/usr/include/mozjs-52/mozilla/MathAlgorithms.h is in libmozjs-52-dev 52.3.1-7fakesync1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 | /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* mfbt maths algorithms. */
#ifndef mozilla_MathAlgorithms_h
#define mozilla_MathAlgorithms_h
#include "mozilla/Assertions.h"
#include "mozilla/TypeTraits.h"
#include <cmath>
#include <limits.h>
#include <stdint.h>
namespace mozilla {
// Greatest Common Divisor
template<typename IntegerType>
MOZ_ALWAYS_INLINE IntegerType
EuclidGCD(IntegerType aA, IntegerType aB)
{
// Euclid's algorithm; O(N) in the worst case. (There are better
// ways, but we don't need them for the current use of this algo.)
MOZ_ASSERT(aA > IntegerType(0));
MOZ_ASSERT(aB > IntegerType(0));
while (aA != aB) {
if (aA > aB) {
aA = aA - aB;
} else {
aB = aB - aA;
}
}
return aA;
}
// Least Common Multiple
template<typename IntegerType>
MOZ_ALWAYS_INLINE IntegerType
EuclidLCM(IntegerType aA, IntegerType aB)
{
// Divide first to reduce overflow risk.
return (aA / EuclidGCD(aA, aB)) * aB;
}
namespace detail {
template<typename T>
struct AllowDeprecatedAbsFixed : FalseType {};
template<> struct AllowDeprecatedAbsFixed<int32_t> : TrueType {};
template<> struct AllowDeprecatedAbsFixed<int64_t> : TrueType {};
template<typename T>
struct AllowDeprecatedAbs : AllowDeprecatedAbsFixed<T> {};
template<> struct AllowDeprecatedAbs<int> : TrueType {};
template<> struct AllowDeprecatedAbs<long> : TrueType {};
} // namespace detail
// DO NOT USE DeprecatedAbs. It exists only until its callers can be converted
// to Abs below, and it will be removed when all callers have been changed.
template<typename T>
inline typename mozilla::EnableIf<detail::AllowDeprecatedAbs<T>::value, T>::Type
DeprecatedAbs(const T aValue)
{
// The absolute value of the smallest possible value of a signed-integer type
// won't fit in that type (on twos-complement systems -- and we're blithely
// assuming we're on such systems, for the non-<stdint.h> types listed above),
// so assert that the input isn't that value.
//
// This is the case if: the value is non-negative; or if adding one (giving a
// value in the range [-maxvalue, 0]), then negating (giving a value in the
// range [0, maxvalue]), doesn't produce maxvalue (because in twos-complement,
// (minvalue + 1) == -maxvalue).
MOZ_ASSERT(aValue >= 0 ||
-(aValue + 1) != T((1ULL << (CHAR_BIT * sizeof(T) - 1)) - 1),
"You can't negate the smallest possible negative integer!");
return aValue >= 0 ? aValue : -aValue;
}
namespace detail {
// For now mozilla::Abs only takes intN_T, the signed natural types, and
// float/double/long double. Feel free to add overloads for other standard,
// signed types if you need them.
template<typename T>
struct AbsReturnTypeFixed;
template<> struct AbsReturnTypeFixed<int8_t> { typedef uint8_t Type; };
template<> struct AbsReturnTypeFixed<int16_t> { typedef uint16_t Type; };
template<> struct AbsReturnTypeFixed<int32_t> { typedef uint32_t Type; };
template<> struct AbsReturnTypeFixed<int64_t> { typedef uint64_t Type; };
template<typename T>
struct AbsReturnType : AbsReturnTypeFixed<T> {};
template<> struct AbsReturnType<char> :
EnableIf<char(-1) < char(0), unsigned char> {};
template<> struct AbsReturnType<signed char> { typedef unsigned char Type; };
template<> struct AbsReturnType<short> { typedef unsigned short Type; };
template<> struct AbsReturnType<int> { typedef unsigned int Type; };
template<> struct AbsReturnType<long> { typedef unsigned long Type; };
template<> struct AbsReturnType<long long> { typedef unsigned long long Type; };
template<> struct AbsReturnType<float> { typedef float Type; };
template<> struct AbsReturnType<double> { typedef double Type; };
template<> struct AbsReturnType<long double> { typedef long double Type; };
} // namespace detail
template<typename T>
inline typename detail::AbsReturnType<T>::Type
Abs(const T aValue)
{
typedef typename detail::AbsReturnType<T>::Type ReturnType;
return aValue >= 0 ? ReturnType(aValue) : ~ReturnType(aValue) + 1;
}
template<>
inline float
Abs<float>(const float aFloat)
{
