/usr/include/mozjs-52/js/UbiNodeDominatorTree.h is in libmozjs-52-dev 52.3.1-7fakesync1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 | /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef js_UbiNodeDominatorTree_h
#define js_UbiNodeDominatorTree_h
#include "mozilla/Attributes.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/Maybe.h"
#include "mozilla/Move.h"
#include "mozilla/UniquePtr.h"
#include "jsalloc.h"
#include "js/UbiNode.h"
#include "js/UbiNodePostOrder.h"
#include "js/Utility.h"
#include "js/Vector.h"
namespace JS {
namespace ubi {
/**
* In a directed graph with a root node `R`, a node `A` is said to "dominate" a
* node `B` iff every path from `R` to `B` contains `A`. A node `A` is said to
* be the "immediate dominator" of a node `B` iff it dominates `B`, is not `B`
* itself, and does not dominate any other nodes which also dominate `B` in
* turn.
*
* If we take every node from a graph `G` and create a new graph `T` with edges
* to each node from its immediate dominator, then `T` is a tree (each node has
* only one immediate dominator, or none if it is the root). This tree is called
* a "dominator tree".
*
* This class represents a dominator tree constructed from a `JS::ubi::Node`
* heap graph. The domination relationship and dominator trees are useful tools
* for analyzing heap graphs because they tell you:
*
* - Exactly what could be reclaimed by the GC if some node `A` became
* unreachable: those nodes which are dominated by `A`,
*
* - The "retained size" of a node in the heap graph, in contrast to its
* "shallow size". The "shallow size" is the space taken by a node itself,
* not counting anything it references. The "retained size" of a node is its
* shallow size plus the size of all the things that would be collected if
* the original node wasn't (directly or indirectly) referencing them. In
* other words, the retained size is the shallow size of a node plus the
* shallow sizes of every other node it dominates. For example, the root
* node in a binary tree might have a small shallow size that does not take
* up much space itself, but it dominates the rest of the binary tree and
* its retained size is therefore significant (assuming no external
* references into the tree).
*
* The simple, engineered algorithm presented in "A Simple, Fast Dominance
* Algorithm" by Cooper el al[0] is used to find dominators and construct the
* dominator tree. This algorithm runs in O(n^2) time, but is faster in practice
* than alternative algorithms with better theoretical running times, such as
* Lengauer-Tarjan which runs in O(e * log(n)). The big caveat to that statement
* is that Cooper et al found it is faster in practice *on control flow graphs*
* and I'm not convinced that this property also holds on *heap* graphs. That
* said, the implementation of this algorithm is *much* simpler than
* Lengauer-Tarjan and has been found to be fast enough at least for the time
* being.
*
* [0]: http://www.cs.rice.edu/~keith/EMBED/dom.pdf
*/
class JS_PUBLIC_API(DominatorTree)
{
private:
// Types.
using PredecessorSets = js::HashMap<Node, NodeSetPtr, js::DefaultHasher<Node>,
js::SystemAllocPolicy>;
using NodeToIndexMap = js::HashMap<Node, uint32_t, js::DefaultHasher<Node>,
js::SystemAllocPolicy>;
class DominatedSets;
public:
class DominatedSetRange;
/**
* A pointer to an immediately dominated node.
*
* Don't use this type directly; it is no safer than regular pointers. This
* is only for use indirectly with range-based for loops and
* `DominatedSetRange`.
*
* @see JS::ubi::DominatorTree::getDominatedSet
*/
class DominatedNodePtr
{
friend class DominatedSetRange;
const JS::ubi::Vector<Node>& postOrder;
const uint32_t* ptr;
DominatedNodePtr(const JS::ubi::Vector<Node>& postOrder, const uint32_t* ptr)
: postOrder(postOrder)
, ptr(ptr)
{ }
public:
bool operator!=(const DominatedNodePtr& rhs) const { return ptr != rhs.ptr; }
void operator++() { ptr++; }
const Node& operator*() const { return postOrder[*ptr]; }
};
/**
* A range of immediately dominated `JS::ubi::Node`s for use with
* range-based for loops.
