This file is indexed.

/usr/include/mozjs-52/js/RootingAPI.h is in libmozjs-52-dev 52.3.1-7fakesync1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef js_RootingAPI_h
#define js_RootingAPI_h

#include "mozilla/Attributes.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/GuardObjects.h"
#include "mozilla/LinkedList.h"
#include "mozilla/Move.h"
#include "mozilla/TypeTraits.h"

#include <type_traits>

#include "jspubtd.h"

#include "js/GCAnnotations.h"
#include "js/GCAPI.h"
#include "js/GCPolicyAPI.h"
#include "js/HeapAPI.h"
#include "js/TypeDecls.h"
#include "js/UniquePtr.h"
#include "js/Utility.h"

/*
 * Moving GC Stack Rooting
 *
 * A moving GC may change the physical location of GC allocated things, even
 * when they are rooted, updating all pointers to the thing to refer to its new
 * location. The GC must therefore know about all live pointers to a thing,
 * not just one of them, in order to behave correctly.
 *
 * The |Rooted| and |Handle| classes below are used to root stack locations
 * whose value may be held live across a call that can trigger GC. For a
 * code fragment such as:
 *
 * JSObject* obj = NewObject(cx);
 * DoSomething(cx);
 * ... = obj->lastProperty();
 *
 * If |DoSomething()| can trigger a GC, the stack location of |obj| must be
 * rooted to ensure that the GC does not move the JSObject referred to by
 * |obj| without updating |obj|'s location itself. This rooting must happen
 * regardless of whether there are other roots which ensure that the object
 * itself will not be collected.
 *
 * If |DoSomething()| cannot trigger a GC, and the same holds for all other
 * calls made between |obj|'s definitions and its last uses, then no rooting
 * is required.
 *
 * SpiderMonkey can trigger a GC at almost any time and in ways that are not
 * always clear. For example, the following innocuous-looking actions can
 * cause a GC: allocation of any new GC thing; JSObject::hasProperty;
 * JS_ReportError and friends; and ToNumber, among many others. The following
 * dangerous-looking actions cannot trigger a GC: js_malloc, cx->malloc_,
 * rt->malloc_, and friends and JS_ReportOutOfMemory.
 *
 * The following family of three classes will exactly root a stack location.
 * Incorrect usage of these classes will result in a compile error in almost
 * all cases. Therefore, it is very hard to be incorrectly rooted if you use
 * these classes exclusively. These classes are all templated on the type T of
 * the value being rooted.
 *
 * - Rooted<T> declares a variable of type T, whose value is always rooted.
 *   Rooted<T> may be automatically coerced to a Handle<T>, below. Rooted<T>
 *   should be used whenever a local variable's value may be held live across a
 *   call which can trigger a GC.
 *
 * - Handle<T> is a const reference to a Rooted<T>. Functions which take GC
 *   things or values as arguments and need to root those arguments should
 *   generally use handles for those arguments and avoid any explicit rooting.
 *   This has two benefits. First, when several such functions call each other
 *   then redundant rooting of multiple copies of the GC thing can be avoided.
 *   Second, if the caller does not pass a rooted value a compile error will be
 *   generated, which is quicker and easier to fix than when relying on a
 *   separate rooting analysis.
 *
 * - MutableHandle<T> is a non-const reference to Rooted<T>. It is used in the
 *   same way as Handle<T> and includes a |set(const T& v)| method to allow
 *   updating the value of the referenced Rooted<T>. A MutableHandle<T> can be
 *   created with an implicit cast from a Rooted<T>*.
 *
 * In some cases the small performance overhead of exact rooting (measured to
 * be a few nanoseconds on desktop) is too much. In these cases, try the
 * following:
 *
 * - Move all Rooted<T> above inner loops: this allows you to re-use the root
 *   on each iteration of the loop.
 *
 * - Pass Handle<T> through your hot call stack to avoid re-rooting costs at
 *   every invocation.
 *
 * The following diagram explains the list of supported, implicit type
 * conversions between classes of this family:
 *
 *  Rooted<T> ----> Handle<T>
 *     |               ^
 *     |               |
 *     |               |
 *     +---> MutableHandle<T>
 *     (via &)
 *
 * All of these types have an implicit conversion to raw pointers.
 */

namespace js {

template <typename T>
struct BarrierMethods {
};

template <typename T>
class RootedBase {};

template <typename T>
class HandleBase {};

template <typename T>
class MutableHandleBase {};

template <typename T>
class HeapBase {};

// Cannot use FOR_EACH_HEAP_ABLE_GC_POINTER_TYPE, as this would import too many macros into scope
template <typename T> struct IsHeapConstructibleType    { static constexpr bool value = false; };
#define DECLARE_IS_HEAP_CONSTRUCTIBLE_TYPE(T) \
    template <> struct IsHeapConstructibleType<T> { static constexpr bool value = true; };
FOR_EACH_PUBLIC_GC_POINTER_TYPE(DECLARE_IS_HEAP_CONSTRUCTIBLE_TYPE)
FOR_EACH_PUBLIC_TAGGED_GC_POINTER_TYPE(DECLARE_IS_HEAP_CONSTRUCTIBLE_TYPE)
#undef DECLARE_IS_HEAP_CONSTRUCTIBLE_TYPE

template <typename T>
class PersistentRootedBase {};

static void* const ConstNullValue = nullptr;

namespace gc {
struct Cell;
template<typename T>
struct PersistentRootedMarker;
} /* namespace gc */

#define DECLARE_POINTER_COMPARISON_OPS(T)                                                         \
    bool operator==(const T& other) const { return get() == other; }                              \
    bool operator!=(const T& other) const { return get() != other; }

// Important: Return a reference so passing a Rooted<T>, etc. to
// something that takes a |const T&| is not a GC hazard.
#define DECLARE_POINTER_CONSTREF_OPS(T)                                                           \
    operator const T&() const { return get(); }                                                   \
    const T& operator->() const { return get(); }

