This file is indexed.

/usr/include/glibmm-2.4/glibmm/variant.h is in libglibmm-2.4-dev 2.56.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
// Generated by gmmproc 2.54.1 -- DO NOT MODIFY!
#ifndef _GLIBMM_VARIANT_H
#define _GLIBMM_VARIANT_H


/* Copyright 2010 The glibmm Development Team
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library.  If not, see <http://www.gnu.org/licenses/>.
 */


#include <glibmmconfig.h>
#include <glibmm/varianttype.h>
#include <glibmm/variantiter.h>
#include <glibmm/variantdbusstring.h>
#include <glibmm/refptr.h>
#include <glibmm/ustring.h>
#include <glibmm/error.h>
#include <utility>
#include <vector>
#include <map>
#include <tuple>
#include <stdexcept>
#include <typeinfo>
#include <cstddef>

namespace Glib
{
class Bytes;

/** @defgroup Variant Variant Data Types
 *
 * The Variant classes deal with strongly typed
 * variant data. A Variant stores a value along with
 * information about the type of that value. The range of possible
 * values is determined by the type. The type system used is VariantType.
 *
 * See the VariantBase class and its derived types, such as VariantContainerBase,
 * and the Variant<> template type.
 *
 * Variant instances always have a type and a value (which are given
 * at construction time). The type and value of a Variant
 * can never change other than by the Variant itself being
 * destroyed.  A Variant cannot contain a pointer.
 *
 * Variant is heavily optimised for dealing with data in serialised
 * form. It works particularly well with data located in memory-mapped
 * files. It can perform nearly all deserialisation operations in a
 * small constant time, usually touching only a single memory page.
 * Serialised Variant data can also be sent over the network.
 *
 * Variant is largely compatible with D-Bus.  Almost all types of
 * Variant instances can be sent over D-Bus.  See VariantType for
 * exceptions.
 *
 * There is a Python-inspired text language for describing Variant
 * values. Variant includes a printer for this language and a parser
 * with type inferencing.
 */

//Note: We wrap this because it is thrown by GtkBuilder's functions.
// See https://bugzilla.gnome.org/show_bug.cgi?id=708206
// It would also be thrown by parse() if we wrap g_variant_parse().
// Now (2014-01-30) it's also thrown by Gio::Action::parse_detailed_name().
/**  %Exception class for Variant parse errors.
 */
class VariantParseError : public Glib::Error
{
public:
  /**  @var Code FAILED
   * Generic error (unused).
   * 
   *  @var Code BASIC_TYPE_EXPECTED
   * A non-basic VariantType was given where a basic type was expected.
   * 
   *  @var Code CANNOT_INFER_TYPE
   * Cannot infer the VariantType.
   * 
   *  @var Code DEFINITE_TYPE_EXPECTED
   * An indefinite VariantType was given where a definite type was expected.
   * 
   *  @var Code INPUT_NOT_AT_END
   * Extra data after parsing finished.
   * 
   *  @var Code INVALID_CHARACTER
   * Invalid character in number or unicode escape.
   * 
   *  @var Code INVALID_FORMAT_STRING
   * Not a valid Variant format string.
   * 
   *  @var Code INVALID_OBJECT_PATH
   * Not a valid object path.
   * 
   *  @var Code INVALID_SIGNATURE
   * Not a valid type signature.
   * 
   *  @var Code INVALID_TYPE_STRING
   * Not a valid Variant type string.
   * 
   *  @var Code NO_COMMON_TYPE
   * Could not find a common type for array entries.
   * 
   *  @var Code NUMBER_OUT_OF_RANGE
   * The numerical value is out of range of the given type.
   * 
   *  @var Code NUMBER_TOO_BIG
   * The numerical value is out of range for any type.
   * 
   *  @var Code TYPE_ERROR
   * Cannot parse as variant of the specified type.
   * 
   *  @var Code UNEXPECTED_TOKEN
   * An unexpected token was encountered.
   * 
   *  @var Code UNKNOWN_KEYWORD
   * An unknown keyword was encountered.
   * 
   *  @var Code UNTERMINATED_STRING_CONSTANT
   * Unterminated string constant.
   * 
   *  @var Code VALUE_EXPECTED
   * No value given.
   * 
   *  @enum Code
   * 
   * %Error codes returned by parsing text-format GVariants.
   */
  enum Code
  {
    FAILED,
    BASIC_TYPE_EXPECTED,
    CANNOT_INFER_TYPE,
    DEFINITE_TYPE_EXPECTED,
    INPUT_NOT_AT_END,
    INVALID_CHARACTER,
    INVALID_FORMAT_STRING,
    INVALID_OBJECT_PATH,
    INVALID_SIGNATURE,
    INVALID_TYPE_STRING,
    NO_COMMON_TYPE,
    NUMBER_OUT_OF_RANGE,
    NUMBER_TOO_BIG,
    TYPE_ERROR,
    UNEXPECTED_TOKEN,
    UNKNOWN_KEYWORD,
    UNTERMINATED_STRING_CONSTANT,
    VALUE_EXPECTED
  };

  VariantParseError(Code error_code, const Glib::ustring& error_message);
  explicit VariantParseError(GError* gobject);
  Code code() const;

#ifndef DOXYGEN_SHOULD_SKIP_THIS
private:

  static void throw_func(GError* gobject);

  friend void wrap_init(); // uses throw_func()

  #endif //DOXYGEN_SHOULD_SKIP_THIS
};


//TODO: Add this documentation from the API if we are confident of it for the C++ wrapper:
// #GVariant is completely threadsafe.  A #GVariant instance can be
// concurrently accessed in any way from any number of threads without
// problems.
// Note that we don't copy GVariant's documentation about Memory Use because
// it seems easy to get out of sync and people can look at that C documentation if necessary.

/** This is the base class for all Variant types.
 *
 * If the actual type is known at compile-time then you should use a specific
 * Variant<>, such as Variant<int>. Otherwise, you may use get_type(),
 * is_of_type(), or cast_dynamic().
 *
 * @newin{2,28}
 * @ingroup Variant
 */
class VariantBase
{
  public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
  using CppObjectType = VariantBase;
  using BaseObjectType = GVariant;
#endif /* DOXYGEN_SHOULD_SKIP_THIS */

  /** Constructs an invalid object.
   * E.g. for output arguments to methods. There is not much you can do with
   * the object before it has been assigned a valid value.
   */
  VariantBase();

  // Use make_a_copy=true when getting it directly from a struct.
  explicit VariantBase(GVariant* castitem, bool make_a_copy = false);

  VariantBase(const VariantBase& src);
  VariantBase& operator=(const VariantBase& src);

  VariantBase(VariantBase&& other) noexcept;
  VariantBase& operator=(VariantBase&& other) noexcept;

  ~VariantBase() noexcept;

  void swap(VariantBase& other) noexcept;

  GVariant*       gobj()       { return gobject_; }
  const GVariant* gobj() const { return gobject_; }

  ///Provides access to the underlying C instance. The caller is responsible for freeing it. Use when directly setting fields in structs.
  GVariant* gobj_copy() const;

protected:
  GVariant* gobject_;

private:

  
public:

#ifndef GLIBMM_DISABLE_DEPRECATED

  /** This typedef is just to make it more obvious that
   * our operator const void* should be used like operator bool().
   *
   * @deprecated Use the explicit operator bool() instead.
   */
  using BoolExpr = const void*;

  /** Test whether the Variant has an underlying instance.
   *
   * Mimics usage of pointers:
   * @code
   *   if (variant)
   *     do_something();
   * @endcode
   *
   * @deprecated Use the explicit operator bool() instead.
   *
   * @newin{2,36}
   */
   operator BoolExpr() const;
#endif // GLIBMM_DISABLE_DEPRECATED


   /** Test whether the Variant has an underlying instance.
    *
    * @newin{2,50}
    */
   explicit operator bool() const;

  /** Replace the underlying GVariant.
   * This is for use by methods that take a VariantBase& as an output
   * parameter.
   *
   * @param cobject The GVariant* obtained from a C function.
   * @param take_a_reference Whether this method should take a reference, for
   * instance if the C function has not given one.
   */
  void init(const GVariant* cobject, bool take_a_reference = false);

// It's necessary to take an extra reference of the 'const GVariantType*'
// returned by g_variant_get_type() because it doesn't do that already.
 

