This file is indexed.

/usr/include/capnp/orphan.h is in libcapnp-dev 0.6.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

#ifndef CAPNP_ORPHAN_H_
#define CAPNP_ORPHAN_H_

#if defined(__GNUC__) && !defined(CAPNP_HEADER_WARNINGS)
#pragma GCC system_header
#endif

#include "layout.h"

namespace capnp {

class StructSchema;
class ListSchema;
struct DynamicStruct;
struct DynamicList;
namespace _ { struct OrphanageInternal; }

template <typename T>
class Orphan {
  // Represents an object which is allocated within some message builder but has no pointers
  // pointing at it.  An Orphan can later be "adopted" by some other object as one of that object's
  // fields, without having to copy the orphan.  For a field `foo` of pointer type, the generated
  // code will define builder methods `void adoptFoo(Orphan<T>)` and `Orphan<T> disownFoo()`.
  // Orphans can also be created independently of any parent using an Orphanage.
  //
  // `Orphan<T>` can be moved but not copied, like `Own<T>`, so that it is impossible for one
  // orphan to be adopted multiple times.  If an orphan is destroyed without being adopted, its
  // contents are zero'd out (and possibly reused, if we ever implement the ability to reuse space
  // in a message arena).

public:
  Orphan() = default;
  KJ_DISALLOW_COPY(Orphan);
  Orphan(Orphan&&) = default;
  Orphan& operator=(Orphan&&) = default;
  inline Orphan(_::OrphanBuilder&& builder): builder(kj::mv(builder)) {}

  inline BuilderFor<T> get();
  // Get the underlying builder.  If the orphan is null, this will allocate and return a default
  // object rather than crash.  This is done for security -- otherwise, you might enable a DoS
  // attack any time you disown a field and fail to check if it is null.  In the case of structs,
  // this means that the orphan is no longer null after get() returns.  In the case of lists,
  // no actual object is allocated since a simple empty ListBuilder can be returned.

  inline ReaderFor<T> getReader() const;

  inline bool operator==(decltype(nullptr)) const { return builder == nullptr; }
  inline bool operator!=(decltype(nullptr)) const { return builder != nullptr; }

  inline void truncate(uint size);
  // Resize an object (which must be a list or a blob) to the given size.
  //
  // If the new size is less than the original, the remaining elements will be discarded. The
  // list is never moved in this case. If the list happens to be located at the end of its segment
  // (which is always true if the list was the last thing allocated), the removed memory will be
  // reclaimed (reducing the messag size), otherwise it is simply zeroed. The reclaiming behavior
  // is particularly useful for allocating buffer space when you aren't sure how much space you
  // actually need: you can pre-allocate, say, a 4k byte array, read() from a file into it, and
  // then truncate it back to the amount of space actually used.
  //
  // If the new size is greater than the original, the list is extended with default values. If
  // the list is the last object in its segment *and* there is enough space left in the segment to
  // extend it to cover the new values, then the list is extended in-place. Otherwise, it must be
  // moved to a new location, leaving a zero'd hole in the previous space that won't be filled.
  // This copy is shallow; sub-objects will simply be reparented, not copied.
  //
  // Any existing readers or builders pointing at the object are invalidated by this call (even if
  // it doesn't move). You must call `get()` or `getReader()` again to get the new, valid pointer.

private:
  _::OrphanBuilder builder;

  template <typename, Kind>
  friend struct _::PointerHelpers;
  template <typename, Kind>
  friend struct List;
  template <typename U>
  friend class Orphan;
  friend class Orphanage;
  friend class MessageBuilder;
};

class Orphanage: private kj::DisallowConstCopy {
  // Use to directly allocate Orphan objects, without having a parent object allocate and then
  // disown the object.

public:
  inline Orphanage(): arena(nullptr) {}

  template <typename BuilderType>
  static Orphanage getForMessageContaining(BuilderType builder);
  // Construct an Orphanage that allocates within the message containing the given Builder.  This
  // allows the constructed Orphans to be adopted by objects within said message.
  //
  // This constructor takes the builder rather than having the builder have a getOrphanage() method
  // because this is an advanced feature and we don't want to pollute the builder APIs with it.
  //
  // Note that if you have a direct pointer to the `MessageBuilder`, you can simply call its
  // `getOrphanage()` method.

  template <typename RootType>
  Orphan<RootType> newOrphan() const;
  // Allocate a new orphaned struct.

  template <typename RootType>
  Orphan<RootType> newOrphan(uint size) const;
  // Allocate a new orphaned list or blob.