*
* @see JS::ubi::DominatorTree::getDominatedSet
*/
class DominatedSetRange
{
friend class DominatedSets;
const JS::ubi::Vector<Node>& postOrder;
const uint32_t* beginPtr;
const uint32_t* endPtr;
DominatedSetRange(JS::ubi::Vector<Node>& postOrder, const uint32_t* begin, const uint32_t* end)
: postOrder(postOrder)
, beginPtr(begin)
, endPtr(end)
{
MOZ_ASSERT(begin <= end);
}
public:
DominatedNodePtr begin() const {
MOZ_ASSERT(beginPtr <= endPtr);
return DominatedNodePtr(postOrder, beginPtr);
}
DominatedNodePtr end() const {
return DominatedNodePtr(postOrder, endPtr);
}
size_t length() const {
MOZ_ASSERT(beginPtr <= endPtr);
return endPtr - beginPtr;
}
/**
* Safely skip ahead `n` dominators in the range, in O(1) time.
*
* Example usage:
*
* mozilla::Maybe<DominatedSetRange> range = myDominatorTree.getDominatedSet(myNode);
* if (range.isNothing()) {
* // Handle unknown nodes however you see fit...
* return false;
* }
*
* // Don't care about the first ten, for whatever reason.
* range->skip(10);
* for (const JS::ubi::Node& dominatedNode : *range) {
* // ...
* }
*/
void skip(size_t n) {
beginPtr += n;
if (beginPtr > endPtr)
beginPtr = endPtr;
}
};
private:
/**
* The set of all dominated sets in a dominator tree.
*
* Internally stores the sets in a contiguous array, with a side table of
* indices into that contiguous array to denote the start index of each
* individual set.
*/
class DominatedSets
{
JS::ubi::Vector<uint32_t> dominated;
JS::ubi::Vector<uint32_t> indices;
DominatedSets(JS::ubi::Vector<uint32_t>&& dominated, JS::ubi::Vector<uint32_t>&& indices)
: dominated(mozilla::Move(dominated))
, indices(mozilla::Move(indices))
{ }
public:
// DominatedSets is not copy-able.
DominatedSets(const DominatedSets& rhs) = delete;
DominatedSets& operator=(const DominatedSets& rhs) = delete;
// DominatedSets is move-able.
DominatedSets(DominatedSets&& rhs)
: dominated(mozilla::Move(rhs.dominated))
, indices(mozilla::Move(rhs.indices))
{
MOZ_ASSERT(this != &rhs, "self-move not allowed");
}
DominatedSets& operator=(DominatedSets&& rhs) {
this->~DominatedSets();
new (this) DominatedSets(mozilla::Move(rhs));
return *this;
}
/**
* Create the DominatedSets given the mapping of a node index to its
* immediate dominator. Returns `Some` on success, `Nothing` on OOM
* failure.
*/
static mozilla::Maybe<DominatedSets> Create(const JS::ubi::Vector<uint32_t>& doms) {
auto length = doms.length();
MOZ_ASSERT(length < UINT32_MAX);
// Create a vector `dominated` holding a flattened set of buckets of
// immediately dominated children nodes, with a lookup table
// `indices` mapping from each node to the beginning of its bucket.
//
// This has three phases:
//
// 1. Iterate over the full set of nodes and count up the size of
// each bucket. These bucket sizes are temporarily stored in the
// `indices` vector.
//
// 2. Convert the `indices` vector to store the cumulative sum of
// the sizes of all buckets before each index, resulting in a
// mapping from node index to one past the end of that node's
// bucket.
//
// 3. Iterate over the full set of nodes again, filling in bucket
// entries from the end of the bucket's range to its
// beginning. This decrements each index as a bucket entry is
// filled in. After having filled in all of a bucket's entries,
// the index points to the start of the bucket.