  /** Determines the type of @a value.
   * 
   * The return value is valid for the lifetime of @a value and must not
   * be freed.
   * 
   * @newin{2,24}
   * 
   * @return A VariantType.
   */
  VariantType get_type() const;

  
  /** Returns the type string of @a value.  Unlike the result of calling
   * g_variant_type_peek_string(), this string is nul-terminated.  This
   * string belongs to Variant and must not be freed.
   * 
   * @newin{2,24}
   * 
   * @return The type string for the type of @a value.
   */
  std::string get_type_string() const;
  
  /** Checks whether @a value has a floating reference count.
   * 
   * This function should only ever be used to assert that a given variant
   * is or is not floating, or for debug purposes. To acquire a reference
   * to a variant that might be floating, always use g_variant_ref_sink()
   * or g_variant_take_ref().
   * 
   * See g_variant_ref_sink() for more information about floating reference
   * counts.
   * 
   * @newin{2,26}
   * 
   * @return Whether @a value is floating.
   */
  bool is_floating() const;
  
  /** Checks if a value has a type matching the provided type.
   * 
   * @newin{2,24}
   * 
   * @param type A VariantType.
   * @return <tt>true</tt> if the type of @a value matches @a type.
   */
  bool is_of_type(const VariantType& type) const;
  
  /** Checks if @a value is a container.
   * 
   * @newin{2,24}
   * 
   * @return <tt>true</tt> if @a value is a container.
   */
  bool is_container() const;
  
  /** Classifies @a value according to its top-level type.
   * 
   * @newin{2,24}
   * 
   * @return The VariantClass of @a value.
   */
  GVariantClass classify() const;

  
  /** Determines the number of bytes that would be required to store @a value
   * with g_variant_store().
   * 
   * If @a value has a fixed-sized type then this function always returned
   * that fixed size.
   * 
   * In the case that @a value is already in serialised form or the size has
   * already been calculated (ie: this function has been called before)
   * then this function is O(1).  Otherwise, the size is calculated, an
   * operation which is approximately O(n) in the number of values
   * involved.
   * 
   * @newin{2,24}
   * 
   * @return The serialised size of @a value.
   */
  gsize get_size() const;
  
#ifndef GLIBMM_DISABLE_DEPRECATED

  /** Returns a pointer to the serialised form of a Variant instance.
   * The returned data may not be in fully-normalised form if read from an
   * untrusted source.  The returned data must not be freed; it remains
   * valid for as long as @a value exists.
   * 
   * If @a value is a fixed-sized value that was deserialised from a
   * corrupted serialised container then <tt>nullptr</tt> may be returned.  In this
   * case, the proper thing to do is typically to use the appropriate
   * number of nul bytes in place of @a value.  If @a value is not fixed-sized
   * then <tt>nullptr</tt> is never returned.
   * 
   * In the case that @a value is already in serialised form, this function
   * is O(1).  If the value is not already in serialised form,
   * serialisation occurs implicitly and is approximately O(n) in the size
   * of the result.
   * 
   * To deserialise the data returned by this function, in addition to the
   * serialised data, you must know the type of the Variant, and (if the
   * machine might be different) the endianness of the machine that stored
   * it. As a result, file formats or network messages that incorporate
   * serialised Variants must include this information either
   * implicitly (for instance "the file always contains a
   * G_VARIANT_TYPE_VARIANT and it is always in little-endian order") or
   * explicitly (by storing the type and/or endianness in addition to the
   * serialised data).
   * 
   * @newin{2,24}
   * 
   * @deprecated Use the const version instead.
   * 
   * @return The serialised form of @a value, or <tt>nullptr</tt>.
   */
  gconstpointer get_data();
#endif // GLIBMM_DISABLE_DEPRECATED


  /** Returns a pointer to the serialised form of a Variant instance.
   * The returned data may not be in fully-normalised form if read from an
   * untrusted source.  The returned data must not be freed; it remains
   * valid for as long as @a value exists.
   * 
   * If @a value is a fixed-sized value that was deserialised from a
   * corrupted serialised container then <tt>nullptr</tt> may be returned.  In this
   * case, the proper thing to do is typically to use the appropriate
   * number of nul bytes in place of @a value.  If @a value is not fixed-sized
   * then <tt>nullptr</tt> is never returned.
   * 
   * In the case that @a value is already in serialised form, this function
   * is O(1).  If the value is not already in serialised form,
   * serialisation occurs implicitly and is approximately O(n) in the size
   * of the result.
   * 
   * To deserialise the data returned by this function, in addition to the
   * serialised data, you must know the type of the Variant, and (if the
   * machine might be different) the endianness of the machine that stored
   * it. As a result, file formats or network messages that incorporate
   * serialised Variants must include this information either
   * implicitly (for instance "the file always contains a
   * G_VARIANT_TYPE_VARIANT and it is always in little-endian order") or
   * explicitly (by storing the type and/or endianness in addition to the
   * serialised data).
   * 
   * @newin{2,46}
   * 
   * @return The serialised form of @a value, or <tt>nullptr</tt>.
   */
  gconstpointer get_data() const;
  
  /** Returns a pointer to the serialised form of a Variant instance.
   * The semantics of this function are exactly the same as
   * g_variant_get_data(), except that the returned Bytes holds
   * a reference to the variant data.
   * 
   * @newin{2,46}
   * 
   * @return A new Bytes representing the variant data.
   */
  Glib::RefPtr<const Glib::Bytes> get_data_as_bytes() const;
  
  /** Stores the serialised form of @a value at @a data.  @a data should be
   * large enough.  See g_variant_get_size().
   * 
   * The stored data is in machine native byte order but may not be in
   * fully-normalised form if read from an untrusted source.  See
   * g_variant_get_normal_form() for a solution.
   * 
   * As with g_variant_get_data(), to be able to deserialise the
   * serialised variant successfully, its type and (if the destination
   * machine might be different) its endianness must also be available.
   * 
   * This function is approximately O(n) in the size of @a data.
   * 
   * @newin{2,24}
   * 
   * @param data The location to store the serialised data at.
   */
  void store(gpointer data) const;

  
  /** Pretty-prints @a value in the format understood by g_variant_parse().
   * 
   * The format is described [here][gvariant-text].
   * 
   * If @a type_annotate is <tt>true</tt>, then type information is included in
   * the output.
   * 
   * @newin{2,24}
   * 
   * @param type_annotate <tt>true</tt> if type information should be included in
   * the output.
   * @return A newly-allocated string holding the result.
   */
  Glib::ustring print(bool type_annotate =  false) const;
  

  /** Generates a hash value for a Variant instance.
   * 
   * The output of this function is guaranteed to be the same for a given
   * value only per-process.  It may change between different processor
   * architectures or even different versions of GLib.  Do not use this
   * function as a basis for building protocols or file formats.
   * 
   * The type of @a value is #gconstpointer only to allow use of this
   * function with HashTable.  @a value must be a Variant.
   * 
   * @newin{2,24}
   * 
   * @return A hash value corresponding to @a value.
   */
  guint hash() const;

  
  /** Checks if @a *this and @a other have the same type and value.
   *
   * @newin{2,24}
   *
   * @param other The Variant to compare with.
   * @return <tt>true</tt> if @a *this and @a other are equal.
   */
  bool equal(const VariantBase& other) const;

  /** Gets a VariantBase instance that has the same value as this variant and
   * is trusted to be in normal form.
   *
   * If this variant is already trusted to be in normal form then a new
   * reference to the variant is returned.
   *
   * If this variant is not already trusted, then it is scanned to check if it
   * is in normal form. If it is found to be in normal form then it is marked
   * as trusted and a new reference to it is returned.
   *
   * If this variant is found not to be in normal form then a new trusted
   * VariantBase is created with the same value as this variant.
   *
   * It makes sense to call this function if you've received variant data from
   * untrusted sources and you want to ensure your serialised output is
   * definitely in normal form.
   *
   * @param result A location in which to store the trusted VariantBase.
   * @newin{2,24}
   */
  void get_normal_form(VariantBase& result) const;
  