  Orphan<DynamicStruct> newOrphan(StructSchema schema) const;
  // Dynamically create an orphan struct with the given schema.  You must
  // #include <capnp/dynamic.h> to use this.

  Orphan<DynamicList> newOrphan(ListSchema schema, uint size) const;
  // Dynamically create an orphan list with the given schema.  You must #include <capnp/dynamic.h>
  // to use this.

  template <typename Reader>
  Orphan<FromReader<Reader>> newOrphanCopy(Reader copyFrom) const;
  // Allocate a new orphaned object (struct, list, or blob) and initialize it as a copy of the
  // given object.

  template <typename T>
  Orphan<List<ListElementType<FromReader<T>>>> newOrphanConcat(kj::ArrayPtr<T> lists) const;
  template <typename T>
  Orphan<List<ListElementType<FromReader<T>>>> newOrphanConcat(kj::ArrayPtr<const T> lists) const;
  // Given an array of List readers, copy and concatenate the lists, creating a new Orphan.
  //
  // Note that compared to allocating the list yourself and using `setWithCaveats()` to set each
  // item, this method avoids the "caveats": the new list will be allocated with the element size
  // being the maximum of that from all the input lists. This is particularly important when
  // concatenating struct lists: if the lists were created using a newer version of the protocol
  // in which some new fields had been added to the struct, using `setWithCaveats()` would
  // truncate off those new fields.

  Orphan<Data> referenceExternalData(Data::Reader data) const;
  // Creates an Orphan<Data> that points at an existing region of memory (e.g. from another message)
  // without copying it.  There are some SEVERE restrictions on how this can be used:
  // - The memory must remain valid until the `MessageBuilder` is destroyed (even if the orphan is
  //   abandoned).
  // - Because the data is const, you will not be allowed to obtain a `Data::Builder`
  //   for this blob.  Any call which would return such a builder will throw an exception.  You
  //   can, however, obtain a Reader, e.g. via orphan.getReader() or from a parent Reader (once
  //   the orphan is adopted).  It is your responsibility to make sure your code can deal with
  //   these problems when using this optimization; if you can't, allocate a copy instead.
  // - `data.begin()` must be aligned to a machine word boundary (32-bit or 64-bit depending on
  //   the CPU).  Any pointer returned by malloc() as well as any data blob obtained from another
  //   Cap'n Proto message satisfies this.
  // - If `data.size()` is not a multiple of 8, extra bytes past data.end() up until the next 8-byte
  //   boundary will be visible in the raw message when it is written out.  Thus, there must be no
  //   secrets in these bytes.  Data blobs obtained from other Cap'n Proto messages should be safe
  //   as these bytes should be zero (unless the sender had the same problem).
  //
  // The array will actually become one of the message's segments.  The data can thus be adopted
  // into the message tree without copying it.  This is particularly useful when referencing very
  // large blobs, such as whole mmap'd files.

private:
  _::BuilderArena* arena;
  _::CapTableBuilder* capTable;

  inline explicit Orphanage(_::BuilderArena* arena, _::CapTableBuilder* capTable)
      : arena(arena), capTable(capTable) {}

  template <typename T, Kind = CAPNP_KIND(T)>
  struct GetInnerBuilder;
  template <typename T, Kind = CAPNP_KIND(T)>
  struct GetInnerReader;
  template <typename T>
  struct NewOrphanListImpl;

  friend class MessageBuilder;
  friend struct _::OrphanageInternal;
};

// =======================================================================================
// Inline implementation details.

namespace _ {  // private

template <typename T, Kind = CAPNP_KIND(T)>
struct OrphanGetImpl;

template <typename T>
struct OrphanGetImpl<T, Kind::PRIMITIVE> {
  static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
    builder.truncate(size, _::elementSizeForType<T>());
  }
};

template <typename T>
struct OrphanGetImpl<T, Kind::STRUCT> {
  static inline typename T::Builder apply(_::OrphanBuilder& builder) {
    return typename T::Builder(builder.asStruct(_::structSize<T>()));
  }
  static inline typename T::Reader applyReader(const _::OrphanBuilder& builder) {
    return typename T::Reader(builder.asStructReader(_::structSize<T>()));
  }
  static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
    builder.truncate(size, _::structSize<T>());
  }
};