JS::ubi::Vector<uint32_t> dominated;
JS::ubi::Vector<uint32_t> indices;
if (!dominated.growBy(length) || !indices.growBy(length))
return mozilla::Nothing();
// 1
memset(indices.begin(), 0, length * sizeof(uint32_t));
for (uint32_t i = 0; i < length; i++)
indices[doms[i]]++;
// 2
uint32_t sumOfSizes = 0;
for (uint32_t i = 0; i < length; i++) {
sumOfSizes += indices[i];
MOZ_ASSERT(sumOfSizes <= length);
indices[i] = sumOfSizes;
}
// 3
for (uint32_t i = 0; i < length; i++) {
auto idxOfDom = doms[i];
indices[idxOfDom]--;
dominated[indices[idxOfDom]] = i;
}
#ifdef DEBUG
// Assert that our buckets are non-overlapping and don't run off the
// end of the vector.
uint32_t lastIndex = 0;
for (uint32_t i = 0; i < length; i++) {
MOZ_ASSERT(indices[i] >= lastIndex);
MOZ_ASSERT(indices[i] < length);
lastIndex = indices[i];
}
#endif
return mozilla::Some(DominatedSets(mozilla::Move(dominated), mozilla::Move(indices)));
}
/**
* Get the set of nodes immediately dominated by the node at
* `postOrder[nodeIndex]`.
*/
DominatedSetRange dominatedSet(JS::ubi::Vector<Node>& postOrder, uint32_t nodeIndex) const {
MOZ_ASSERT(postOrder.length() == indices.length());
MOZ_ASSERT(nodeIndex < indices.length());
auto end = nodeIndex == indices.length() - 1
? dominated.end()
: &dominated[indices[nodeIndex + 1]];
return DominatedSetRange(postOrder, &dominated[indices[nodeIndex]], end);
}
};
private:
// Data members.
JS::ubi::Vector<Node> postOrder;
NodeToIndexMap nodeToPostOrderIndex;
JS::ubi::Vector<uint32_t> doms;
DominatedSets dominatedSets;
mozilla::Maybe<JS::ubi::Vector<JS::ubi::Node::Size>> retainedSizes;
private:
// We use `UNDEFINED` as a sentinel value in the `doms` vector to signal
// that we haven't found any dominators for the node at the corresponding
// index in `postOrder` yet.
static const uint32_t UNDEFINED = UINT32_MAX;
DominatorTree(JS::ubi::Vector<Node>&& postOrder, NodeToIndexMap&& nodeToPostOrderIndex,
JS::ubi::Vector<uint32_t>&& doms, DominatedSets&& dominatedSets)
: postOrder(mozilla::Move(postOrder))
, nodeToPostOrderIndex(mozilla::Move(nodeToPostOrderIndex))
, doms(mozilla::Move(doms))
, dominatedSets(mozilla::Move(dominatedSets))
, retainedSizes(mozilla::Nothing())
{ }
static uint32_t intersect(JS::ubi::Vector<uint32_t>& doms, uint32_t finger1, uint32_t finger2) {
while (finger1 != finger2) {
if (finger1 < finger2)
finger1 = doms[finger1];
else if (finger2 < finger1)
finger2 = doms[finger2];
}
return finger1;
}
// Do the post order traversal of the heap graph and populate our
// predecessor sets.
static MOZ_MUST_USE bool doTraversal(JSContext* cx, AutoCheckCannotGC& noGC, const Node& root,
JS::ubi::Vector<Node>& postOrder,
PredecessorSets& predecessorSets) {
uint32_t nodeCount = 0;
auto onNode = [&](const Node& node) {
nodeCount++;
if (MOZ_UNLIKELY(nodeCount == UINT32_MAX))
return false;
return postOrder.append(node);
};
auto onEdge = [&](const Node& origin, const Edge& edge) {
auto p = predecessorSets.lookupForAdd(edge.referent);
if (!p) {
mozilla::UniquePtr<NodeSet, DeletePolicy<NodeSet>> set(js_new<NodeSet>());
if (!set ||
!set->init() ||
!predecessorSets.add(p, edge.referent, mozilla::Move(set)))
{
return false;
}
}
MOZ_ASSERT(p && p->value());
return p->value()->put(origin);
};
PostOrder traversal(cx, noGC);
return traversal.init() &&
traversal.addStart(root) &&
traversal.traverse(onNode, onEdge);
}
// Populates the given `map` with an entry for each node to its index in
// `postOrder`.