  /** Checks if @a value is in normal form.
   * 
   * The main reason to do this is to detect if a given chunk of
   * serialised data is in normal form: load the data into a Variant
   * using g_variant_new_from_data() and then use this function to
   * check.
   * 
   * If @a value is found to be in normal form then it will be marked as
   * being trusted.  If the value was already marked as being trusted then
   * this function will immediately return <tt>true</tt>.
   * 
   * @newin{2,24}
   * 
   * @return <tt>true</tt> if @a value is in normal form.
   */
  bool is_normal_form() const;

  /** Performs a byteswapping operation on the contents of this variant. The
   * result is that all multi-byte numeric data contained in the variant is
   * byteswapped. That includes 16, 32, and 64bit signed and unsigned integers
   * as well as file handles and double precision floating point values.
   *
   * This function is an identity mapping on any value that does not contain
   * multi-byte numeric data. That include strings, booleans, bytes and
   * containers containing only these things (recursively).
   *
   * The returned value is always in normal form and is marked as trusted.
   *
   * @param result A location in which to store the byteswapped form of this
   * variant.
   * @newin{2,24}
   */
   void byteswap(VariantBase& result) const;
   

  /** Checks if calling g_variant_get() with @a format_string on @a value would
   * be valid from a type-compatibility standpoint.  @a format_string is
   * assumed to be a valid format string (from a syntactic standpoint).
   * 
   * If @a copy_only is <tt>true</tt> then this function additionally checks that it
   * would be safe to call g_variant_unref() on @a value immediately after
   * the call to g_variant_get() without invalidating the result.  This is
   * only possible if deep copies are made (ie: there are no pointers to
   * the data inside of the soon-to-be-freed Variant instance).  If this
   * check fails then a g_critical() is printed and <tt>false</tt> is returned.
   * 
   * This function is meant to be used by functions that wish to provide
   * varargs accessors to Variant values of uncertain values (eg:
   * g_variant_lookup() or Glib::menu_model_get_item_attribute()).
   * 
   * @newin{2,34}
   * 
   * @param format_string A valid Variant format string.
   * @param copy_only <tt>true</tt> to ensure the format string makes deep copies.
   * @return <tt>true</tt> if @a format_string is safe to use.
   */
  bool check_format_string(const std::string& format_string, bool copy_only =  false) const;

   //Ignore private API from gvariant-core.h:
   

   /** Cast to a specific variant type.
    * For instance:
    * @code
    * Variant<std::string> derived = VariantBase::cast_dynamic< Variant<std::string> >(base);
    * @endcode
    *
    * @param v The variant to cast to a specific type.
    * @result The variant as a specific type.
    * @throws std::bad_cast if the Variant was not of the expected type.
    */
   template<class V_CastTo>
   static V_CastTo cast_dynamic(const VariantBase& v);

   
protected:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
  /** Used by cast_dynamic().
   * In addition to an exact match, the following casts are possible:
   * - VARIANT_TYPE_OBJECT_PATH and VARIANT_TYPE_SIGNATURE can be cast to
   *   VARIANT_TYPE_STRING (Glib::ustring).
   * - VARIANT_TYPE_STRING, VARIANT_TYPE_OBJECT_PATH and VARIANT_TYPE_SIGNATURE
   *   can be cast to VARIANT_TYPE_BYTESTRING (std::string).
   * - VARIANT_TYPE_HANDLE can be cast to VARIANT_TYPE_INT32.
   *
   * These casts are possible also when they are parts of a more complicated type.
   * E.g. in Variant<std::map<Glib::ustring, std::vector<std::string> > > the map's keys
   * can be VARIANT_TYPE_OBJECT_PATH and the vector's elements can be VARIANT_TYPE_SIGNATURE.
   * @newin{2,46}
   */
  bool is_castable_to(const VariantType& supertype) const;
#endif //DOXYGEN_SHOULD_SKIP_THIS

private:
  /** Relational operators are deleted to prevent invalid conversion
   * to const void*.
   */
  bool operator<(const VariantBase& src) const;

  /// See operator<().
  bool operator<=(const VariantBase& src) const;

  /// See operator<().
  bool operator>(const VariantBase& src) const;

  /// See operator<().
  bool operator>=(const VariantBase& src) const;

  /// See operator<().
  bool operator==(const VariantBase& src) const;

  /// See operator<().
  bool operator!=(const VariantBase& src) const;


};

template<class V_CastTo>
V_CastTo VariantBase::cast_dynamic(const VariantBase& v)
{
  if(!(v.gobj()))
  {
    return V_CastTo();
  }
  if(v.is_castable_to(V_CastTo::variant_type()))
  {
    return V_CastTo(const_cast<GVariant*>(v.gobj()), true);
  }
  else
  {
   throw std::bad_cast();
  }
}

/** Base class from which string variant classes derive.
 * @newin{2,28}
 * @ingroup Variant
 */
class VariantStringBase : public VariantBase
{
  // Trick gmmproc into thinking this is derived from GVariant to wrap some methods.
  public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
  using CppObjectType = VariantStringBase;
  using BaseObjectType = GVariant;
#endif /* DOXYGEN_SHOULD_SKIP_THIS */

private:


public:
  using CType = GVariant*;
  using CppType = VariantStringBase;

  /// Default constructor.
  VariantStringBase();

  /** GVariant constructor.
   * @param castitem The GVariant to wrap.
   * @param take_a_reference Whether to take an extra reference of the
   * GVariant or not (not taking one could destroy the GVariant with the
   * wrapper).
   */
  explicit VariantStringBase(GVariant* castitem,  bool take_a_reference = false);

  /** Creates a D-Bus object path variant with the contents of @a object_path.
   * @a object_path must be a valid D-Bus object path. Use is_object_path() if unsure.
   *
   * @param[out] output A location in which to store the new object path variant
   * instance.
   * @param object_path An object path string.
   * @newin{2,28}
   */
  static void create_object_path(VariantStringBase& output,
    const std::string& object_path);
  

  /** Determines if a given string is a valid D-Bus object path.  You
   * should ensure that a string is a valid D-Bus object path before
   * passing it to g_variant_new_object_path().
   * 
   * A valid object path starts with '/' followed by zero or more
   * sequences of characters separated by '/' characters.  Each sequence
   * must contain only the characters "[A-Z][a-z][0-9]_".  No sequence
   * (including the one following the final '/' character) may be empty.
   * 
   * @newin{2,24}
   * 
   * @param string A normal C nul-terminated string.
   * @return <tt>true</tt> if @a string is a D-Bus object path.
   */
  static bool is_object_path(const std::string& string);

  /** Creates a D-Bus type signature variant with the contents of @a signature.
   * @a signature must be a valid D-Bus type signature. Use is_signature() if unsure.
   *
   * @param[out] output A location in which to store the new signature variant
   * instance.
   * @param signature A signature string.
   * @newin{2,28}
   */
  static void create_signature(VariantStringBase& output,
    const std::string& signature);
  

  /** Determines if a given string is a valid D-Bus type signature.  You
   * should ensure that a string is a valid D-Bus type signature before
   * passing it to g_variant_new_signature().
   * 
   * D-Bus type signatures consist of zero or more definite VariantType
   * strings in sequence.
   * 
   * @newin{2,24}
   * 
   * @param string A normal C nul-terminated string.
   * @return <tt>true</tt> if @a string is a D-Bus type signature.
   */
  static bool is_signature(const std::string& string);


};

/** The base class for multiple-item Variants, such as Variants containing
 * tuples or arrays, and also for maybe-typed (i.e. nullable) Variant types.
 *
 * @newin{2,28}
 * @ingroup Variant
 */
class VariantContainerBase : public VariantBase
{
  // Trick gmmproc into thinking this is derived from GVariant to wrap some methods.
  public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
  using CppObjectType = VariantContainerBase;
  using BaseObjectType = GVariant;
#endif /* DOXYGEN_SHOULD_SKIP_THIS */

private:


public:
  using CType = GVariant*;
  using CppType = VariantContainerBase;

  /// Default constructor.
  VariantContainerBase();

  /** GVariant constructor.
   * @param castitem The GVariant to wrap.
   * @param take_a_reference Whether to take an extra reference of the
   * GVariant or not (not taking one could destroy the GVariant with the
   * wrapper).
   */
  explicit VariantContainerBase(GVariant* castitem, bool take_a_reference = false);

