = decltype(WirePointerCountN<width>() / ElementCountN<width>());

using kj::ThrowOverflow;
// YYY

template <uint i> inline constexpr uint bounded() { return i; }
template <typename T> inline constexpr T bounded(T i) { return i; }
template <typename T> inline constexpr T unbound(T i) { return i; }

template <typename T, typename U> inline constexpr T unboundAs(U i) { return i; }

template <uint64_t requestedMax, typename T> inline constexpr uint unboundMax(T i) { return i; }
template <uint bits, typename T> inline constexpr uint unboundMaxBits(T i) { return i; }

template <uint newMax, typename T, typename ErrorFunc>
inline T assertMax(T value, ErrorFunc&& func) {
  if (KJ_UNLIKELY(value > newMax)) func();
  return value;
}

template <typename T, typename ErrorFunc>
inline T assertMax(uint newMax, T value, ErrorFunc&& func) {
  if (KJ_UNLIKELY(value > newMax)) func();
  return value;
}

template <uint bits, typename T, typename ErrorFunc = ThrowOverflow>
inline T assertMaxBits(T value, ErrorFunc&& func = ErrorFunc()) {
  if (KJ_UNLIKELY(value > kj::maxValueForBits<bits>())) func();
  return value;
}

template <typename T, typename ErrorFunc = ThrowOverflow>
inline T assertMaxBits(uint bits, T value, ErrorFunc&& func = ErrorFunc()) {
  if (KJ_UNLIKELY(value > (1ull << bits) - 1)) func();
  return value;
}

template <typename T, typename U> inline constexpr T upgradeBound(U i) { return i; }

template <uint bits, typename T> inline constexpr T assumeBits(T i) { return i; }
template <uint64_t max, typename T> inline constexpr T assumeMax(T i) { return i; }

template <typename T, typename U, typename ErrorFunc = ThrowOverflow>
inline auto subtractChecked(T a, U b, ErrorFunc&& errorFunc = ErrorFunc())
    -> decltype(a - b) {
  if (b > a) errorFunc();
  return a - b;
}

template <typename T, typename U>
inline auto trySubtract(T a, U b) -> kj::Maybe<decltype(a - b)> {
  if (b > a) {
    return nullptr;
  } else {
    return a - b;
  }
}

constexpr uint BITS = 1;
constexpr uint BYTES = 1;
constexpr uint WORDS = 1;
constexpr uint ELEMENTS = 1;
constexpr uint POINTERS = 1;

constexpr uint ZERO = 0;
constexpr uint ONE = 1;

// GCC 4.7 actually gives unused warnings on these constants in opt mode...
constexpr uint BITS_PER_BYTE KJ_UNUSED = 8;
constexpr uint BITS_PER_WORD KJ_UNUSED = 64;
constexpr uint BYTES_PER_WORD KJ_UNUSED = 8;

constexpr uint BITS_PER_POINTER KJ_UNUSED = 64;
constexpr uint BYTES_PER_POINTER KJ_UNUSED = 8;
constexpr uint WORDS_PER_POINTER KJ_UNUSED = 1;

// XXX
constexpr uint POINTER_SIZE_IN_WORDS = ONE * POINTERS * WORDS_PER_POINTER;

constexpr uint SEGMENT_WORD_COUNT_BITS = 29;      // Number of words in a segment.
constexpr uint LIST_ELEMENT_COUNT_BITS = 29;      // Number of elements in a list.
constexpr uint STRUCT_DATA_WORD_COUNT_BITS = 16;  // Number of words in a Struct data section.
constexpr uint STRUCT_POINTER_COUNT_BITS = 16;    // Number of pointers in a Struct pointer section.
constexpr uint BLOB_SIZE_BITS = 29;               // Number of bytes in a blob.

typedef WordCountN<SEGMENT_WORD_COUNT_BITS> SegmentWordCount;
typedef ElementCountN<LIST_ELEMENT_COUNT_BITS> ListElementCount;
typedef WordCountN<STRUCT_DATA_WORD_COUNT_BITS, uint16_t> StructDataWordCount;
typedef WirePointerCountN<STRUCT_POINTER_COUNT_BITS, uint16_t> StructPointerCount;
typedef ByteCountN<BLOB_SIZE_BITS> BlobSize;
// YYY

constexpr auto MAX_SEGMENT_WORDS = kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>();
constexpr auto MAX_LIST_ELEMENTS = kj::maxValueForBits<LIST_ELEMENT_COUNT_BITS>();
constexpr auto MAX_STUCT_DATA_WORDS = kj::maxValueForBits<STRUCT_DATA_WORD_COUNT_BITS>();
constexpr auto MAX_STRUCT_POINTER_COUNT = kj::maxValueForBits<STRUCT_POINTER_COUNT_BITS>();

typedef uint StructDataBitCount;
typedef uint StructDataOffset;
typedef uint StructPointerOffset;

inline StructDataOffset assumeDataOffset(uint32_t offset) { return offset; }
inline StructPointerOffset assumePointerOffset(uint32_t offset) { return offset; }

constexpr uint MAX_TEXT_SIZE = kj::maxValueForBits<BLOB_SIZE_BITS>() - 1;
typedef uint TextSize;

template <typename T>
inline KJ_CONSTEXPR() size_t bytesPerElement() { return sizeof(T); }

template <typename T>
inline KJ_CONSTEXPR() size_t bitsPerElement() { return sizeof(T) * 8; }

template <typename T>
inline constexpr ptrdiff_t intervalLength(const T* a, const T* b, uint) {
  return b - a;
}

template <typename T, typename U>
inline constexpr kj::ArrayPtr<const U> arrayPtr(const U* ptr, T size) {
  return kj::arrayPtr(ptr, size);
}
template <typename T, typename U>
inline constexpr kj::ArrayPtr<U> arrayPtr(U* ptr, T size) {
  return kj::arrayPtr(ptr, size);
}

#endif

}  // namespace capnp

#endif  // CAPNP_COMMON_H_