/usr/include/kj/array.h is in libcapnp-dev 0.6.1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 | // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef KJ_ARRAY_H_
#define KJ_ARRAY_H_
#if defined(__GNUC__) && !KJ_HEADER_WARNINGS
#pragma GCC system_header
#endif
#include "common.h"
#include <string.h>
#include <initializer_list>
namespace kj {
// =======================================================================================
// ArrayDisposer -- Implementation details.
class ArrayDisposer {
// Much like Disposer from memory.h.
protected:
// Do not declare a destructor, as doing so will force a global initializer for
// HeapArrayDisposer::instance.
virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
size_t capacity, void (*destroyElement)(void*)) const = 0;
// Disposes of the array. `destroyElement` invokes the destructor of each element, or is nullptr
// if the elements have trivial destructors. `capacity` is the amount of space that was
// allocated while `elementCount` is the number of elements that were actually constructed;
// these are always the same number for Array<T> but may be different when using ArrayBuilder<T>.
public:
template <typename T>
void dispose(T* firstElement, size_t elementCount, size_t capacity) const;
// Helper wrapper around disposeImpl().
//
// Callers must not call dispose() on the same array twice, even if the first call throws
// an exception.
private:
template <typename T, bool hasTrivialDestructor = __has_trivial_destructor(T)>
struct Dispose_;
};
class ExceptionSafeArrayUtil {
// Utility class that assists in constructing or destroying elements of an array, where the
// constructor or destructor could throw exceptions. In case of an exception,
// ExceptionSafeArrayUtil's destructor will call destructors on all elements that have been
// constructed but not destroyed. Remember that destructors that throw exceptions are required
// to use UnwindDetector to detect unwind and avoid exceptions in this case. Therefore, no more
// than one exception will be thrown (and the program will not terminate).
public:
inline ExceptionSafeArrayUtil(void* ptr, size_t elementSize, size_t constructedElementCount,
void (*destroyElement)(void*))
: pos(reinterpret_cast<byte*>(ptr) + elementSize * constructedElementCount),
elementSize(elementSize), constructedElementCount(constructedElementCount),
destroyElement(destroyElement) {}
KJ_DISALLOW_COPY(ExceptionSafeArrayUtil);
inline ~ExceptionSafeArrayUtil() noexcept(false) {
if (constructedElementCount > 0) destroyAll();
}
void construct(size_t count, void (*constructElement)(void*));
// Construct the given number of elements.
void destroyAll();
// Destroy all elements. Call this immediately before ExceptionSafeArrayUtil goes out-of-scope
// to ensure that one element throwing an exception does not prevent the others from being
// destroyed.
void release() { constructedElementCount = 0; }
// Prevent ExceptionSafeArrayUtil's destructor from destroying the constructed elements.
// Call this after you've successfully finished constructing.
private:
byte* pos;
size_t elementSize;
size_t constructedElementCount;
void (*destroyElement)(void*);
};
class DestructorOnlyArrayDisposer: public ArrayDisposer {
public:
static const DestructorOnlyArrayDisposer instance;
void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
size_t capacity, void (*destroyElement)(void*)) const override;
};
class NullArrayDisposer: public ArrayDisposer {
// An ArrayDisposer that does nothing. Can be used to construct a fake Arrays that doesn't
// actually own its content.
public:
static const NullArrayDisposer instance;
void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
size_t capacity, void (*destroyElement)(void*)) const override;
};
// =======================================================================================
// Array
template <typename T>
class Array {
// An owned array which will automatically be disposed of (using an ArrayDisposer) in the
// destructor. Can be moved, but not copied. Much like Own<T>, but for arrays rather than
// single objects.