  /** Create a tuple variant from a vector of its variant children.
   * @param children The vector containing the children of the container.
   * @return The newly created tuple variant (as a VariantContainerBase).
   */
  static VariantContainerBase create_tuple(const std::vector<VariantBase>& children);

  /** Create a tuple variant with a single variant child.
   * @param child The child variant.
   * @return The newly created tuple variant (as a VariantContainerBase).
   */
  static VariantContainerBase create_tuple(const VariantBase& child);

  
  /** Depending on if @a child is <tt>nullptr</tt>, either wraps @a child inside of a
   * maybe container or creates a Nothing instance for the given @a type.
   * 
   * At least one of @a child_type and @a child must be non-<tt>nullptr</tt>.
   * If @a child_type is non-<tt>nullptr</tt> then it must be a definite type.
   * If they are both non-<tt>nullptr</tt> then @a child_type must be the type
   * of @a child.
   * 
   * If @a child is a floating reference (see g_variant_ref_sink()), the new
   * instance takes ownership of @a child.
   * 
   * @newin{2,24}
   * 
   * @param child_type The VariantType of the child, or <tt>nullptr</tt>.
   * @param child The child value, or <tt>nullptr</tt>.
   * @return A floating reference to a new Variant maybe instance.
   */

  static VariantContainerBase create_maybe(const VariantType& child_type,
    const VariantBase& child = VariantBase());

  
  /** Determines the number of children in a container Variant instance.
   * This includes variants, maybes, arrays, tuples and dictionary
   * entries.  It is an error to call this function on any other type of
   * Variant.
   * 
   * For variants, the return value is always 1.  For values with maybe
   * types, it is always zero or one.  For arrays, it is the length of the
   * array.  For tuples it is the number of tuple items (which depends
   * only on the type).  For dictionary entries, it is always 2
   * 
   * This function is O(1).
   * 
   * @newin{2,24}
   * 
   * @return The number of children in the container.
   */
  gsize get_n_children() const;

  /** Reads a child item out of this instance. This method is valid for
   * variants, maybes, arrays, tuples and dictionary entries.
   *
   * It is an error if @a index is greater than the number of child items in
   * the container. See get_n_children().
   *
   * This function is O(1).
   *
   * @param index The index of the child to fetch.
   * @param child A location in which to store the child at the specified
   * index.
   * @throw std::out_of_range
   * @newin{2,28}
   */
  void get_child(VariantBase& child, gsize index = 0) const;
  

  /** Reads a child item out of a container Variant instance.  This
   * includes variants, maybes, arrays, tuples and dictionary
   * entries.  It is an error to call this function on any other type of
   * Variant.
   * 
   * It is an error if @a index is greater than the number of child items
   * in the container.  See g_variant_n_children().
   * 
   * The returned value is never floating.  You should free it with
   * g_variant_unref() when you're done with it.
   * 
   * This function is O(1).
   * 
   * @newin{2,24}
   * 
   * @param index The index of the child to fetch.
   * @return The child at the specified index.
   */
  VariantBase get_child(gsize index =  0);

  /* TODO?:
  /// A get() method to return the contents of the variant in the container.
  template <class DataType>
  DataType get_child(gsize index = 0) const;
  */

  /** If this is a maybe-typed instance, try to extract its value. If there is
   * no value (the value is <tt>nothing</tt>), return <tt>false</tt>. Otherwise,
   * the value is copied to the supplied Variant and <tt>true</tt> is returned.
   *
   * @param maybe A place in which to return the value, if it isn’t
   * <tt>nothing</tt>.
   * @newin{2,28}
   */
  bool get_maybe(VariantBase& maybe) const;
  

protected:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
  /** Used by get_iter() in the subclasses.
   * @newin{2,46}
   */
  VariantIter get_iter(const VariantType& container_variant_type) const;
#endif //DOXYGEN_SHOULD_SKIP_THIS


};

template<>
VariantContainerBase VariantBase::cast_dynamic<VariantContainerBase>(const VariantBase& v);

/** Template class used for the specialization of the Variant<> classes.
 * @newin{2,28}
 * @ingroup Variant
 */
template<class T>
class Variant : public VariantBase
{
public:
  using CppType = T;
};

/****************** Specializations ***********************************/

/** Specialization of Variant containing a VariantBase.
 * Perhaps the main use of this is as a maybe-typed (i.e. nullable) Variant, as
 * it inherits the methods create_maybe() and get_maybe() from
 * VariantContainerBase, plus get_n_children() to allow checking whether there
 * is a contained value, i.e. the inner Variant is not <tt>nothing</tt>.
 *
 * @newin{2,28}
 * @ingroup Variant
 */
template<>
class Variant<VariantBase> : public VariantContainerBase
{
  // Trick gmmproc into thinking this is derived from GVariant to wrap some methods.
  public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
  using CppObjectType = Variant<VariantBase>;
  using BaseObjectType = GVariant;
#endif /* DOXYGEN_SHOULD_SKIP_THIS */

private:


public:
  using CType = GVariant*;
  using CppType = VariantBase;
  using CppContainerType = Variant<VariantBase>;

  /// Default constructor.
  Variant<VariantBase>();

  /** GVariant constructor.
   * @param castitem The GVariant to wrap.
   * @param take_a_reference Whether to take an extra reference of the
   * GVariant or not (not taking one could destroy the GVariant with the
   * wrapper).
   */
  explicit Variant<VariantBase>(GVariant* castitem, bool take_a_reference = false);

  /** Gets the VariantType.
   * @return The VariantType.
   * @newin{2,28}
   */
  static const VariantType& variant_type() G_GNUC_CONST;

  //This must have a create() method because otherwise it would be a copy
  //constructor.
  /** Creates a new Variant<VariantBase>.
   * @param data The value of the new Variant.
   * @return The new Variant.
   * @newin{2,28}
   */
  static Variant<VariantBase> create(const VariantBase& data);
  

  //TODO: Documentation
  void get(VariantBase& variant) const;

  //TODO: Deprecate this in favour of get(VariantBase&)?
  
  /** Unboxes @a value.  The result is the Variant instance that was
   * contained in @a value.
   * 
   * @newin{2,24}
   * 
   * @return The item contained in the variant.
   */
  VariantBase get() const;


};

/** Specialization of Variant containing a Variant<T>.
 * Perhaps the main use of this is as a maybe-typed (i.e. nullable) Variant, as
 * it inherits the methods create_maybe() and get_maybe() from
 * VariantContainerBase, plus get_n_children() to allow checking whether there
 * is a contained value, i.e. the inner Variant is not <tt>nothing</tt>.
 *
 * @newin{2,36}
 * @ingroup Variant
 */
template<class T>
class Variant< Variant<T> > : public VariantContainerBase
{
public:
  using CType = GVariant*;
  using CppType = Variant<T>;
  using CppContainerType = Variant<CppType>;

  /// Default constructor.
  Variant< Variant<T> >();

  /** GVariant constructor.
   * @param castitem The GVariant to wrap.
   * @param take_a_reference Whether to take an extra reference of the
   * GVariant or not (not taking one could destroy the GVariant with the
   * wrapper).
   * @newin{2,36}
   */
  explicit Variant< Variant<T> >(GVariant* castitem, bool take_a_reference = false);

  /** Gets the VariantType.
   * @return The VariantType.
   * @newin{2,36}
   */
  static const VariantType& variant_type() G_GNUC_CONST;

  /** Creates a new Variant< Variant<T> >.
   * @param data The value of the new Variant.
   * @return The new Variant.
   * @newin{2,36}
   */
  static Variant< Variant<T> > create(const Variant<T>& data);

  /** Gets the contents of the Variant.
   * @return The contents of the Variant.
   * @newin{2,36}
   */
  Variant<T> get() const;
};

/** Specialization of Variant containing a Glib::ustring, for variants of type
 * string, object path, or signature.
 * @newin{2,28}
 * @ingroup Variant
 */
template<>
class Variant<Glib::ustring> : public VariantStringBase
{
  // Trick gmmproc into thinking this is derived from GVariant to wrap some methods.
  public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
  using CppObjectType = Variant<Glib::ustring>;
  using BaseObjectType = GVariant;
#endif /* DOXYGEN_SHOULD_SKIP_THIS */

private:

public:
  using CType = char*;
  using CppType = Glib::ustring;