static MOZ_MUST_USE bool mapNodesToTheirIndices(JS::ubi::Vector<Node>& postOrder,
NodeToIndexMap& map) {
MOZ_ASSERT(!map.initialized());
MOZ_ASSERT(postOrder.length() < UINT32_MAX);
uint32_t length = postOrder.length();
if (!map.init(length))
return false;
for (uint32_t i = 0; i < length; i++)
map.putNewInfallible(postOrder[i], i);
return true;
}
// Convert the Node -> NodeSet predecessorSets to a index -> Vector<index>
// form.
static MOZ_MUST_USE bool convertPredecessorSetsToVectors(
const Node& root,
JS::ubi::Vector<Node>& postOrder,
PredecessorSets& predecessorSets,
NodeToIndexMap& nodeToPostOrderIndex,
JS::ubi::Vector<JS::ubi::Vector<uint32_t>>& predecessorVectors)
{
MOZ_ASSERT(postOrder.length() < UINT32_MAX);
uint32_t length = postOrder.length();
MOZ_ASSERT(predecessorVectors.length() == 0);
if (!predecessorVectors.growBy(length))
return false;
for (uint32_t i = 0; i < length - 1; i++) {
auto& node = postOrder[i];
MOZ_ASSERT(node != root,
"Only the last node should be root, since this was a post order traversal.");
auto ptr = predecessorSets.lookup(node);
MOZ_ASSERT(ptr,
"Because this isn't the root, it had better have predecessors, or else how "
"did we even find it.");
auto& predecessors = ptr->value();
if (!predecessorVectors[i].reserve(predecessors->count()))
return false;
for (auto range = predecessors->all(); !range.empty(); range.popFront()) {
auto ptr = nodeToPostOrderIndex.lookup(range.front());
MOZ_ASSERT(ptr);
predecessorVectors[i].infallibleAppend(ptr->value());
}
}
predecessorSets.finish();
return true;
}
// Initialize `doms` such that the immediate dominator of the `root` is the
// `root` itself and all others are `UNDEFINED`.
static MOZ_MUST_USE bool initializeDominators(JS::ubi::Vector<uint32_t>& doms,
uint32_t length) {
MOZ_ASSERT(doms.length() == 0);
if (!doms.growByUninitialized(length))
return false;
doms[length - 1] = length - 1;
for (uint32_t i = 0; i < length - 1; i++)
doms[i] = UNDEFINED;
return true;
}
void assertSanity() const {
MOZ_ASSERT(postOrder.length() == doms.length());
MOZ_ASSERT(postOrder.length() == nodeToPostOrderIndex.count());
MOZ_ASSERT_IF(retainedSizes.isSome(), postOrder.length() == retainedSizes->length());
}
MOZ_MUST_USE bool computeRetainedSizes(mozilla::MallocSizeOf mallocSizeOf) {
MOZ_ASSERT(retainedSizes.isNothing());
auto length = postOrder.length();
retainedSizes.emplace();
if (!retainedSizes->growBy(length)) {
retainedSizes = mozilla::Nothing();
return false;
}
// Iterate in forward order so that we know all of a node's children in
// the dominator tree have already had their retained size
// computed. Then we can simply say that the retained size of a node is
// its shallow size (JS::ubi::Node::size) plus the retained sizes of its
// immediate children in the tree.