#if !CAPNP_LITE
template <typename T>
struct OrphanGetImpl<T, Kind::INTERFACE> {
  static inline typename T::Client apply(_::OrphanBuilder& builder) {
    return typename T::Client(builder.asCapability());
  }
  static inline typename T::Client applyReader(const _::OrphanBuilder& builder) {
    return typename T::Client(builder.asCapability());
  }
  static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
    builder.truncate(size, ElementSize::POINTER);
  }
};
#endif  // !CAPNP_LITE

template <typename T, Kind k>
struct OrphanGetImpl<List<T, k>, Kind::LIST> {
  static inline typename List<T>::Builder apply(_::OrphanBuilder& builder) {
    return typename List<T>::Builder(builder.asList(_::ElementSizeForType<T>::value));
  }
  static inline typename List<T>::Reader applyReader(const _::OrphanBuilder& builder) {
    return typename List<T>::Reader(builder.asListReader(_::ElementSizeForType<T>::value));
  }
  static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
    builder.truncate(size, ElementSize::POINTER);
  }
};

template <typename T>
struct OrphanGetImpl<List<T, Kind::STRUCT>, Kind::LIST> {
  static inline typename List<T>::Builder apply(_::OrphanBuilder& builder) {
    return typename List<T>::Builder(builder.asStructList(_::structSize<T>()));
  }
  static inline typename List<T>::Reader applyReader(const _::OrphanBuilder& builder) {
    return typename List<T>::Reader(builder.asListReader(_::ElementSizeForType<T>::value));
  }
  static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
    builder.truncate(size, ElementSize::POINTER);
  }
};

template <>
struct OrphanGetImpl<Text, Kind::BLOB> {
  static inline Text::Builder apply(_::OrphanBuilder& builder) {
    return Text::Builder(builder.asText());
  }
  static inline Text::Reader applyReader(const _::OrphanBuilder& builder) {
    return Text::Reader(builder.asTextReader());
  }
  static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
    builder.truncate(size, ElementSize::POINTER);
  }
};

template <>
struct OrphanGetImpl<Data, Kind::BLOB> {
  static inline Data::Builder apply(_::OrphanBuilder& builder) {
    return Data::Builder(builder.asData());
  }
  static inline Data::Reader applyReader(const _::OrphanBuilder& builder) {
    return Data::Reader(builder.asDataReader());
  }
  static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
    builder.truncate(size, ElementSize::POINTER);
  }
};

struct OrphanageInternal {
  static inline _::BuilderArena* getArena(Orphanage orphanage) { return orphanage.arena; }
  static inline _::CapTableBuilder* getCapTable(Orphanage orphanage) { return orphanage.capTable; }
};

}  // namespace _ (private)

template <typename T>
inline BuilderFor<T> Orphan<T>::get() {
  return _::OrphanGetImpl<T>::apply(builder);
}

template <typename T>
inline ReaderFor<T> Orphan<T>::getReader() const {
  return _::OrphanGetImpl<T>::applyReader(builder);
}

template <typename T>
inline void Orphan<T>::truncate(uint size) {
  _::OrphanGetImpl<ListElementType<T>>::truncateListOf(builder, bounded(size) * ELEMENTS);
}

template <>
inline void Orphan<Text>::truncate(uint size) {
  builder.truncateText(bounded(size) * ELEMENTS);
}

template <>
inline void Orphan<Data>::truncate(uint size) {
  builder.truncate(bounded(size) * ELEMENTS, ElementSize::BYTE);
}

template <typename T>
struct Orphanage::GetInnerBuilder<T, Kind::STRUCT> {
  static inline _::StructBuilder apply(typename T::Builder& t) {
    return t._builder;
  }
};

template <typename T>
struct Orphanage::GetInnerBuilder<T, Kind::LIST> {
  static inline _::ListBuilder apply(typename T::Builder& t) {
    return t.builder;
  }
};