  /// Default constructor.
  Variant<Glib::ustring>();

  /** GVariant constructor.
   * @param castitem The GVariant to wrap.
   * @param take_a_reference Whether to take an extra reference of the
   * GVariant or not (not taking one could destroy the GVariant with the
   * wrapper).
   */
  explicit Variant<Glib::ustring>(GVariant* castitem,  bool take_a_reference = false);

  /** Gets the VariantType.
   * @return The VariantType.
   * @newin{2,28}
   */
  static const VariantType& variant_type() G_GNUC_CONST;

  /** Creates a new Variant<Glib::ustring>.
   * @param data The value of the new Variant.
   * @return The new Variant.
   * @newin{2,28}
   */
  static Variant<Glib::ustring> create(const Glib::ustring& data);

  //We can't use WRAP_METHOD() here because g_variant_get_string() takes an extra length parameter.
  /** Gets the contents of the Variant.
   * @return The contents of the Variant.
   * @newin{2,28}
   */
  Glib::ustring get() const;
  

};

//TODO: When we can break ABI, remove this template specialization.
template<>
Variant<Glib::ustring> VariantBase::cast_dynamic< Variant<Glib::ustring> >(const VariantBase& v);

/** Specialization of Variant containing a Glib::DBusObjectPathString,
 * for variants of type object path.
 * @newin{2,54}
 * @ingroup Variant
 */
template<>
class Variant<Glib::DBusObjectPathString> : public VariantStringBase
{
  // Trick gmmproc into thinking this is derived from GVariant to wrap some methods.
  public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
  using CppObjectType = Variant<Glib::DBusObjectPathString>;
  using BaseObjectType = GVariant;
#endif /* DOXYGEN_SHOULD_SKIP_THIS */

private:

public:
  using CType = char*;
  using CppType = Glib::DBusObjectPathString;

  /// Default constructor.
  Variant();

  /** GVariant constructor.
   * @param castitem The GVariant to wrap.
   * @param take_a_reference Whether to take an extra reference of the
   * GVariant or not (not taking one could destroy the GVariant with the
   * wrapper).
   */
  explicit Variant(GVariant* castitem,  bool take_a_reference = false);

  /** Gets the VariantType.
   * @return The VariantType.
   * @newin{2,54}
   */
  static const VariantType& variant_type() G_GNUC_CONST;

  /** Creates a new Variant<Glib::DBusObjectPathString>.
   * @param data The value of the new Variant.
   * @return The new Variant.
   * @newin{2,54}
   */
  static Variant<CppType> create(const CppType& data);

  //We can't use WRAP_METHOD() here because g_variant_get_string() takes an extra length parameter.
  /** Gets the contents of the Variant.
   * @return The contents of the Variant.
   * @newin{2,54}
   */
  CppType get() const;


};

/** Specialization of Variant containing a Glib::DBusSignatureString,
 * for variants of type signature.
 * @newin{2,54}
 * @ingroup Variant
 */
template<>
class Variant<Glib::DBusSignatureString> : public VariantStringBase
{
  // Trick gmmproc into thinking this is derived from GVariant to wrap some methods.
  public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
  using CppObjectType = Variant<Glib::DBusSignatureString>;
  using BaseObjectType = GVariant;
#endif /* DOXYGEN_SHOULD_SKIP_THIS */

private:

public:
  using CType = char*;
  using CppType = Glib::DBusSignatureString;

  /// Default constructor.
  Variant();

  /** GVariant constructor.
   * @param castitem The GVariant to wrap.
   * @param take_a_reference Whether to take an extra reference of the
   * GVariant or not (not taking one could destroy the GVariant with the
   * wrapper).
   */
  explicit Variant(GVariant* castitem,  bool take_a_reference = false);

  /** Gets the VariantType.
   * @return The VariantType.
   * @newin{2,54}
   */
  static const VariantType& variant_type() G_GNUC_CONST;

  /** Creates a new Variant<Glib::DBusSignatureString>.
   * @param data The value of the new Variant.
   * @return The new Variant.
   * @newin{2,54}
   */
  static Variant<CppType> create(const CppType& data);

  //We can't use WRAP_METHOD() here because g_variant_get_string() takes an extra length parameter.
  /** Gets the contents of the Variant.
   * @return The contents of the Variant.
   * @newin{2,54}
   */
  CppType get() const;


};

/** Specialization of Variant containing a std::string, for variants of type
 * bytestring, string, object path, or signature.
 * See also Variant<Glib::ustring> for UTF-8 strings.
 * @newin{2,28}
 * @ingroup Variant
 */
template<>
class Variant<std::string> : public VariantStringBase
{
  // Trick gmmproc into thinking this is derived from GVariant to wrap some methods.
  public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
  using CppObjectType = Variant<std::string>;
  using BaseObjectType = GVariant;
#endif /* DOXYGEN_SHOULD_SKIP_THIS */

private:

public:
  using CType = char*                ;
  using CppType = std::string;

  /// Default constructor.
  Variant<std::string>();

  /** GVariant constructor.
   * @param castitem The GVariant to wrap.
   * @param take_a_reference Whether to take an extra reference of the
   * GVariant or not (not taking one could destroy the GVariant with the
   * wrapper).
   */
  explicit Variant<std::string>(GVariant* castitem, bool take_a_reference = false);

  /** Gets the VariantType.
   * @return The VariantType.
   * @newin{2,28}
   */
  static const VariantType& variant_type() G_GNUC_CONST;

  /** Creates a new Variant<std::string>.
   * @param data The value of the new Variant.
   * @return The new Variant.
   * @newin{2,28}
   */
  static Variant<std::string> create(const std::string& data);

  //TODO: Documentation.
  std::string get() const;
  

};

//TODO: When we can break ABI, remove this template specialization.
template<>
Variant<std::string> VariantBase::cast_dynamic< Variant<std::string> >(const VariantBase& v);

/** Specialization of Variant containing a dictionary entry.  See also
 * Variant< std::map<K, V> >.
 * @newin{2,28}
 * @ingroup Variant
 */
template<class K, class V>
class Variant< std::pair<K, V> > : public VariantContainerBase
{
public:
  using CppType = std::pair<K, V>;
  using CppContainerType = Variant<CppType>;

  /// Default constructor.
  Variant< std::pair<K, V> >()
  : VariantContainerBase()
  {}

  /** GVariant constructor.
   * @param castitem The GVariant to wrap.
   * @param take_a_reference Whether to take an extra reference of the
   * GVariant or not (not taking one could destroy the GVariant with the
   * wrapper).
   */
  explicit Variant< std::pair<K, V> >(GVariant* castitem,
    bool take_a_reference = false)
  : VariantContainerBase(castitem, take_a_reference)
  {}

  /** Gets the VariantType.
   * @return The VariantType.
   * @newin{2,28}
   */
  static const VariantType& variant_type() G_GNUC_CONST;

  /** Creates a new Variant< std::pair<K, V> >.
   * @param data The value of the new Variant.
   * @return The new Variant.
   * @newin{2,28}
   */
  static Variant< std::pair<K, V> > create(const std::pair<K, V>& data);
  

  /** Gets the contents of the Variant.
   * @return The contents of the Variant.
   * @throw std::out_of_range
   * @newin{2,28}
   */
  std::pair<K, V> get() const;
};

/** Specialization of Variant containing an array of items.
 * @newin{2,28}
 * @ingroup Variant
 */
template<class T>
class Variant< std::vector<T> > : public VariantContainerBase
{
public:
  using CppType = T                    ;
  using CppContainerType = std::vector<T>;

  /// Default constructor.
  Variant< std::vector<T> >()
  : VariantContainerBase()
  {}

  /** GVariant constructor.
   * @param castitem The GVariant to wrap.
   * @param take_a_reference Whether to take an extra reference of the
   * GVariant or not (not taking one could destroy the GVariant with the
   * wrapper).
   */
  explicit Variant< std::vector<T> >(GVariant* castitem,
    bool take_a_reference = false)
  : VariantContainerBase(castitem, take_a_reference)
  {}