public:
inline Array(): ptr(nullptr), size_(0), disposer(nullptr) {}
inline Array(decltype(nullptr)): ptr(nullptr), size_(0), disposer(nullptr) {}
inline Array(Array&& other) noexcept
: ptr(other.ptr), size_(other.size_), disposer(other.disposer) {
other.ptr = nullptr;
other.size_ = 0;
}
inline Array(Array<RemoveConstOrDisable<T>>&& other) noexcept
: ptr(other.ptr), size_(other.size_), disposer(other.disposer) {
other.ptr = nullptr;
other.size_ = 0;
}
inline Array(T* firstElement, size_t size, const ArrayDisposer& disposer)
: ptr(firstElement), size_(size), disposer(&disposer) {}
KJ_DISALLOW_COPY(Array);
inline ~Array() noexcept { dispose(); }
inline operator ArrayPtr<T>() {
return ArrayPtr<T>(ptr, size_);
}
inline operator ArrayPtr<const T>() const {
return ArrayPtr<T>(ptr, size_);
}
inline ArrayPtr<T> asPtr() {
return ArrayPtr<T>(ptr, size_);
}
inline ArrayPtr<const T> asPtr() const {
return ArrayPtr<T>(ptr, size_);
}
inline size_t size() const { return size_; }
inline T& operator[](size_t index) const {
KJ_IREQUIRE(index < size_, "Out-of-bounds Array access.");
return ptr[index];
}
inline const T* begin() const { return ptr; }
inline const T* end() const { return ptr + size_; }
inline const T& front() const { return *ptr; }
inline const T& back() const { return *(ptr + size_ - 1); }
inline T* begin() { return ptr; }
inline T* end() { return ptr + size_; }
inline T& front() { return *ptr; }
inline T& back() { return *(ptr + size_ - 1); }
inline ArrayPtr<T> slice(size_t start, size_t end) {
KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice().");
return ArrayPtr<T>(ptr + start, end - start);
}
inline ArrayPtr<const T> slice(size_t start, size_t end) const {
KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice().");
return ArrayPtr<const T>(ptr + start, end - start);
}
inline ArrayPtr<const byte> asBytes() const { return asPtr().asBytes(); }
inline ArrayPtr<PropagateConst<T, byte>> asBytes() { return asPtr().asBytes(); }
inline ArrayPtr<const char> asChars() const { return asPtr().asChars(); }
inline ArrayPtr<PropagateConst<T, char>> asChars() { return asPtr().asChars(); }
inline Array<PropagateConst<T, byte>> releaseAsBytes() {
// Like asBytes() but transfers ownership.
static_assert(sizeof(T) == sizeof(byte),
"releaseAsBytes() only possible on arrays with byte-size elements (e.g. chars).");
Array<PropagateConst<T, byte>> result(
reinterpret_cast<PropagateConst<T, byte>*>(ptr), size_, *disposer);
ptr = nullptr;
size_ = 0;
return result;
}
inline Array<PropagateConst<T, char>> releaseAsChars() {
// Like asChars() but transfers ownership.
static_assert(sizeof(T) == sizeof(PropagateConst<T, char>),
"releaseAsChars() only possible on arrays with char-size elements (e.g. bytes).");
Array<PropagateConst<T, char>> result(
reinterpret_cast<PropagateConst<T, char>*>(ptr), size_, *disposer);
ptr = nullptr;
size_ = 0;
return result;
}
inline bool operator==(decltype(nullptr)) const { return size_ == 0; }
inline bool operator!=(decltype(nullptr)) const { return size_ != 0; }
inline Array& operator=(decltype(nullptr)) {
dispose();
return *this;
}
inline Array& operator=(Array&& other) {
dispose();
ptr = other.ptr;
size_ = other.size_;
disposer = other.disposer;
other.ptr = nullptr;
other.size_ = 0;
return *this;
}
private:
T* ptr;
size_t size_;
const ArrayDisposer* disposer;
inline void dispose() {
// Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly
// dispose again.
T* ptrCopy = ptr;
size_t sizeCopy = size_;
if (ptrCopy != nullptr) {
ptr = nullptr;
size_ = 0;
disposer->dispose(ptrCopy, sizeCopy, sizeCopy);
}
}
template <typename U>
friend class Array;
};
static_assert(!canMemcpy<Array<char>>(), "canMemcpy<>() is broken");
namespace _ { // private
class HeapArrayDisposer final: public ArrayDisposer {
public:
template <typename T>
static T* allocate(size_t count);
template <typename T>
static T* allocateUninitialized(size_t count);
static const HeapArrayDisposer instance;
private:
static void* allocateImpl(size_t elementSize, size_t elementCount, size_t capacity,
void (*constructElement)(void*), void (*destroyElement)(void*));
// Allocates and constructs the array. Both function pointers are null if the constructor is
// trivial, otherwise destroyElement is null if the constructor doesn't throw.
virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
size_t capacity, void (*destroyElement)(void*)) const override;
template <typename T, bool hasTrivialConstructor = __has_trivial_constructor(T),
bool hasNothrowConstructor = __has_nothrow_constructor(T)>
struct Allocate_;
};
} // namespace _ (private)
template <typename T>
inline Array<T> heapArray(size_t size) {
// Much like `heap<T>()` from memory.h, allocates a new array on the heap.
return Array<T>(_::HeapArrayDisposer::allocate<T>(size), size,
_::HeapArrayDisposer::instance);
}
template <typename T> Array<T> heapArray(const T* content, size_t size);
template <typename T> Array<T> heapArray(ArrayPtr<T> content);
template <typename T> Array<T> heapArray(ArrayPtr<const T> content);
template <typename T, typename Iterator> Array<T> heapArray(Iterator begin, Iterator end);
template <typename T> Array<T> heapArray(std::initializer_list<T> init);
// Allocate a heap array containing a copy of the given content.
template <typename T, typename Container>
Array<T> heapArrayFromIterable(Container&& a) { return heapArray<T>(a.begin(), a.end()); }
template <typename T>
Array<T> heapArrayFromIterable(Array<T>&& a) { return mv(a); }
// =======================================================================================
// ArrayBuilder
template <typename T>
class ArrayBuilder {
// Class which lets you build an Array<T> specifying the exact constructor arguments for each
// element, rather than starting by default-constructing them.
public:
ArrayBuilder(): ptr(nullptr), pos(nullptr), endPtr(nullptr) {}
ArrayBuilder(decltype(nullptr)): ptr(nullptr), pos(nullptr), endPtr(nullptr) {}
explicit ArrayBuilder(RemoveConst<T>* firstElement, size_t capacity,
const ArrayDisposer& disposer)
: ptr(firstElement), pos(firstElement), endPtr(firstElement + capacity),
disposer(&disposer) {}
ArrayBuilder(ArrayBuilder&& other)
: ptr(other.ptr), pos(other.pos), endPtr(other.endPtr), disposer(other.disposer) {
other.ptr = nullptr;
other.pos = nullptr;
other.endPtr = nullptr;
}
KJ_DISALLOW_COPY(ArrayBuilder);
inline ~ArrayBuilder() noexcept(false) { dispose(); }
inline operator ArrayPtr<T>() {
return arrayPtr(ptr, pos);
}
inline operator ArrayPtr<const T>() const {
return arrayPtr(ptr, pos);
}
inline ArrayPtr<T> asPtr() {
return arrayPtr(ptr, pos);
}
inline ArrayPtr<const T> asPtr() const {
return arrayPtr(ptr, pos);
}
inline size_t size() const { return pos - ptr; }
inline size_t capacity() const { return endPtr - ptr; }
inline T& operator[](size_t index) const {
KJ_IREQUIRE(index < implicitCast<size_t>(pos - ptr), "Out-of-bounds Array access.");
return ptr[index];
}
inline const T* begin() const { return ptr; }
inline const T* end() const { return pos; }
inline const T& front() const { return *ptr; }
inline const T& back() const { return *(pos - 1); }
inline T* begin() { return ptr; }
inline T* end() { return pos; }
inline T& front() { return *ptr; }
inline T& back() { return *(pos - 1); }
ArrayBuilder& operator=(ArrayBuilder&& other) {
dispose();
ptr = other.ptr;
pos = other.pos;
endPtr = other.endPtr;
disposer = other.disposer;
other.ptr = nullptr;
other.pos = nullptr;
other.endPtr = nullptr;
return *this;
}
ArrayBuilder& operator=(decltype(nullptr)) {
dispose();
return *this;
}
template <typename... Params>
T& add(Params&&... params) {
KJ_IREQUIRE(pos < endPtr, "Added too many elements to ArrayBuilder.");
ctor(*pos, kj::fwd<Params>(params)...);
return *pos++;
}
template <typename Container>
void addAll(Container&& container) {
addAll<decltype(container.begin()), !isReference<Container>()>(
container.begin(), container.end());
}
template <typename Iterator, bool move = false>
void addAll(Iterator start, Iterator end);
void removeLast() {
KJ_IREQUIRE(pos > ptr, "No elements present to remove.");
kj::dtor(*--pos);
}
void truncate(size_t size) {
KJ_IREQUIRE(size <= this->size(), "can't use truncate() to expand");
T* target = ptr + size;
if (__has_trivial_destructor(T)) {
pos = target;
} else {
while (pos > target) {
kj::dtor(*--pos);
}
}
}
void resize(size_t size) {
KJ_IREQUIRE(size <= capacity(), "can't resize past capacity");
T* target = ptr + size;
if (target > pos) {
// expand
if (__has_trivial_constructor(T)) {
pos = target;
} else {
while (pos < target) {
kj::ctor(*pos++);
}
}
} else {
// truncate
if (__has_trivial_destructor(T)) {
pos = target;
} else {
while (pos > target) {
kj::dtor(*--pos);
}
}
}
}
Array<T> finish() {
// We could safely remove this check if we assume that the disposer implementation doesn't
// need to know the original capacity, as is thes case with HeapArrayDisposer since it uses
// operator new() or if we created a custom disposer for ArrayBuilder which stores the capacity
// in a prefix. But that would make it hard to write cleverer heap allocators, and anyway this
// check might catch bugs. Probably people should use Vector if they want to build arrays
// without knowing the final size in advance.