// Assignment operators on a base class are hidden by the implicitly defined
// operator= on the derived class. Thus, define the operator= directly on the
// class as we would need to manually pass it through anyway.
#define DECLARE_POINTER_ASSIGN_OPS(Wrapper, T)                                                    \
    Wrapper<T>& operator=(const T& p) {                                                           \
        set(p);                                                                                   \
        return *this;                                                                             \
    }                                                                                             \
    Wrapper<T>& operator=(T&& p) {                                                                \
        set(mozilla::Move(p));                                                                    \
        return *this;                                                                             \
    }                                                                                             \
    Wrapper<T>& operator=(const Wrapper<T>& other) {                                              \
        set(other.get());                                                                         \
        return *this;                                                                             \
    }                                                                                             \

#define DELETE_ASSIGNMENT_OPS(Wrapper, T)                                                         \
    template <typename S> Wrapper<T>& operator=(S) = delete;                                      \
    Wrapper<T>& operator=(const Wrapper<T>&) = delete;

#define DECLARE_NONPOINTER_ACCESSOR_METHODS(ptr)                                                  \
    const T* address() const { return &(ptr); }                                                   \
    const T& get() const { return (ptr); }                                                        \

#define DECLARE_NONPOINTER_MUTABLE_ACCESSOR_METHODS(ptr)                                          \
    T* address() { return &(ptr); }                                                               \
    T& get() { return (ptr); }                                                                    \

} /* namespace js */

namespace JS {

template <typename T> class Rooted;
template <typename T> class PersistentRooted;

/* This is exposing internal state of the GC for inlining purposes. */
JS_FRIEND_API(bool) isGCEnabled();

JS_FRIEND_API(void) HeapObjectPostBarrier(JSObject** objp, JSObject* prev, JSObject* next);

#ifdef JS_DEBUG
/**
 * For generational GC, assert that an object is in the tenured generation as
 * opposed to being in the nursery.
 */
extern JS_FRIEND_API(void)
AssertGCThingMustBeTenured(JSObject* obj);
extern JS_FRIEND_API(void)
AssertGCThingIsNotAnObjectSubclass(js::gc::Cell* cell);
#else
inline void
AssertGCThingMustBeTenured(JSObject* obj) {}
inline void
AssertGCThingIsNotAnObjectSubclass(js::gc::Cell* cell) {}
#endif

/**
 * The Heap<T> class is a heap-stored reference to a JS GC thing. All members of
 * heap classes that refer to GC things should use Heap<T> (or possibly
 * TenuredHeap<T>, described below).
 *
 * Heap<T> is an abstraction that hides some of the complexity required to
 * maintain GC invariants for the contained reference. It uses operator
 * overloading to provide a normal pointer interface, but notifies the GC every
 * time the value it contains is updated. This is necessary for generational GC,
 * which keeps track of all pointers into the nursery.
 *
 * Heap<T> instances must be traced when their containing object is traced to
 * keep the pointed-to GC thing alive.
 *
 * Heap<T> objects should only be used on the heap. GC references stored on the
 * C/C++ stack must use Rooted/Handle/MutableHandle instead.
 *
 * Type T must be a public GC pointer type.
 */
template <typename T>
class Heap : public js::HeapBase<T>
{
    // Please note: this can actually also be used by nsXBLMaybeCompiled<T>, for legacy reasons.
    static_assert(js::IsHeapConstructibleType<T>::value,
                  "Type T must be a public GC pointer type");
  public:
    Heap() {
        static_assert(sizeof(T) == sizeof(Heap<T>),
                      "Heap<T> must be binary compatible with T.");
        init(GCPolicy<T>::initial());
    }
    explicit Heap(const T& p) { init(p); }

    /*
     * For Heap, move semantics are equivalent to copy semantics. In C++, a
     * copy constructor taking const-ref is the way to get a single function
     * that will be used for both lvalue and rvalue copies, so we can simply
     * omit the rvalue variant.
     */
    explicit Heap(const Heap<T>& p) { init(p.ptr); }

    ~Heap() {
        post(ptr, GCPolicy<T>::initial());
    }

    DECLARE_POINTER_CONSTREF_OPS(T);
    DECLARE_POINTER_ASSIGN_OPS(Heap, T);

    const T* address() const { return &ptr; }

    void exposeToActiveJS() const {
        js::BarrierMethods<T>::exposeToJS(ptr);
    }
    const T& get() const {
        exposeToActiveJS();
        return ptr;
    }
    const T& unbarrieredGet() const {
        return ptr;
    }

    T* unsafeGet() { return &ptr; }

    explicit operator bool() const {
        return bool(js::BarrierMethods<T>::asGCThingOrNull(ptr));
    }
    explicit operator bool() {
        return bool(js::BarrierMethods<T>::asGCThingOrNull(ptr));
    }

  private:
    void init(const T& newPtr) {
        ptr = newPtr;
        post(GCPolicy<T>::initial(), ptr);
    }

    void set(const T& newPtr) {
        T tmp = ptr;
        ptr = newPtr;
        post(tmp, ptr);
    }

    void post(const T& prev, const T& next) {
        js::BarrierMethods<T>::postBarrier(&ptr, prev, next);
    }