template <typename BuilderType>
Orphanage Orphanage::getForMessageContaining(BuilderType builder) {
  auto inner = GetInnerBuilder<FromBuilder<BuilderType>>::apply(builder);
  return Orphanage(inner.getArena(), inner.getCapTable());
}

template <typename RootType>
Orphan<RootType> Orphanage::newOrphan() const {
  return Orphan<RootType>(_::OrphanBuilder::initStruct(arena, capTable, _::structSize<RootType>()));
}

template <typename T, Kind k>
struct Orphanage::NewOrphanListImpl<List<T, k>> {
  static inline _::OrphanBuilder apply(
      _::BuilderArena* arena, _::CapTableBuilder* capTable, uint size) {
    return _::OrphanBuilder::initList(
        arena, capTable, bounded(size) * ELEMENTS, _::ElementSizeForType<T>::value);
  }
};

template <typename T>
struct Orphanage::NewOrphanListImpl<List<T, Kind::STRUCT>> {
  static inline _::OrphanBuilder apply(
      _::BuilderArena* arena, _::CapTableBuilder* capTable, uint size) {
    return _::OrphanBuilder::initStructList(
        arena, capTable, bounded(size) * ELEMENTS, _::structSize<T>());
  }
};

template <>
struct Orphanage::NewOrphanListImpl<Text> {
  static inline _::OrphanBuilder apply(
      _::BuilderArena* arena, _::CapTableBuilder* capTable, uint size) {
    return _::OrphanBuilder::initText(arena, capTable, bounded(size) * BYTES);
  }
};

template <>
struct Orphanage::NewOrphanListImpl<Data> {
  static inline _::OrphanBuilder apply(
      _::BuilderArena* arena, _::CapTableBuilder* capTable, uint size) {
    return _::OrphanBuilder::initData(arena, capTable, bounded(size) * BYTES);
  }
};

template <typename RootType>
Orphan<RootType> Orphanage::newOrphan(uint size) const {
  return Orphan<RootType>(NewOrphanListImpl<RootType>::apply(arena, capTable, size));
}

template <typename T>
struct Orphanage::GetInnerReader<T, Kind::STRUCT> {
  static inline _::StructReader apply(const typename T::Reader& t) {
    return t._reader;
  }
};

template <typename T>
struct Orphanage::GetInnerReader<T, Kind::LIST> {
  static inline _::ListReader apply(const typename T::Reader& t) {
    return t.reader;
  }
};

template <typename T>
struct Orphanage::GetInnerReader<T, Kind::BLOB> {
  static inline const typename T::Reader& apply(const typename T::Reader& t) {
    return t;
  }
};

template <typename Reader>
inline Orphan<FromReader<Reader>> Orphanage::newOrphanCopy(Reader copyFrom) const {
  return Orphan<FromReader<Reader>>(_::OrphanBuilder::copy(
      arena, capTable, GetInnerReader<FromReader<Reader>>::apply(copyFrom)));
}

template <typename T>
inline Orphan<List<ListElementType<FromReader<T>>>>
Orphanage::newOrphanConcat(kj::ArrayPtr<T> lists) const {
  return newOrphanConcat(kj::implicitCast<kj::ArrayPtr<const T>>(lists));
}
template <typename T>
inline Orphan<List<ListElementType<FromReader<T>>>>
Orphanage::newOrphanConcat(kj::ArrayPtr<const T> lists) const {
  // Optimization / simplification: Rely on List<T>::Reader containing nothing except a
  // _::ListReader.
  static_assert(sizeof(T) == sizeof(_::ListReader), "lists are not bare readers?");
  kj::ArrayPtr<const _::ListReader> raw(
      reinterpret_cast<const _::ListReader*>(lists.begin()), lists.size());
  typedef ListElementType<FromReader<T>> Element;
  return Orphan<List<Element>>(
      _::OrphanBuilder::concat(arena, capTable,
          _::elementSizeForType<Element>(),
          _::minStructSizeForElement<Element>(), raw));
}

inline Orphan<Data> Orphanage::referenceExternalData(Data::Reader data) const {
  return Orphan<Data>(_::OrphanBuilder::referenceExternalData(arena, data));
}

}  // namespace capnp

#endif  // CAPNP_ORPHAN_H_