KJ_IREQUIRE(pos == endPtr, "ArrayBuilder::finish() called prematurely.");
Array<T> result(reinterpret_cast<T*>(ptr), pos - ptr, *disposer);
ptr = nullptr;
pos = nullptr;
endPtr = nullptr;
return result;
}
inline bool isFull() const {
return pos == endPtr;
}
private:
T* ptr;
RemoveConst<T>* pos;
T* endPtr;
const ArrayDisposer* disposer;
inline void dispose() {
// Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly
// dispose again.
T* ptrCopy = ptr;
T* posCopy = pos;
T* endCopy = endPtr;
if (ptrCopy != nullptr) {
ptr = nullptr;
pos = nullptr;
endPtr = nullptr;
disposer->dispose(ptrCopy, posCopy - ptrCopy, endCopy - ptrCopy);
}
}
};
template <typename T>
inline ArrayBuilder<T> heapArrayBuilder(size_t size) {
// Like `heapArray<T>()` but does not default-construct the elements. You must construct them
// manually by calling `add()`.
return ArrayBuilder<T>(_::HeapArrayDisposer::allocateUninitialized<RemoveConst<T>>(size),
size, _::HeapArrayDisposer::instance);
}
// =======================================================================================
// Inline Arrays
template <typename T, size_t fixedSize>
class FixedArray {
// A fixed-width array whose storage is allocated inline rather than on the heap.
public:
inline size_t size() const { return fixedSize; }
inline T* begin() { return content; }
inline T* end() { return content + fixedSize; }
inline const T* begin() const { return content; }
inline const T* end() const { return content + fixedSize; }
inline operator ArrayPtr<T>() {
return arrayPtr(content, fixedSize);
}
inline operator ArrayPtr<const T>() const {
return arrayPtr(content, fixedSize);
}
inline T& operator[](size_t index) { return content[index]; }
inline const T& operator[](size_t index) const { return content[index]; }
private:
T content[fixedSize];
};
template <typename T, size_t fixedSize>
class CappedArray {
// Like `FixedArray` but can be dynamically resized as long as the size does not exceed the limit
// specified by the template parameter.
//
// TODO(someday): Don't construct elements past currentSize?