    T ptr;
};

static MOZ_ALWAYS_INLINE bool
ObjectIsTenured(JSObject* obj)
{
    return !js::gc::IsInsideNursery(reinterpret_cast<js::gc::Cell*>(obj));
}

static MOZ_ALWAYS_INLINE bool
ObjectIsTenured(const Heap<JSObject*>& obj)
{
    return ObjectIsTenured(obj.unbarrieredGet());
}

static MOZ_ALWAYS_INLINE bool
ObjectIsMarkedGray(JSObject* obj)
{
    auto cell = reinterpret_cast<js::gc::Cell*>(obj);
    return js::gc::detail::CellIsMarkedGrayIfKnown(cell);
}

static MOZ_ALWAYS_INLINE bool
ObjectIsMarkedGray(const JS::Heap<JSObject*>& obj)
{
    return ObjectIsMarkedGray(obj.unbarrieredGet());
}

static MOZ_ALWAYS_INLINE bool
ScriptIsMarkedGray(JSScript* script)
{
    auto cell = reinterpret_cast<js::gc::Cell*>(script);
    return js::gc::detail::CellIsMarkedGrayIfKnown(cell);
}

static MOZ_ALWAYS_INLINE bool
ScriptIsMarkedGray(const Heap<JSScript*>& script)
{
    return ScriptIsMarkedGray(script.unbarrieredGet());
}

/**
 * The TenuredHeap<T> class is similar to the Heap<T> class above in that it
 * encapsulates the GC concerns of an on-heap reference to a JS object. However,
 * it has two important differences:
 *
 *  1) Pointers which are statically known to only reference "tenured" objects
 *     can avoid the extra overhead of SpiderMonkey's write barriers.
 *
 *  2) Objects in the "tenured" heap have stronger alignment restrictions than
 *     those in the "nursery", so it is possible to store flags in the lower
 *     bits of pointers known to be tenured. TenuredHeap wraps a normal tagged
 *     pointer with a nice API for accessing the flag bits and adds various
 *     assertions to ensure that it is not mis-used.
 *
 * GC things are said to be "tenured" when they are located in the long-lived
 * heap: e.g. they have gained tenure as an object by surviving past at least
 * one GC. For performance, SpiderMonkey allocates some things which are known
 * to normally be long lived directly into the tenured generation; for example,
 * global objects. Additionally, SpiderMonkey does not visit individual objects
 * when deleting non-tenured objects, so object with finalizers are also always
 * tenured; for instance, this includes most DOM objects.
 *
 * The considerations to keep in mind when using a TenuredHeap<T> vs a normal
 * Heap<T> are:
 *
 *  - It is invalid for a TenuredHeap<T> to refer to a non-tenured thing.
 *  - It is however valid for a Heap<T> to refer to a tenured thing.
 *  - It is not possible to store flag bits in a Heap<T>.
 */
template <typename T>
class TenuredHeap : public js::HeapBase<T>
{
  public:
    TenuredHeap() : bits(0) {
        static_assert(sizeof(T) == sizeof(TenuredHeap<T>),
                      "TenuredHeap<T> must be binary compatible with T.");
    }
    explicit TenuredHeap(T p) : bits(0) { setPtr(p); }
    explicit TenuredHeap(const TenuredHeap<T>& p) : bits(0) { setPtr(p.getPtr()); }

    bool operator==(const TenuredHeap<T>& other) { return bits == other.bits; }
    bool operator!=(const TenuredHeap<T>& other) { return bits != other.bits; }

    void setPtr(T newPtr) {
        MOZ_ASSERT((reinterpret_cast<uintptr_t>(newPtr) & flagsMask) == 0);
        if (newPtr)
            AssertGCThingMustBeTenured(newPtr);
        bits = (bits & flagsMask) | reinterpret_cast<uintptr_t>(newPtr);
    }

    void setFlags(uintptr_t flagsToSet) {
        MOZ_ASSERT((flagsToSet & ~flagsMask) == 0);
        bits |= flagsToSet;
    }

    void unsetFlags(uintptr_t flagsToUnset) {
        MOZ_ASSERT((flagsToUnset & ~flagsMask) == 0);
        bits &= ~flagsToUnset;
    }

    bool hasFlag(uintptr_t flag) const {
        MOZ_ASSERT((flag & ~flagsMask) == 0);
        return (bits & flag) != 0;
    }

    T unbarrieredGetPtr() const { return reinterpret_cast<T>(bits & ~flagsMask); }
    uintptr_t getFlags() const { return bits & flagsMask; }

    void exposeToActiveJS() const {
        js::BarrierMethods<T>::exposeToJS(unbarrieredGetPtr());
    }
    T getPtr() const {
        exposeToActiveJS();
        return unbarrieredGetPtr();
    }

    operator T() const { return getPtr(); }
    T operator->() const { return getPtr(); }

    explicit operator bool() const {
        return bool(js::BarrierMethods<T>::asGCThingOrNull(unbarrieredGetPtr()));
    }
    explicit operator bool() {
        return bool(js::BarrierMethods<T>::asGCThingOrNull(unbarrieredGetPtr()));
    }

    TenuredHeap<T>& operator=(T p) {
        setPtr(p);
        return *this;
    }

    TenuredHeap<T>& operator=(const TenuredHeap<T>& other) {
        bits = other.bits;
        return *this;
    }

  private:
    enum {
        maskBits = 3,
        flagsMask = (1 << maskBits) - 1,
    };

    uintptr_t bits;
};

/**
 * Reference to a T that has been rooted elsewhere. This is most useful
 * as a parameter type, which guarantees that the T lvalue is properly
 * rooted. See "Move GC Stack Rooting" above.
 *
 * If you want to add additional methods to Handle for a specific
 * specialization, define a HandleBase<T> specialization containing them.
 */
template <typename T>
class MOZ_NONHEAP_CLASS Handle : public js::HandleBase<T>
{
    friend class JS::MutableHandle<T>;

  public:
    /* Creates a handle from a handle of a type convertible to T. */
    template <typename S>
    MOZ_IMPLICIT Handle(Handle<S> handle,
                        typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy = 0)
    {
        static_assert(sizeof(Handle<T>) == sizeof(T*),
                      "Handle must be binary compatible with T*.");
        ptr = reinterpret_cast<const T*>(handle.address());
    }