for (uint32_t i = 0; i < length; i++) {
auto size = postOrder[i].size(mallocSizeOf);
for (const auto& dominated : dominatedSets.dominatedSet(postOrder, i)) {
// The root node dominates itself, but shouldn't contribute to
// its own retained size.
if (dominated == postOrder[length - 1]) {
MOZ_ASSERT(i == length - 1);
continue;
}
auto ptr = nodeToPostOrderIndex.lookup(dominated);
MOZ_ASSERT(ptr);
auto idxOfDominated = ptr->value();
MOZ_ASSERT(idxOfDominated < i);
size += retainedSizes.ref()[idxOfDominated];
}
retainedSizes.ref()[i] = size;
}
return true;
}
public:
// DominatorTree is not copy-able.
DominatorTree(const DominatorTree&) = delete;
DominatorTree& operator=(const DominatorTree&) = delete;
// DominatorTree is move-able.
DominatorTree(DominatorTree&& rhs)
: postOrder(mozilla::Move(rhs.postOrder))
, nodeToPostOrderIndex(mozilla::Move(rhs.nodeToPostOrderIndex))
, doms(mozilla::Move(rhs.doms))
, dominatedSets(mozilla::Move(rhs.dominatedSets))
, retainedSizes(mozilla::Move(rhs.retainedSizes))
{
MOZ_ASSERT(this != &rhs, "self-move is not allowed");
}
DominatorTree& operator=(DominatorTree&& rhs) {
this->~DominatorTree();
new (this) DominatorTree(mozilla::Move(rhs));
return *this;
}
/**
* Construct a `DominatorTree` of the heap graph visible from `root`. The
* `root` is also used as the root of the resulting dominator tree.
*
* The resulting `DominatorTree` instance must not outlive the
* `JS::ubi::Node` graph it was constructed from.
*
* - For `JS::ubi::Node` graphs backed by the live heap graph, this means
* that the `DominatorTree`'s lifetime _must_ be contained within the
* scope of the provided `AutoCheckCannotGC` reference because a GC will
* invalidate the nodes.
*
* - For `JS::ubi::Node` graphs backed by some other offline structure
* provided by the embedder, the resulting `DominatorTree`'s lifetime is
* bounded by that offline structure's lifetime.
*
* In practice, this means that within SpiderMonkey we must treat
* `DominatorTree` as if it were backed by the live heap graph and trust
* that embedders with knowledge of the graph's implementation will do the
* Right Thing.
*
* Returns `mozilla::Nothing()` on OOM failure. It is the caller's
* responsibility to handle and report the OOM.
*/
static mozilla::Maybe<DominatorTree>
Create(JSContext* cx, AutoCheckCannotGC& noGC, const Node& root) {
JS::ubi::Vector<Node> postOrder;
PredecessorSets predecessorSets;
if (!predecessorSets.init() || !doTraversal(cx, noGC, root, postOrder, predecessorSets))
return mozilla::Nothing();
MOZ_ASSERT(postOrder.length() < UINT32_MAX);
uint32_t length = postOrder.length();
MOZ_ASSERT(postOrder[length - 1] == root);
// From here on out we wish to avoid hash table lookups, and we use
// indices into `postOrder` instead of actual nodes wherever
// possible. This greatly improves the performance of this
// implementation, but we have to pay a little bit of upfront cost to
// convert our data structures to play along first.
NodeToIndexMap nodeToPostOrderIndex;
if (!mapNodesToTheirIndices(postOrder, nodeToPostOrderIndex))
return mozilla::Nothing();
JS::ubi::Vector<JS::ubi::Vector<uint32_t>> predecessorVectors;
if (!convertPredecessorSetsToVectors(root, postOrder, predecessorSets, nodeToPostOrderIndex,
predecessorVectors))
return mozilla::Nothing();
JS::ubi::Vector<uint32_t> doms;
if (!initializeDominators(doms, length))
return mozilla::Nothing();
bool changed = true;
while (changed) {
changed = false;
// Iterate over the non-root nodes in reverse post order.