public:
inline KJ_CONSTEXPR() CappedArray(): currentSize(fixedSize) {}
inline explicit constexpr CappedArray(size_t s): currentSize(s) {}
inline size_t size() const { return currentSize; }
inline void setSize(size_t s) { KJ_IREQUIRE(s <= fixedSize); currentSize = s; }
inline T* begin() { return content; }
inline T* end() { return content + currentSize; }
inline const T* begin() const { return content; }
inline const T* end() const { return content + currentSize; }
inline operator ArrayPtr<T>() {
return arrayPtr(content, currentSize);
}
inline operator ArrayPtr<const T>() const {
return arrayPtr(content, currentSize);
}
inline T& operator[](size_t index) { return content[index]; }
inline const T& operator[](size_t index) const { return content[index]; }
private:
size_t currentSize;
T content[fixedSize];
};
// =======================================================================================
// KJ_MAP
#define KJ_MAP(elementName, array) \
::kj::_::Mapper<KJ_DECLTYPE_REF(array)>(array) * \
[&](typename ::kj::_::Mapper<KJ_DECLTYPE_REF(array)>::Element elementName)
// Applies some function to every element of an array, returning an Array of the results, with
// nice syntax. Example:
//
// StringPtr foo = "abcd";
// Array<char> bar = KJ_MAP(c, foo) -> char { return c + 1; };
// KJ_ASSERT(str(bar) == "bcde");
namespace _ { // private
template <typename T>
struct Mapper {
T array;
Mapper(T&& array): array(kj::fwd<T>(array)) {}
template <typename Func>
auto operator*(Func&& func) -> Array<decltype(func(*array.begin()))> {
auto builder = heapArrayBuilder<decltype(func(*array.begin()))>(array.size());
for (auto iter = array.begin(); iter != array.end(); ++iter) {
builder.add(func(*iter));
}
return builder.finish();
}
typedef decltype(*kj::instance<T>().begin()) Element;
};
template <typename T, size_t s>
struct Mapper<T(&)[s]> {
T* array;
Mapper(T* array): array(array) {}
template <typename Func>
auto operator*(Func&& func) -> Array<decltype(func(*array))> {
auto builder = heapArrayBuilder<decltype(func(*array))>(s);
for (size_t i = 0; i < s; i++) {
builder.add(func(array[i]));
}
return builder.finish();
}
typedef decltype(*array)& Element;
};
} // namespace _ (private)
// =======================================================================================
// Inline implementation details
template <typename T>
struct ArrayDisposer::Dispose_<T, true> {
static void dispose(T* firstElement, size_t elementCount, size_t capacity,
const ArrayDisposer& disposer) {
disposer.disposeImpl(const_cast<RemoveConst<T>*>(firstElement),
sizeof(T), elementCount, capacity, nullptr);
}
};
template <typename T>
struct ArrayDisposer::Dispose_<T, false> {
static void destruct(void* ptr) {
kj::dtor(*reinterpret_cast<T*>(ptr));
}
static void dispose(T* firstElement, size_t elementCount, size_t capacity,
const ArrayDisposer& disposer) {
disposer.disposeImpl(firstElement, sizeof(T), elementCount, capacity, &destruct);
}
};
template <typename T>
void ArrayDisposer::dispose(T* firstElement, size_t elementCount, size_t capacity) const {
Dispose_<T>::dispose(firstElement, elementCount, capacity, *this);
}
namespace _ { // private
template <typename T>
struct HeapArrayDisposer::Allocate_<T, true, true> {
static T* allocate(size_t elementCount, size_t capacity) {
return reinterpret_cast<T*>(allocateImpl(
sizeof(T), elementCount, capacity, nullptr, nullptr));
}
};
template <typename T>
struct HeapArrayDisposer::Allocate_<T, false, true> {
static void construct(void* ptr) {
kj::ctor(*reinterpret_cast<T*>(ptr));
}
static T* allocate(size_t elementCount, size_t capacity) {
return reinterpret_cast<T*>(allocateImpl(
sizeof(T), elementCount, capacity, &construct, nullptr));
}
};
template <typename T>
struct HeapArrayDisposer::Allocate_<T, false, false> {
static void construct(void* ptr) {
kj::ctor(*reinterpret_cast<T*>(ptr));
}
static void destruct(void* ptr) {
kj::dtor(*reinterpret_cast<T*>(ptr));
}
static T* allocate(size_t elementCount, size_t capacity) {
return reinterpret_cast<T*>(allocateImpl(
sizeof(T), elementCount, capacity, &construct, &destruct));
}
};
template <typename T>
T* HeapArrayDisposer::allocate(size_t count) {
return Allocate_<T>::allocate(count, count);
}
template <typename T>
T* HeapArrayDisposer::allocateUninitialized(size_t count) {
return Allocate_<T, true, true>::allocate(0, count);
}
template <typename Element, typename Iterator, bool move, bool = canMemcpy<Element>()>
struct CopyConstructArray_;
template <typename T, bool move>
struct CopyConstructArray_<T, T*, move, true> {
static inline T* apply(T* __restrict__ pos, T* start, T* end) {
memcpy(pos, start, reinterpret_cast<byte*>(end) - reinterpret_cast<byte*>(start));
return pos + (end - start);
}
};
template <typename T>
struct CopyConstructArray_<T, const T*, false, true> {
static inline T* apply(T* __restrict__ pos, const T* start, const T* end) {
memcpy(pos, start, reinterpret_cast<const byte*>(end) - reinterpret_cast<const byte*>(start));
return pos + (end - start);
}
};
template <typename T, typename Iterator, bool move>
struct CopyConstructArray_<T, Iterator, move, true> {
static inline T* apply(T* __restrict__ pos, Iterator start, Iterator end) {
// Since both the copy constructor and assignment operator are trivial, we know that assignment
// is equivalent to copy-constructing. So we can make this case somewhat easier for the
// compiler to optimize.