  /** Gets the VariantType.
   * @return The VariantType.
   * @newin{2,28}
   */
  static const VariantType& variant_type() G_GNUC_CONST;

  /** Creates a new Variant from an array of numeric types.
   * @param data The array to use for creation.
   * @return The new Variant.
   * @newin{2,28}
   */
  static Variant< std::vector<T> > create(const std::vector<T>& data);
  

  /** Gets a specific element of the array.  It is an error if @a index is
   * greater than the number of child items in the container.  See
   * VariantContainerBase::get_n_children().
   *
   * This function is O(1).
   *
   * @param index The index of the element.
   * @return The element at index @a index.
   * @throw std::out_of_range
   * @newin{2,28}
   */
  T get_child(gsize index) const;

  /** Gets the vector of the Variant.
   * @return The vector.
   * @newin{2,28}
   */
  std::vector<T> get() const;
  

  /** Gets a VariantIter of the Variant.
   * @return the VariantIter.
   * @newin{2,28}
   */
  VariantIter get_iter() const;
};

/** Specialization of Variant containing an array of UTF-8 capable
 * strings.
 * @newin{2,28}
 * @ingroup Variant
 */
template<>
class Variant< std::vector<Glib::ustring> > : public VariantContainerBase
{
public:
  using CppType = Glib::ustring                ;
  using CppContainerType = std::vector<Glib::ustring>;

  /// Default constructor.
  Variant< std::vector<Glib::ustring> >();

  /** GVariant constructor.
   * @param castitem The GVariant to wrap.
   * @param take_a_reference Whether to take an extra reference of the
   * GVariant or not (not taking one could destroy the GVariant with the
   * wrapper).
   */
  explicit Variant< std::vector<Glib::ustring> >(GVariant* castitem, bool take_a_reference = false);

  /** Gets the VariantType.
   * @return The VariantType.
   * @newin{2,28}
   */
  static const VariantType& variant_type() G_GNUC_CONST;

  /** Creates a new Variant from an array of strings.
   * @param data The array to use for creation.
   * @return The new Variant.
   * @newin{2,28}
   */
  static Variant< std::vector<Glib::ustring> >
    create(const std::vector<Glib::ustring>& data);

  /** Gets a specific element of the string array.  It is an error if @a index
   * is greater than the number of child items in the container.  See
   * VariantContainerBase::get_n_children().
   *
   * This function is O(1).
   *
   * @param index The index of the element.
   * @return The element at index @a index.
   * @throw std::out_of_range
   * @newin{2,28}
   */
  Glib::ustring get_child(gsize index) const;

  /** Gets the string vector of the Variant.
   * @return The vector.
   * @newin{2,28}
   */
  std::vector<Glib::ustring> get() const;
  

  /** Gets a VariantIter of the Variant.
   * @return the VariantIter.
   * @newin{2,28}
   */
  VariantIter get_iter() const;
};

/** Specialization of Variant containing an array of D-Bus object paths.
 *
 * @newin{2,54}
 * @ingroup Variant
 */
template<>
class Variant<std::vector<Glib::DBusObjectPathString>> : public VariantContainerBase
{
public:
  using CppType = Glib::DBusObjectPathString;
  using CppContainerType = std::vector<Glib::DBusObjectPathString>;

  /// Default constructor.
  Variant();

  /** GVariant constructor.
   * @param castitem The GVariant to wrap.
   * @param take_a_reference Whether to take an extra reference of the
   * GVariant or not (not taking one could destroy the GVariant with the
   * wrapper).
   */
  explicit Variant(GVariant* castitem, bool take_a_reference = false);

  /** Gets the VariantType.
   * @return The VariantType.
   * @newin{2,54}
   */
  static const VariantType& variant_type() G_GNUC_CONST;

  /** Creates a new Variant from an array of strings.
   * @param data The array to use for creation.
   * @return The new Variant.
   * @newin{2,54}
   */
  static Variant<CppContainerType> create(const CppContainerType& data);

  /** Gets a specific element of the string array.  It is an error if @a index
   * is greater than the number of child items in the container.  See
   * VariantContainerBase::get_n_children().
   *
   * This function is O(1).
   *
   * @param index The index of the element.
   * @return The element at index @a index.
   * @throw std::out_of_range
   * @newin{2,54}
   */
  CppType get_child(gsize index) const;

  /** Gets the string vector of the Variant.
   * @return The vector.
   * @newin{2,54}
   */
  CppContainerType get() const;

  /** Gets a VariantIter of the Variant.
   * @return the VariantIter.
   * @newin{2,54}
   */
  VariantIter get_iter() const;
};

/** Specialization of Variant containing an array of non-UTF-8 strings
 * (byte string arrays).
 * @newin{2,28}
 * @ingroup Variant
 */
template<>
class Variant< std::vector<std::string> > : public VariantContainerBase
{
public:
  using CppType = std::string                  ;
  using CppContainerType = std::vector<std::string>;

  /// Default constructor.
  Variant< std::vector<std::string> >();

  /** GVariant constructor.
   * @param castitem The GVariant to wrap.
   * @param take_a_reference Whether to take an extra reference of the
   * GVariant or not (not taking one could destroy the GVariant with the
   * wrapper).
   */
  explicit Variant< std::vector<std::string> >(GVariant* castitem, bool take_a_reference = false);

  /** Gets the VariantType.
   * @return The VariantType.
   * @newin{2,28}
   */
  static const VariantType& variant_type() G_GNUC_CONST;

  /** Creates a new Variant from an array of strings.
   * @param data The array to use for creation.
   * @return The new Variant.
   * @newin{2,28}
   */
  static Variant< std::vector<std::string> >
    create(const std::vector<std::string>& data);

  /** Creates a new Variant from an array of D-Bus object paths.
   * @param paths The array to use for creation.
   * @return The new Variant.
   * @newin{2,36}
   */
  static Variant< std::vector<std::string> >
    create_from_object_paths(const std::vector<std::string>& paths);

  /** Gets a specific element of the string array.  It is an error if @a index
   * is greater than the number of child items in the container.  See
   * VariantContainerBase::get_n_children().
   *
   * This function is O(1).
   *
   * @param index The index of the element.
   * @return The element at index @a index.
   * @throw std::out_of_range
   * @newin{2,28}
   */
  std::string get_child(gsize index) const;

  /** Gets the string vector of the Variant.
   * @return The vector.
   * @newin{2,28}
   */
  std::vector<std::string> get() const;
  

  // Object paths are merely strings so it is possible to get them already with
  // the existing get() methods in this class.
  

  /** Gets a VariantIter of the Variant.
   * @return the VariantIter.
   * @newin{2,28}
   */
  VariantIter get_iter() const;
};

/** Specialization of Variant containing a dictionary (a map of (key,
 * value) elements).
 * @newin{2,28}
 * @ingroup Variant
 */
template<class K, class V>
class Variant< std::map<K, V> >: public VariantContainerBase
{
public:
  using CppType = std::pair<K, V>;
  using CppContainerType = std::map<K, V>;

  /// Default constructor.
  Variant< std::map<K, V> >()
  : VariantContainerBase()
  {}

  /** GVariant constructor.
   * @param castitem The GVariant to wrap.
   * @param take_a_reference Whether to take an extra reference of the
   * GVariant or not (not taking one could destroy the GVariant with the
   * wrapper).
   */
  explicit Variant< std::map<K, V> >(GVariant* castitem,
    bool take_a_reference = false)
  : VariantContainerBase(castitem, take_a_reference)
  {}

  /** Gets the VariantType.
   * @return The VariantType.
   * @newin{2,28}
   */
  static const VariantType& variant_type() G_GNUC_CONST;

  /** Creates a new Variant containing a dictionary from a map.
   * @param data The map to use for creation.
   * @return The new Variant holding a dictionary.
   * @newin{2,28}
   */
  static Variant< std::map<K, V> > create(const std::map<K, V>& data);

  /** Gets a specific dictionary entry from the string array.  It is an error
   * if @a index is greater than the number of child items in the container.
   * See VariantContainerBase::get_n_children().
   *
   * This function is O(1).
   *
   * @param index The index of the element.
   * @return The dictionary entry at index @a index.
   * @throw std::out_of_range
   * @newin{2,28}
   */
  std::pair<K, V> get_child(gsize index) const;