    MOZ_IMPLICIT Handle(decltype(nullptr)) {
        static_assert(mozilla::IsPointer<T>::value,
                      "nullptr_t overload not valid for non-pointer types");
        ptr = reinterpret_cast<const T*>(&js::ConstNullValue);
    }

    MOZ_IMPLICIT Handle(MutableHandle<T> handle) {
        ptr = handle.address();
    }

    /*
     * Take care when calling this method!
     *
     * This creates a Handle from the raw location of a T.
     *
     * It should be called only if the following conditions hold:
     *
     *  1) the location of the T is guaranteed to be marked (for some reason
     *     other than being a Rooted), e.g., if it is guaranteed to be reachable
     *     from an implicit root.
     *
     *  2) the contents of the location are immutable, or at least cannot change
     *     for the lifetime of the handle, as its users may not expect its value
     *     to change underneath them.
     */
    static constexpr Handle fromMarkedLocation(const T* p) {
        return Handle(p, DeliberatelyChoosingThisOverload,
                      ImUsingThisOnlyInFromFromMarkedLocation);
    }

    /*
     * Construct a handle from an explicitly rooted location. This is the
     * normal way to create a handle, and normally happens implicitly.
     */
    template <typename S>
    inline
    MOZ_IMPLICIT Handle(const Rooted<S>& root,
                        typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy = 0);

    template <typename S>
    inline
    MOZ_IMPLICIT Handle(const PersistentRooted<S>& root,
                        typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy = 0);

    /* Construct a read only handle from a mutable handle. */
    template <typename S>
    inline
    MOZ_IMPLICIT Handle(MutableHandle<S>& root,
                        typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy = 0);

    DECLARE_POINTER_COMPARISON_OPS(T);
    DECLARE_POINTER_CONSTREF_OPS(T);
    DECLARE_NONPOINTER_ACCESSOR_METHODS(*ptr);

  private:
    Handle() {}
    DELETE_ASSIGNMENT_OPS(Handle, T);

    enum Disambiguator { DeliberatelyChoosingThisOverload = 42 };
    enum CallerIdentity { ImUsingThisOnlyInFromFromMarkedLocation = 17 };
    constexpr Handle(const T* p, Disambiguator, CallerIdentity) : ptr(p) {}

    const T* ptr;
};

/**
 * Similar to a handle, but the underlying storage can be changed. This is
 * useful for outparams.
 *
 * If you want to add additional methods to MutableHandle for a specific
 * specialization, define a MutableHandleBase<T> specialization containing
 * them.
 */
template <typename T>
class MOZ_STACK_CLASS MutableHandle : public js::MutableHandleBase<T>
{
  public:
    inline MOZ_IMPLICIT MutableHandle(Rooted<T>* root);
    inline MOZ_IMPLICIT MutableHandle(PersistentRooted<T>* root);

  private:
    // Disallow nullptr for overloading purposes.
    MutableHandle(decltype(nullptr)) = delete;

  public:
    void set(const T& v) {
        *ptr = v;
    }
    void set(T&& v) {
        *ptr = mozilla::Move(v);
    }

    /*
     * This may be called only if the location of the T is guaranteed
     * to be marked (for some reason other than being a Rooted),
     * e.g., if it is guaranteed to be reachable from an implicit root.
     *
     * Create a MutableHandle from a raw location of a T.
     */
    static MutableHandle fromMarkedLocation(T* p) {
        MutableHandle h;
        h.ptr = p;
        return h;
    }

    DECLARE_POINTER_CONSTREF_OPS(T);
    DECLARE_NONPOINTER_ACCESSOR_METHODS(*ptr);
    DECLARE_NONPOINTER_MUTABLE_ACCESSOR_METHODS(*ptr);

  private:
    MutableHandle() {}
    DELETE_ASSIGNMENT_OPS(MutableHandle, T);

    T* ptr;
};

} /* namespace JS */

namespace js {

template <typename T>
struct BarrierMethods<T*>
{
    static T* initial() { return nullptr; }
    static gc::Cell* asGCThingOrNull(T* v) {
        if (!v)
            return nullptr;
        MOZ_ASSERT(uintptr_t(v) > 32);
        return reinterpret_cast<gc::Cell*>(v);
    }
    static void postBarrier(T** vp, T* prev, T* next) {
        if (next)
            JS::AssertGCThingIsNotAnObjectSubclass(reinterpret_cast<js::gc::Cell*>(next));
    }
    static void exposeToJS(T* t) {
        if (t)
            js::gc::ExposeGCThingToActiveJS(JS::GCCellPtr(t));
    }
};

template <>
struct BarrierMethods<JSObject*>
{
    static JSObject* initial() { return nullptr; }
    static gc::Cell* asGCThingOrNull(JSObject* v) {
        if (!v)
            return nullptr;
        MOZ_ASSERT(uintptr_t(v) > 32);
        return reinterpret_cast<gc::Cell*>(v);
    }
    static void postBarrier(JSObject** vp, JSObject* prev, JSObject* next) {
        JS::HeapObjectPostBarrier(vp, prev, next);
    }
    static void exposeToJS(JSObject* obj) {
        if (obj)
            JS::ExposeObjectToActiveJS(obj);
    }
};

template <>
struct BarrierMethods<JSFunction*>
{
    static JSFunction* initial() { return nullptr; }
    static gc::Cell* asGCThingOrNull(JSFunction* v) {
        if (!v)
            return nullptr;
        MOZ_ASSERT(uintptr_t(v) > 32);
        return reinterpret_cast<gc::Cell*>(v);
    }
    static void postBarrier(JSFunction** vp, JSFunction* prev, JSFunction* next) {
        JS::HeapObjectPostBarrier(reinterpret_cast<JSObject**>(vp),
                                  reinterpret_cast<JSObject*>(prev),
                                  reinterpret_cast<JSObject*>(next));
    }
    static void exposeToJS(JSFunction* fun) {
        if (fun)
            JS::ExposeObjectToActiveJS(reinterpret_cast<JSObject*>(fun));
    }
};