while (start != end) {
*pos++ = *start++;
}
return pos;
}
};
template <typename T, typename Iterator>
struct CopyConstructArray_<T, Iterator, false, false> {
struct ExceptionGuard {
T* start;
T* pos;
inline explicit ExceptionGuard(T* pos): start(pos), pos(pos) {}
~ExceptionGuard() noexcept(false) {
while (pos > start) {
dtor(*--pos);
}
}
};
static T* apply(T* __restrict__ pos, Iterator start, Iterator end) {
// Verify that T can be *implicitly* constructed from the source values.
if (false) implicitCast<T>(*start);
if (noexcept(T(*start))) {
while (start != end) {
ctor(*pos++, *start++);
}
return pos;
} else {
// Crap. This is complicated.
ExceptionGuard guard(pos);
while (start != end) {
ctor(*guard.pos, *start++);
++guard.pos;
}
guard.start = guard.pos;
return guard.pos;
}
}
};
template <typename T, typename Iterator>
struct CopyConstructArray_<T, Iterator, true, false> {
// Actually move-construct.
struct ExceptionGuard {
T* start;
T* pos;
inline explicit ExceptionGuard(T* pos): start(pos), pos(pos) {}
~ExceptionGuard() noexcept(false) {
while (pos > start) {
dtor(*--pos);
}
}
};
static T* apply(T* __restrict__ pos, Iterator start, Iterator end) {
// Verify that T can be *implicitly* constructed from the source values.
if (false) implicitCast<T>(kj::mv(*start));
if (noexcept(T(kj::mv(*start)))) {
while (start != end) {
ctor(*pos++, kj::mv(*start++));
}
return pos;
} else {
// Crap. This is complicated.
ExceptionGuard guard(pos);
while (start != end) {
ctor(*guard.pos, kj::mv(*start++));
++guard.pos;
}
guard.start = guard.pos;
return guard.pos;
}
}
};
} // namespace _ (private)
template <typename T>
template <typename Iterator, bool move>
void ArrayBuilder<T>::addAll(Iterator start, Iterator end) {
pos = _::CopyConstructArray_<RemoveConst<T>, Decay<Iterator>, move>::apply(pos, start, end);
}
template <typename T>
Array<T> heapArray(const T* content, size_t size) {
ArrayBuilder<T> builder = heapArrayBuilder<T>(size);
builder.addAll(content, content + size);
return builder.finish();
}
template <typename T>
Array<T> heapArray(T* content, size_t size) {
ArrayBuilder<T> builder = heapArrayBuilder<T>(size);
builder.addAll(content, content + size);
return builder.finish();
}
template <typename T>
Array<T> heapArray(ArrayPtr<T> content) {
ArrayBuilder<T> builder = heapArrayBuilder<T>(content.size());
builder.addAll(content);
return builder.finish();
}
template <typename T>
Array<T> heapArray(ArrayPtr<const T> content) {
ArrayBuilder<T> builder = heapArrayBuilder<T>(content.size());
builder.addAll(content);
return builder.finish();
}
template <typename T, typename Iterator> Array<T>
heapArray(Iterator begin, Iterator end) {
ArrayBuilder<T> builder = heapArrayBuilder<T>(end - begin);
builder.addAll(begin, end);
return builder.finish();
}
template <typename T>
inline Array<T> heapArray(std::initializer_list<T> init) {
return heapArray<T>(init.begin(), init.end());
}
} // namespace kj
#endif // KJ_ARRAY_H_
|