  /** Looks up a value in a dictionary Variant.
   * @param key The key to look up.
   * @param value A location in which to store the value if found.
   * @return <tt>true</tt> if the key is found, <tt>false</tt> otherwise.
   */
  bool lookup(const K& key, V& value) const;
  

  /** Gets the map (the dictionary) of the Variant.
   * @return The vector.
   * @newin{2,28}
   */
  std::map<K, V> get() const;

  /** Gets a VariantIter of the Variant.
   * @return the VariantIter.
   * @newin{2,28}
   */
  VariantIter get_iter() const;
};

/** Specialization of Variant containing a tuple.
 * @newin{2,54}
 * @ingroup Variant
 */
template <class... Types>
class Variant<std::tuple<Types...>> : public VariantContainerBase
{
public:
  using CppContainerType = std::tuple<Types...>;

  /// Default constructor
  Variant<std::tuple<Types...>>()
  : VariantContainerBase()
  {}

  /** GVariant constructor.
   * @param castitem The GVariant to wrap.
   * @param take_a_reference Whether to take an extra reference of the GVariant
   *        or not (not taking one could destroy the GVariant with the wrapper).
   */
  explicit Variant<std::tuple<Types...>>(GVariant* castitem, bool take_a_reference = false)
  : VariantContainerBase(castitem, take_a_reference)
  {}

  /** Creates a new Variant containing a tuple.
   * @param data The tuple to use for creation.
   * @return The new Variant holding a tuple.
   * @newin{2,54}
   */
  static Variant<std::tuple<Types...>> create(const std::tuple<Types...>& data);

  /** Gets the VariantType.
   * @return The VariantType.
   * @newin{2,54}
   */
  static const VariantType& variant_type() G_GNUC_CONST;

  /** Gets a specific element from the tuple.
   * It is an error if @a index is greater than or equal to the number of
   * elements in the tuple. See VariantContainerBase::get_n_children().
   *
   * @param index The index of the element.
   * @return The tuple element at index @a index.
   * @throw std::out_of_range
   * @newin{2,54}
   */
  template<class T>
  T get_child(gsize index) const;

  template<class T>
  Variant<T> get_child_variant(gsize index) const;

  /** Gets the tuple of the Variant.
   * @return The tuple.
   * @newin{2,54}
   */
  std::tuple<Types...> get() const;

  /** Gets a VariantIter of the Variant.
   * @return The VariantIter.
   * @newin{2,54}
   */
  VariantIter get_iter() const;
};

} // namespace Glib


//We ignore g_variant_get_*() methods that are wrapped by Variant<> specializations, such as in variant_basictypes.h.m4.


/* Include generated specializations of Variant<> for fundamental types:
 */
#define _GLIBMM_VARIANT_H_INCLUDE_VARIANT_BASICTYPES_H
#include <glibmm/variant_basictypes.h>
#undef _GLIBMM_VARIANT_H_INCLUDE_VARIANT_BASICTYPES_H

namespace Glib
{

/*--------------------Variant< Variant<T> >---------------------*/

template<class T>
Variant< Variant<T> >::Variant()
: VariantContainerBase()
{
}

template<class T>
Variant< Variant<T> >::Variant(GVariant* castitem, bool take_a_reference)
: VariantContainerBase(castitem, take_a_reference)
{
}

// static
template<class T>
const VariantType& Variant< Variant<T> >::variant_type()
{
  return VARIANT_TYPE_VARIANT;
}

template<class T>
Variant< Variant<T> > Variant< Variant<T> >::create(const Variant<T>& data)
{
  Variant< Variant<T> > result = Variant< Variant<T> >(
    g_variant_new_variant(const_cast<GVariant*>(data.gobj())));
  return result;
}

template<class T>
Variant<T> Variant< Variant<T> >::get() const
{
  GVariant* const gvariant = g_variant_get_variant(gobject_);
  return Variant<T>(gvariant);
}

/*--------------------Variant< std::pair<K, V> >---------------------*/

// static
template<class K, class V>
const VariantType& Variant< std::pair<K, V> >::variant_type()
{
  static VariantType type(
    g_variant_type_new_dict_entry(Variant<K>::variant_type().gobj(),
    Variant<V>::variant_type().gobj()));

  return type;
}

template<class K, class V>
Variant< std::pair<K, V> >
Variant< std::pair<K, V> >::create(const std::pair<K, V>& data)
{
  Variant<K> key = Variant<K>::create(data.first);
  Variant<V> value = Variant<V>::create(data.second);

  Variant< std::pair<K, V> > result = Variant< std::pair<K, V> >(
    g_variant_new_dict_entry(key.gobj(), value.gobj()));

  return result;
}

template<class K, class V>
std::pair<K, V> Variant< std::pair<K, V> >::get() const
{
  // Get the key (the first element of this VariantContainerBase).
  Variant<K> key;
  VariantContainerBase::get_child(key, 0);

  // Get the value (the second element of this VariantContainerBase).
  Variant<V> value;
  VariantContainerBase::get_child(value, 1);

  std::pair<K, V> result(key.get(), value.get());

  return result;
}

/*---------------------Variant< std::vector<T> >---------------------*/

// static
template<class T>
const VariantType& Variant< std::vector<T> >::variant_type()
{
  static VariantType type =
    VariantType::create_array(Variant<T>::variant_type());

  return type;
}

template<class T>
Variant< std::vector<T> >
Variant< std::vector<T> >::create(const std::vector<T>& data)
{
  // Get the variant type of the array.
  VariantType array_variant_type = Variant< std::vector<T> >::variant_type();

  // Create a GVariantBuilder to build the array.
  GVariantBuilder* builder = g_variant_builder_new(array_variant_type.gobj());

  // Add the elements of the vector into the builder.
  for(const auto& element : data)
  {
    Glib::Variant<T> variant = Glib::Variant<T>::create(element);
    g_variant_builder_add_value(builder, variant.gobj());
  }

  // Create the variant using the builder.
  Variant< std::vector<T> > result =
    Variant< std::vector<T> >(g_variant_new(
      reinterpret_cast<const gchar*>(array_variant_type.gobj()), builder));

  g_variant_builder_unref(builder);

  return result;
}

template<class T>
T Variant< std::vector<T> >::get_child(gsize index) const
{
  if (index >= get_n_children())
    throw std::out_of_range(
      "Variant< std::vector<T> >::get_child(): Index out of bounds.");

  Glib::Variant<T> variant;

  GVariant* gvariant =
    g_variant_get_child_value(const_cast<GVariant*>(gobj()), index);

  variant.init(gvariant);
  return variant.get();
}

template<class T>
std::vector<T> Variant< std::vector<T> >::get() const
{
  std::vector<T> result;

  for (gsize i = 0, n_children = get_n_children(); i < n_children; ++i)
  {
    Glib::Variant<T> variant;

    GVariant* gvariant =
      g_variant_get_child_value(const_cast<GVariant*>(gobj()), i);

    variant.init(gvariant);
    result.emplace_back(variant.get());
  }

  return result;
}

template<class T>
VariantIter Variant< std::vector<T> >::get_iter() const
{
  return VariantContainerBase::get_iter(variant_type());
}

/*---------------------Variant< std::map<K, V> > --------------------*/

// static
template<class K, class V>
const VariantType& Variant< std::map<K, V> >::variant_type()
{
  static VariantType type =
    VariantType::create_array(Variant< std::pair<K, V> >::variant_type());

  return type;
}

template<class K, class V>
Variant< std::map<K, V> >
Variant< std::map<K, V> >::create(const std::map<K, V>& data)
{
  // Get the variant type of the elements.
  VariantType element_variant_type =
    Variant< std::pair<K, V> >::variant_type();

  // Get the variant type of the array.
  VariantType array_variant_type = Variant< std::map<K, V> >::variant_type();

  // Create a GVariantBuilder to build the array.
  GVariantBuilder* builder = g_variant_builder_new(array_variant_type.gobj());