// Provide hash codes for Cell kinds that may be relocated and, thus, not have
// a stable address to use as the base for a hash code. Instead of the address,
// this hasher uses Cell::getUniqueId to provide exact matches and as a base
// for generating hash codes.
//
// Note: this hasher, like PointerHasher can "hash" a nullptr. While a nullptr
// would not likely be a useful key, there are some cases where being able to
// hash a nullptr is useful, either on purpose or because of bugs:
// (1) existence checks where the key may happen to be null and (2) some
// aggregate Lookup kinds embed a JSObject* that is frequently null and do not
// null test before dispatching to the hasher.
template <typename T>
struct JS_PUBLIC_API(MovableCellHasher)
{
    using Key = T;
    using Lookup = T;

    static bool hasHash(const Lookup& l);
    static bool ensureHash(const Lookup& l);
    static HashNumber hash(const Lookup& l);
    static bool match(const Key& k, const Lookup& l);
    static void rekey(Key& k, const Key& newKey) { k = newKey; }
};

template <typename T>
struct JS_PUBLIC_API(MovableCellHasher<JS::Heap<T>>)
{
    using Key = JS::Heap<T>;
    using Lookup = T;

    static bool hasHash(const Lookup& l) { return MovableCellHasher<T>::hasHash(l); }
    static bool ensureHash(const Lookup& l) { return MovableCellHasher<T>::ensureHash(l); }
    static HashNumber hash(const Lookup& l) { return MovableCellHasher<T>::hash(l); }
    static bool match(const Key& k, const Lookup& l) {
        return MovableCellHasher<T>::match(k.unbarrieredGet(), l);
    }
    static void rekey(Key& k, const Key& newKey) { k.unsafeSet(newKey); }
};

template <typename T>
struct FallibleHashMethods<MovableCellHasher<T>>
{
    template <typename Lookup> static bool hasHash(Lookup&& l) {
        return MovableCellHasher<T>::hasHash(mozilla::Forward<Lookup>(l));
    }
    template <typename Lookup> static bool ensureHash(Lookup&& l) {
        return MovableCellHasher<T>::ensureHash(mozilla::Forward<Lookup>(l));
    }
};

} /* namespace js */

namespace js {

// The alignment must be set because the Rooted and PersistentRooted ptr fields
// may be accessed through reinterpret_cast<Rooted<ConcreteTraceable>*>, and
// the compiler may choose a different alignment for the ptr field when it
// knows the actual type stored in DispatchWrapper<T>.
//
// It would make more sense to align only those specific fields of type
// DispatchWrapper, rather than DispatchWrapper itself, but that causes MSVC to
// fail when Rooted is used in an IsConvertible test.
template <typename T>
class alignas(8) DispatchWrapper
{
    static_assert(JS::MapTypeToRootKind<T>::kind == JS::RootKind::Traceable,
                  "DispatchWrapper is intended only for usage with a Traceable");

    using TraceFn = void (*)(JSTracer*, T*, const char*);
    TraceFn tracer;
    alignas(gc::CellSize) T storage;

  public:
    template <typename U>
    MOZ_IMPLICIT DispatchWrapper(U&& initial)
      : tracer(&JS::GCPolicy<T>::trace),
        storage(mozilla::Forward<U>(initial))
    { }

    // Mimic a pointer type, so that we can drop into Rooted.
    T* operator &() { return &storage; }
    const T* operator &() const { return &storage; }
    operator T&() { return storage; }
    operator const T&() const { return storage; }

    // Trace the contained storage (of unknown type) using the trace function
    // we set aside when we did know the type.
    static void TraceWrapped(JSTracer* trc, T* thingp, const char* name) {
        auto wrapper = reinterpret_cast<DispatchWrapper*>(
                           uintptr_t(thingp) - offsetof(DispatchWrapper, storage));
        wrapper->tracer(trc, &wrapper->storage, name);
    }
};

} /* namespace js */

namespace JS {

/**
 * Local variable of type T whose value is always rooted. This is typically
 * used for local variables, or for non-rooted values being passed to a
 * function that requires a handle, e.g. Foo(Root<T>(cx, x)).
 *
 * If you want to add additional methods to Rooted for a specific
 * specialization, define a RootedBase<T> specialization containing them.
 */
template <typename T>
class MOZ_RAII Rooted : public js::RootedBase<T>
{
    inline void registerWithRootLists(js::RootedListHeads& roots) {
        this->stack = &roots[JS::MapTypeToRootKind<T>::kind];
        this->prev = *stack;
        *stack = reinterpret_cast<Rooted<void*>*>(this);
    }

    inline js::RootedListHeads& rootLists(JS::RootingContext* cx) {
        return rootLists(static_cast<js::ContextFriendFields*>(cx));
    }
    inline js::RootedListHeads& rootLists(js::ContextFriendFields* cx) {
        if (JS::Zone* zone = cx->zone_)
            return JS::shadow::Zone::asShadowZone(zone)->stackRoots_;
        MOZ_ASSERT(cx->isJSContext);
        return cx->roots.stackRoots_;
    }
    inline js::RootedListHeads& rootLists(JSContext* cx) {
        return rootLists(js::ContextFriendFields::get(cx));
    }

  public:
    template <typename RootingContext>
    explicit Rooted(const RootingContext& cx)
      : ptr(GCPolicy<T>::initial())
    {
        registerWithRootLists(rootLists(cx));
    }

    template <typename RootingContext, typename S>
    Rooted(const RootingContext& cx, S&& initial)
      : ptr(mozilla::Forward<S>(initial))
    {
        registerWithRootLists(rootLists(cx));
    }