for (uint32_t indexPlusOne = length - 1; indexPlusOne > 0; indexPlusOne--) {
MOZ_ASSERT(postOrder[indexPlusOne - 1] != root);
// Take the intersection of every predecessor's dominator set;
// that is the current best guess at the immediate dominator for
// this node.
uint32_t newIDomIdx = UNDEFINED;
auto& predecessors = predecessorVectors[indexPlusOne - 1];
auto range = predecessors.all();
for ( ; !range.empty(); range.popFront()) {
auto idx = range.front();
if (doms[idx] != UNDEFINED) {
newIDomIdx = idx;
break;
}
}
MOZ_ASSERT(newIDomIdx != UNDEFINED,
"Because the root is initialized to dominate itself and is the first "
"node in every path, there must exist a predecessor to this node that "
"also has a dominator.");
for ( ; !range.empty(); range.popFront()) {
auto idx = range.front();
if (doms[idx] != UNDEFINED)
newIDomIdx = intersect(doms, newIDomIdx, idx);
}
// If the immediate dominator changed, we will have to do
// another pass of the outer while loop to continue the forward
// dataflow.
if (newIDomIdx != doms[indexPlusOne - 1]) {
doms[indexPlusOne - 1] = newIDomIdx;
changed = true;
}
}
}
auto maybeDominatedSets = DominatedSets::Create(doms);
if (maybeDominatedSets.isNothing())
return mozilla::Nothing();
return mozilla::Some(DominatorTree(mozilla::Move(postOrder),
mozilla::Move(nodeToPostOrderIndex),
mozilla::Move(doms),
mozilla::Move(*maybeDominatedSets)));
}
/**
* Get the root node for this dominator tree.
*/
const Node& root() const {
return postOrder[postOrder.length() - 1];
}
/**
* Return the immediate dominator of the given `node`. If `node` was not
* reachable from the `root` that this dominator tree was constructed from,
* then return the null `JS::ubi::Node`.
*/
Node getImmediateDominator(const Node& node) const {
assertSanity();
auto ptr = nodeToPostOrderIndex.lookup(node);
if (!ptr)
return Node();
auto idx = ptr->value();
MOZ_ASSERT(idx < postOrder.length());
return postOrder[doms[idx]];
}
/**
* Get the set of nodes immediately dominated by the given `node`. If `node`
* is not a member of this dominator tree, return `Nothing`.
*
* Example usage:
*
* mozilla::Maybe<DominatedSetRange> range = myDominatorTree.getDominatedSet(myNode);
* if (range.isNothing()) {
* // Handle unknown node however you see fit...
* return false;
* }
*
* for (const JS::ubi::Node& dominatedNode : *range) {
* // Do something with each immediately dominated node...
* }
*/
mozilla::Maybe<DominatedSetRange> getDominatedSet(const Node& node) {
assertSanity();
auto ptr = nodeToPostOrderIndex.lookup(node);
if (!ptr)
return mozilla::Nothing();
auto idx = ptr->value();
MOZ_ASSERT(idx < postOrder.length());
return mozilla::Some(dominatedSets.dominatedSet(postOrder, idx));
}
/**
* Get the retained size of the given `node`. The size is placed in
* `outSize`, or 0 if `node` is not a member of the dominator tree. Returns
* false on OOM failure, leaving `outSize` unchanged.
*/
MOZ_MUST_USE bool getRetainedSize(const Node& node, mozilla::MallocSizeOf mallocSizeOf,
Node::Size& outSize) {
assertSanity();
auto ptr = nodeToPostOrderIndex.lookup(node);
if (!ptr) {
outSize = 0;
return true;
}
if (retainedSizes.isNothing() && !computeRetainedSizes(mallocSizeOf))
return false;
auto idx = ptr->value();
MOZ_ASSERT(idx < postOrder.length());
outSize = retainedSizes.ref()[idx];
return true;
}
};
} // namespace ubi
} // namespace JS
#endif // js_UbiNodeDominatorTree_h
|