  // Add the elements of the map into the builder.
  for(const auto& element : data)
  {
    auto dict_entry =
      Variant< std::pair<K, V> >::create(element);

    g_variant_builder_add_value(builder, dict_entry.gobj());
  }

  // Create the variant using the builder.
  Variant< std::map<K, V> > result = Variant< std::map<K, V> >(g_variant_new(
    reinterpret_cast<const gchar*>(array_variant_type.gobj()), builder));

  g_variant_builder_unref(builder);

  return result;
}

template<class K, class V>
std::pair<K, V>
Variant< std::map<K, V> >::get_child(gsize index) const
{
  Variant< std::pair<K, V> > dict_entry;
  VariantContainerBase::get_child(dict_entry, index);
  return dict_entry.get();
}

template<class K, class V>
bool Variant< std::map<K, V> >::lookup(const K& key, V& value) const
{
  // The code in this method pretty much reflects the g_variant_lookup_value()
  // function except that it's more general to deal with keys that are not
  // just strings.
  VariantIter iter = get_iter();

  Variant< std::pair<K, V> > entry;

  while(iter.next_value(entry))
  {
    std::pair<K, V> element = entry.get();

    if(element.first == key)
    {
      value = element.second;
      return true;
    }
  }

  return false;
}

template<class K, class V>
std::map<K, V> Variant< std::map<K, V> >::get() const
{
  std::map<K, V> result;
  VariantIter iter = get_iter();
  Variant< std::pair<K, V> > entry;

  while(iter.next_value(entry))
  {
    result.insert(entry.get());
  }

  return result;
}

template<class K, class V>
VariantIter Variant< std::map<K, V> >::get_iter() const
{
  return VariantContainerBase::get_iter(variant_type());
}

/*---------------------Variant<std::tuple<class... Types>> --------------------*/

// static
template <class... Types>
const VariantType& Variant<std::tuple<Types...>>::variant_type()
{
  std::vector<VariantType> types;
  auto expander = [&types](const VariantType &type) mutable -> int
  {
    types.push_back(type);
    return 0;
  };

  // expands the variadic template parameters
  using swallow = int[]; // ensures left to right order
  (void)swallow{(expander(Variant<Types>::variant_type()))...};
  static auto type = VariantType::create_tuple(types);

  return type;
}

#ifndef DOXYGEN_SHOULD_SKIP_THIS
namespace detail
{
// std::index_sequence and std::index_sequence_for are new in C++14,
// but this version of glibmm requires only C++11.
// The following code replaces std::index_sequence and std::index_sequence_for
// until we can require C++14 support.
// See https://bugzilla.gnome.org/show_bug.cgi?id=787648

  /// Class template integer_sequence
  template<typename T, T... Idx>
    struct integer_sequence
    {
      typedef T value_type;
      static constexpr std::size_t size() { return sizeof...(Idx); }
    };

  // Concatenates two integer_sequences.
  template<typename Iseq1, typename Iseq2> struct iseq_cat;

  template<typename T, std::size_t... Ind1, std::size_t... Ind2>
    struct iseq_cat<integer_sequence<T, Ind1...>, integer_sequence<T, Ind2...>>
    {
      using type = integer_sequence<T, Ind1..., (Ind2 + sizeof...(Ind1))...>;
    };

  // Builds an integer_sequence<T, 0, 1, 2, ..., Num-1>.
  template<typename T, std::size_t Num>
    struct make_intseq
    : iseq_cat<typename make_intseq<T, Num / 2>::type,
		typename make_intseq<T, Num - Num / 2>::type>
    { };

  template<typename T>
    struct make_intseq<T, 1>
    {
      typedef integer_sequence<T, 0> type;
    };

  template<typename T>
    struct make_intseq<T, 0>
    {
      typedef integer_sequence<T> type;
    };

  /// Alias template make_integer_sequence
  template<typename T, T Num>
    using make_integer_sequence = typename make_intseq<T, Num>::type;

  /// Alias template index_sequence
  template<std::size_t... Idx>
    using index_sequence = integer_sequence<std::size_t, Idx...>;

  /// Alias template make_index_sequence
  template<std::size_t Num>
    using make_index_sequence = make_integer_sequence<std::size_t, Num>;

  /// Alias template index_sequence_for
  template<typename... Types>
    using index_sequence_for = make_index_sequence<sizeof...(Types)>;

// End of code that replaces std::index_sequence and std::index_sequence_for

template <class Tuple, std::size_t... Is>
void expand_tuple(std::vector<VariantBase> &variants, const Tuple & t,
                  detail::index_sequence<Is...>)
{
  using swallow = int[]; // ensures left to right order
  auto expander = [&variants](const VariantBase &variant) -> int
  {
    variants.push_back(variant);
    return 0;
  };
  (void)swallow {(expander(Variant<typename std::tuple_element<Is, Tuple>::type>::create(std::get<Is>(t))))...};
}
} // namespace detail
#endif // DOXYGEN_SHOULD_SKIP_THIS

template <class... Types>
Variant<std::tuple<Types...>>
Variant<std::tuple<Types...>>::create(const std::tuple<Types...>& data)
{
  // create a vector containing all tuple values as variants
  std::vector<Glib::VariantBase> variants;
  detail::expand_tuple(variants, data, detail::index_sequence_for<Types...>{});

  using var_ptr = GVariant*;
  var_ptr* const var_array = new var_ptr[sizeof... (Types)];

  for (std::vector<VariantBase>::size_type i = 0; i < variants.size(); i++)
    var_array[i] = const_cast<GVariant*>(variants[i].gobj());

  Variant<std::tuple<Types...>> result = Variant<std::tuple<Types...>>(
          g_variant_new_tuple(var_array, variants.size()));

  return result;
}

template <class... Types>
template <class T>
T Variant<std::tuple<Types...>>::get_child(gsize index) const
{
  Variant<T> entry;
  VariantContainerBase::get_child(entry, index);
  return entry.get();
}

template <class... Types>
template <class T>
Variant<T> Variant<std::tuple<Types...>>::get_child_variant(gsize index) const
{
  Variant<T> entry;
  VariantContainerBase::get_child(entry, index);
  return entry;
}

#ifndef DOXYGEN_SHOULD_SKIP_THIS
namespace detail
{
// swallows any argument
template <class T>
constexpr int any_arg(T&& /* arg */)
{
  return 0;
}

template <class Tuple, std::size_t... Is>
void assign_tuple(std::vector<VariantBase> &variants, Tuple & t, detail::index_sequence<Is...>)
{
  int i = 0;
  using swallow = int[]; // ensures left to right order
  (void)swallow {(any_arg(std::get<Is>(t) = VariantBase::cast_dynamic<Variant<typename std::tuple_element<Is, Tuple>::type > >(variants[i++]).get()))...};
}
} // namespace detail
#endif // DOXYGEN_SHOULD_SKIP_THIS

template <class... Types>
std::tuple<Types...> Variant<std::tuple<Types...>>::get() const
{
  std::tuple<Types...> data;
  int i = 0;

  std::vector<VariantBase> variants;
  using swallow = int[]; // ensures left to right order
  auto expander = [&variants, &i](const VariantBase &variant) -> int
  {
    variants.push_back(variant);
    return i++;
  };
  (void)swallow{(expander(get_child_variant<Types>(i)))...};
  detail::assign_tuple(variants, data, detail::index_sequence_for<Types...>{});

  return data;
}

template< class... Types>
VariantIter Variant<std::tuple<Types...>>::get_iter() const
{
  const auto type = variant_type();
  return VariantContainerBase::get_iter(type);
}

} // namespace Glib


namespace Glib
{

/** @relates Glib::VariantBase
 * @param lhs The left-hand side
 * @param rhs The right-hand side
 */
inline void swap(VariantBase& lhs, VariantBase& rhs) noexcept
  { lhs.swap(rhs); }

} // namespace Glib

namespace Glib
{

  /** A Glib::wrap() method for this object.
   *
   * @param object The C instance.
   * @param take_copy False if the result should take ownership of the C instance. True if it should take a new copy or ref.
   * @result A C++ instance that wraps this C instance.
   *
   * @relates Glib::VariantBase
   */
Glib::VariantBase wrap(GVariant* object, bool take_copy = false);

} // namespace Glib


#endif /* _GLIBMM_VARIANT_H */