    ~Rooted() {
        MOZ_ASSERT(*stack == reinterpret_cast<Rooted<void*>*>(this));
        *stack = prev;
    }

    Rooted<T>* previous() { return reinterpret_cast<Rooted<T>*>(prev); }

    /*
     * This method is public for Rooted so that Codegen.py can use a Rooted
     * interchangeably with a MutableHandleValue.
     */
    void set(const T& value) {
        ptr = value;
    }
    void set(T&& value) {
        ptr = mozilla::Move(value);
    }

    DECLARE_POINTER_COMPARISON_OPS(T);
    DECLARE_POINTER_CONSTREF_OPS(T);
    DECLARE_POINTER_ASSIGN_OPS(Rooted, T);
    DECLARE_NONPOINTER_ACCESSOR_METHODS(ptr);
    DECLARE_NONPOINTER_MUTABLE_ACCESSOR_METHODS(ptr);

  private:
    /*
     * These need to be templated on void* to avoid aliasing issues between, for
     * example, Rooted<JSObject> and Rooted<JSFunction>, which use the same
     * stack head pointer for different classes.
     */
    Rooted<void*>** stack;
    Rooted<void*>* prev;

    /*
     * For pointer types, the TraceKind for tracing is based on the list it is
     * in (selected via MapTypeToRootKind), so no additional storage is
     * required here. Non-pointer types, however, share the same list, so the
     * function to call for tracing is stored adjacent to the struct. Since C++
     * cannot templatize on storage class, this is implemented via the wrapper
     * class DispatchWrapper.
     */
    using MaybeWrapped = typename mozilla::Conditional<
        MapTypeToRootKind<T>::kind == JS::RootKind::Traceable,
        js::DispatchWrapper<T>,
        T>::Type;
    MaybeWrapped ptr;

    Rooted(const Rooted&) = delete;
} JS_HAZ_ROOTED;

} /* namespace JS */

namespace js {

/**
 * Augment the generic Rooted<T> interface when T = JSObject* with
 * class-querying and downcasting operations.
 *
 * Given a Rooted<JSObject*> obj, one can view
 *   Handle<StringObject*> h = obj.as<StringObject*>();
 * as an optimization of
 *   Rooted<StringObject*> rooted(cx, &obj->as<StringObject*>());
 *   Handle<StringObject*> h = rooted;
 */
template <>
class RootedBase<JSObject*>
{
  public:
    template <class U>
    JS::Handle<U*> as() const;
};

/**
 * Augment the generic Handle<T> interface when T = JSObject* with
 * downcasting operations.
 *
 * Given a Handle<JSObject*> obj, one can view
 *   Handle<StringObject*> h = obj.as<StringObject*>();
 * as an optimization of
 *   Rooted<StringObject*> rooted(cx, &obj->as<StringObject*>());
 *   Handle<StringObject*> h = rooted;
 */
template <>
class HandleBase<JSObject*>
{
  public:
    template <class U>
    JS::Handle<U*> as() const;
};

/** Interface substitute for Rooted<T> which does not root the variable's memory. */
template <typename T>
class MOZ_RAII FakeRooted : public RootedBase<T>
{
  public:
    template <typename CX>
    explicit FakeRooted(CX* cx) : ptr(JS::GCPolicy<T>::initial()) {}

    template <typename CX>
    FakeRooted(CX* cx, T initial) : ptr(initial) {}

    DECLARE_POINTER_COMPARISON_OPS(T);
    DECLARE_POINTER_CONSTREF_OPS(T);
    DECLARE_POINTER_ASSIGN_OPS(FakeRooted, T);
    DECLARE_NONPOINTER_ACCESSOR_METHODS(ptr);
    DECLARE_NONPOINTER_MUTABLE_ACCESSOR_METHODS(ptr);

  private:
    T ptr;

    void set(const T& value) {
        ptr = value;
    }

    FakeRooted(const FakeRooted&) = delete;
};

/** Interface substitute for MutableHandle<T> which is not required to point to rooted memory. */
template <typename T>
class FakeMutableHandle : public js::MutableHandleBase<T>
{
  public:
    MOZ_IMPLICIT FakeMutableHandle(T* t) {
        ptr = t;
    }

    MOZ_IMPLICIT FakeMutableHandle(FakeRooted<T>* root) {
        ptr = root->address();
    }

    void set(const T& v) {
        *ptr = v;
    }

    DECLARE_POINTER_CONSTREF_OPS(T);
    DECLARE_NONPOINTER_ACCESSOR_METHODS(*ptr);
    DECLARE_NONPOINTER_MUTABLE_ACCESSOR_METHODS(*ptr);

  private:
    FakeMutableHandle() {}
    DELETE_ASSIGNMENT_OPS(FakeMutableHandle, T);

    T* ptr;
};

/**
 * Types for a variable that either should or shouldn't be rooted, depending on
 * the template parameter allowGC. Used for implementing functions that can
 * operate on either rooted or unrooted data.
 *
 * The toHandle() and toMutableHandle() functions are for calling functions
 * which require handle types and are only called in the CanGC case. These
 * allow the calling code to type check.
 */
enum AllowGC {
    NoGC = 0,
    CanGC = 1
};
template <typename T, AllowGC allowGC>
class MaybeRooted
{
};

template <typename T> class MaybeRooted<T, CanGC>
{
  public:
    typedef JS::Handle<T> HandleType;
    typedef JS::Rooted<T> RootType;
    typedef JS::MutableHandle<T> MutableHandleType;

    static inline JS::Handle<T> toHandle(HandleType v) {
        return v;
    }

    static inline JS::MutableHandle<T> toMutableHandle(MutableHandleType v) {
        return v;
    }

    template <typename T2>
    static inline JS::Handle<T2*> downcastHandle(HandleType v) {
        return v.template as<T2>();
    }
};

template <typename T> class MaybeRooted<T, NoGC>
{
  public:
    typedef const T& HandleType;
    typedef FakeRooted<T> RootType;
    typedef FakeMutableHandle<T> MutableHandleType;

    static JS::Handle<T> toHandle(HandleType v) {
        MOZ_CRASH("Bad conversion");
    }

    static JS::MutableHandle<T> toMutableHandle(MutableHandleType v) {
        MOZ_CRASH("Bad conversion");
    }

    template <typename T2>
    static inline T2* downcastHandle(HandleType v) {
        return &v->template as<T2>();
    }
};

} /* namespace js */

namespace JS {

template <typename T> template <typename S>
inline
Handle<T>::Handle(const Rooted<S>& root,
                  typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy)
{
    ptr = reinterpret_cast<const T*>(root.address());
}

template <typename T> template <typename S>
inline
Handle<T>::Handle(const PersistentRooted<S>& root,
                  typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy)
{
    ptr = reinterpret_cast<const T*>(root.address());
}

template <typename T> template <typename S>
inline
Handle<T>::Handle(MutableHandle<S>& root,
                  typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy)
{
    ptr = reinterpret_cast<const T*>(root.address());
}

template <typename T>
inline
MutableHandle<T>::MutableHandle(Rooted<T>* root)
{
    static_assert(sizeof(MutableHandle<T>) == sizeof(T*),
                  "MutableHandle must be binary compatible with T*.");
    ptr = root->address();
}

template <typename T>
inline
MutableHandle<T>::MutableHandle(PersistentRooted<T>* root)
{
    static_assert(sizeof(MutableHandle<T>) == sizeof(T*),
                  "MutableHandle must be binary compatible with T*.");
    ptr = root->address();
}

/**
 * A copyable, assignable global GC root type with arbitrary lifetime, an
 * infallible constructor, and automatic unrooting on destruction.
 *
 * These roots can be used in heap-allocated data structures, so they are not
 * associated with any particular JSContext or stack. They are registered with
 * the JSRuntime itself, without locking, so they require a full JSContext to be
 * initialized, not one of its more restricted superclasses. Initialization may
 * take place on construction, or in two phases if the no-argument constructor
 * is called followed by init().
 *
 * Note that you must not use an PersistentRooted in an object owned by a JS
 * object:
 *
 * Whenever one object whose lifetime is decided by the GC refers to another
 * such object, that edge must be traced only if the owning JS object is traced.
 * This applies not only to JS objects (which obviously are managed by the GC)
 * but also to C++ objects owned by JS objects.
 *
 * If you put a PersistentRooted in such a C++ object, that is almost certainly
 * a leak. When a GC begins, the referent of the PersistentRooted is treated as
 * live, unconditionally (because a PersistentRooted is a *root*), even if the
 * JS object that owns it is unreachable. If there is any path from that
 * referent back to the JS object, then the C++ object containing the
 * PersistentRooted will not be destructed, and the whole blob of objects will
 * not be freed, even if there are no references to them from the outside.
 *
 * In the context of Firefox, this is a severe restriction: almost everything in
 * Firefox is owned by some JS object or another, so using PersistentRooted in
 * such objects would introduce leaks. For these kinds of edges, Heap<T> or
 * TenuredHeap<T> would be better types. It's up to the implementor of the type
 * containing Heap<T> or TenuredHeap<T> members to make sure their referents get
 * marked when the object itself is marked.
 */
template<typename T>
class PersistentRooted : public js::PersistentRootedBase<T>,
                         private mozilla::LinkedListElement<PersistentRooted<T>>
{
    using ListBase = mozilla::LinkedListElement<PersistentRooted<T>>;

    friend class mozilla::LinkedList<PersistentRooted>;
    friend class mozilla::LinkedListElement<PersistentRooted>;

    void registerWithRootLists(js::RootLists& roots) {
        MOZ_ASSERT(!initialized());
        JS::RootKind kind = JS::MapTypeToRootKind<T>::kind;
        roots.heapRoots_[kind].insertBack(reinterpret_cast<JS::PersistentRooted<void*>*>(this));
    }

    js::RootLists& rootLists(JSContext* cx) {
        return rootLists(JS::RootingContext::get(cx));
    }
    js::RootLists& rootLists(JS::RootingContext* cx) {
        MOZ_ASSERT(cx->isJSContext);
        return cx->roots;
    }

    // Disallow ExclusiveContext*.
    js::RootLists& rootLists(js::ContextFriendFields* cx) = delete;

  public:
    PersistentRooted() : ptr(GCPolicy<T>::initial()) {}

    template <typename RootingContext>
    explicit PersistentRooted(const RootingContext& cx)
      : ptr(GCPolicy<T>::initial())
    {
        registerWithRootLists(rootLists(cx));
    }

    template <typename RootingContext, typename U>
    PersistentRooted(const RootingContext& cx, U&& initial)
      : ptr(mozilla::Forward<U>(initial))
    {
        registerWithRootLists(rootLists(cx));
    }

    PersistentRooted(const PersistentRooted& rhs)
      : mozilla::LinkedListElement<PersistentRooted<T>>(),
        ptr(rhs.ptr)
    {
        /*
         * Copy construction takes advantage of the fact that the original
         * is already inserted, and simply adds itself to whatever list the
         * original was on - no JSRuntime pointer needed.
         *
         * This requires mutating rhs's links, but those should be 'mutable'
         * anyway. C++ doesn't let us declare mutable base classes.
         */
        const_cast<PersistentRooted&>(rhs).setNext(this);
    }

    bool initialized() {
        return ListBase::isInList();
    }

    template <typename RootingContext>
    void init(const RootingContext& cx) {
        init(cx, GCPolicy<T>::initial());
    }

    template <typename RootingContext, typename U>
    void init(const RootingContext& cx, U&& initial) {
        ptr = mozilla::Forward<U>(initial);
        registerWithRootLists(rootLists(cx));
    }

    void reset() {
        if (initialized()) {
            set(GCPolicy<T>::initial());
            ListBase::remove();
        }
    }

    DECLARE_POINTER_COMPARISON_OPS(T);
    DECLARE_POINTER_CONSTREF_OPS(T);
    DECLARE_POINTER_ASSIGN_OPS(PersistentRooted, T);
    DECLARE_NONPOINTER_ACCESSOR_METHODS(ptr);

    // These are the same as DECLARE_NONPOINTER_MUTABLE_ACCESSOR_METHODS, except
    // they check that |this| is initialized in case the caller later stores
    // something in |ptr|.
    T* address() {
        MOZ_ASSERT(initialized());
        return &ptr;
    }
    T& get() {
        MOZ_ASSERT(initialized());
        return ptr;
    }

  private:
    template <typename U>
    void set(U&& value) {
        MOZ_ASSERT(initialized());
        ptr = mozilla::Forward<U>(value);
    }

    // See the comment above Rooted::ptr.
    using MaybeWrapped = typename mozilla::Conditional<
        MapTypeToRootKind<T>::kind == JS::RootKind::Traceable,
        js::DispatchWrapper<T>,
        T>::Type;
    MaybeWrapped ptr;
} JS_HAZ_ROOTED;

class JS_PUBLIC_API(ObjectPtr)
{
    Heap<JSObject*> value;

  public:
    ObjectPtr() : value(nullptr) {}

    explicit ObjectPtr(JSObject* obj) : value(obj) {}

    /* Always call finalize before the destructor. */
    ~ObjectPtr() { MOZ_ASSERT(!value); }

    void finalize(JSRuntime* rt);
    void finalize(JSContext* cx);

    void init(JSObject* obj) { value = obj; }

    JSObject* get() const { return value; }
    JSObject* unbarrieredGet() const { return value.unbarrieredGet(); }

    void writeBarrierPre(JSContext* cx) {
        IncrementalObjectBarrier(value);
    }

    void updateWeakPointerAfterGC();

    ObjectPtr& operator=(JSObject* obj) {
        IncrementalObjectBarrier(value);
        value = obj;
        return *this;
    }

    void trace(JSTracer* trc, const char* name);

    JSObject& operator*() const { return *value; }
    JSObject* operator->() const { return value; }
    operator JSObject*() const { return value; }

    explicit operator bool() const { return value.unbarrieredGet(); }
    explicit operator bool() { return value.unbarrieredGet(); }
};

} /* namespace JS */

namespace js {

template <typename Outer, typename T, typename D>
class UniquePtrOperations
{
    const UniquePtr<T, D>& uniquePtr() const { return static_cast<const Outer*>(this)->get(); }

  public:
    explicit operator bool() const { return !!uniquePtr(); }
    T* get() const { return uniquePtr().get(); }
    T* operator->() const { return get(); }
    T& operator*() const { return *uniquePtr(); }
};

template <typename Outer, typename T, typename D>
class MutableUniquePtrOperations : public UniquePtrOperations<Outer, T, D>
{
    UniquePtr<T, D>& uniquePtr() { return static_cast<Outer*>(this)->get(); }

  public:
    MOZ_MUST_USE typename UniquePtr<T, D>::Pointer release() { return uniquePtr().release(); }
    void reset(T* ptr = T()) { uniquePtr().reset(ptr); }
};

template <typename T, typename D>
class RootedBase<UniquePtr<T, D>>
  : public MutableUniquePtrOperations<JS::Rooted<UniquePtr<T, D>>, T, D>
{ };

template <typename T, typename D>
class MutableHandleBase<UniquePtr<T, D>>
  : public MutableUniquePtrOperations<JS::MutableHandle<UniquePtr<T, D>>, T, D>
{ };

template <typename T, typename D>
class HandleBase<UniquePtr<T, D>>
  : public UniquePtrOperations<JS::Handle<UniquePtr<T, D>>, T, D>
{ };

template <typename T, typename D>
class PersistentRootedBase<UniquePtr<T, D>>
  : public MutableUniquePtrOperations<JS::PersistentRooted<UniquePtr<T, D>>, T, D>
{ };

namespace gc {

template <typename T, typename TraceCallbacks>
void
CallTraceCallbackOnNonHeap(T* v, const TraceCallbacks& aCallbacks, const char* aName, void* aClosure)
{
    static_assert(sizeof(T) == sizeof(JS::Heap<T>), "T and Heap<T> must be compatible.");
    MOZ_ASSERT(v);
    mozilla::DebugOnly<Cell*> cell = BarrierMethods<T>::asGCThingOrNull(*v);
    MOZ_ASSERT(cell);
    MOZ_ASSERT(!IsInsideNursery(cell));
    JS::Heap<T>* asHeapT = reinterpret_cast<JS::Heap<T>*>(v);
    aCallbacks.Trace(asHeapT, aName, aClosure);
}

} /* namespace gc */
} /* namespace js */

// mozilla::Swap uses a stack temporary, which prevents classes like Heap<T>
// from being declared MOZ_HEAP_CLASS.
namespace mozilla {

template <typename T>
inline void
Swap(JS::Heap<T>& aX, JS::Heap<T>& aY)
{
    T tmp = aX;
    aX = aY;
    aY = tmp;
}

template <typename T>
inline void
Swap(JS::TenuredHeap<T>& aX, JS::TenuredHeap<T>& aY)
{
    T tmp = aX;
    aX = aY;
    aY = tmp;
}

} /* namespace mozilla */

#undef DELETE_ASSIGNMENT_OPS

#endif  /* js_RootingAPI_h */