return std::fabs(aFloat);
}
template<>
inline double
Abs<double>(const double aDouble)
{
return std::fabs(aDouble);
}
template<>
inline long double
Abs<long double>(const long double aLongDouble)
{
return std::fabs(aLongDouble);
}
} // namespace mozilla
#if defined(_MSC_VER) && \
(defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64))
# define MOZ_BITSCAN_WINDOWS
# include <intrin.h>
# pragma intrinsic(_BitScanForward, _BitScanReverse)
# if defined(_M_AMD64) || defined(_M_X64)
# define MOZ_BITSCAN_WINDOWS64
# pragma intrinsic(_BitScanForward64, _BitScanReverse64)
# endif
#endif
namespace mozilla {
namespace detail {
#if defined(MOZ_BITSCAN_WINDOWS)
inline uint_fast8_t
CountLeadingZeroes32(uint32_t aValue)
{
unsigned long index;
if (!_BitScanReverse(&index, static_cast<unsigned long>(aValue)))
return 32;
return uint_fast8_t(31 - index);
}
inline uint_fast8_t
CountTrailingZeroes32(uint32_t aValue)
{
unsigned long index;
if (!_BitScanForward(&index, static_cast<unsigned long>(aValue)))
return 32;
return uint_fast8_t(index);
}
inline uint_fast8_t
CountPopulation32(uint32_t aValue)
{
uint32_t x = aValue - ((aValue >> 1) & 0x55555555);
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
return (((x + (x >> 4)) & 0xf0f0f0f) * 0x1010101) >> 24;
}
inline uint_fast8_t
CountPopulation64(uint64_t aValue)
{
return uint_fast8_t(CountPopulation32(aValue & 0xffffffff) +
CountPopulation32(aValue >> 32));
}
inline uint_fast8_t
CountLeadingZeroes64(uint64_t aValue)
{
#if defined(MOZ_BITSCAN_WINDOWS64)
unsigned long index;
if (!_BitScanReverse64(&index, static_cast<unsigned __int64>(aValue)))
return 64;
return uint_fast8_t(63 - index);
#else
uint32_t hi = uint32_t(aValue >> 32);
if (hi != 0) {
return CountLeadingZeroes32(hi);
}
return 32u + CountLeadingZeroes32(uint32_t(aValue));
#endif
}
inline uint_fast8_t
CountTrailingZeroes64(uint64_t aValue)
{
#if defined(MOZ_BITSCAN_WINDOWS64)
unsigned long index;
if (!_BitScanForward64(&index, static_cast<unsigned __int64>(aValue)))
return 64;
return uint_fast8_t(index);
#else
uint32_t lo = uint32_t(aValue);
if (lo != 0) {
return CountTrailingZeroes32(lo);
}
return 32u + CountTrailingZeroes32(uint32_t(aValue >> 32));
#endif
}
# ifdef MOZ_HAVE_BITSCAN64
# undef MOZ_HAVE_BITSCAN64
# endif
#elif defined(__clang__) || defined(__GNUC__)
# if defined(__clang__)
# if !__has_builtin(__builtin_ctz) || !__has_builtin(__builtin_clz)
# error "A clang providing __builtin_c[lt]z is required to build"
# endif
# else
// gcc has had __builtin_clz and friends since 3.4: no need to check.
# endif
inline uint_fast8_t
CountLeadingZeroes32(uint32_t aValue)
{
return __builtin_clz(aValue);
}
inline uint_fast8_t
CountTrailingZeroes32(uint32_t aValue)
{
return __builtin_ctz(aValue);
}
inline uint_fast8_t
CountPopulation32(uint32_t aValue)
{
return __builtin_popcount(aValue);
}
inline uint_fast8_t
CountPopulation64(uint64_t aValue)
{
return __builtin_popcountll(aValue);
}
inline uint_fast8_t
CountLeadingZeroes64(uint64_t aValue)
{
return __builtin_clzll(aValue);
}
inline uint_fast8_t
CountTrailingZeroes64(uint64_t aValue)
{
return __builtin_ctzll(aValue);
}
#else
# error "Implement these!"
inline uint_fast8_t CountLeadingZeroes32(uint32_t aValue) = delete;
inline uint_fast8_t CountTrailingZeroes32(uint32_t aValue) = delete;
inline uint_fast8_t CountPopulation32(uint32_t aValue) = delete;
inline uint_fast8_t CountPopulation64(uint64_t aValue) = delete;
inline uint_fast8_t CountLeadingZeroes64(uint64_t aValue) = delete;
inline uint_fast8_t CountTrailingZeroes64(uint64_t aValue) = delete;
#endif
} // namespace detail
/**
* Compute the number of high-order zero bits in the NON-ZERO number |aValue|.
* That is, looking at the bitwise representation of the number, with the
* highest- valued bits at the start, return the number of zeroes before the
* first one is observed.
*
* CountLeadingZeroes32(0xF0FF1000) is 0;
* CountLeadingZeroes32(0x7F8F0001) is 1;
* CountLeadingZeroes32(0x3FFF0100) is 2;
* CountLeadingZeroes32(0x1FF50010) is 3; and so on.
*/
inline uint_fast8_t
CountLeadingZeroes32(uint32_t aValue)
{
MOZ_ASSERT(aValue != 0);
return detail::CountLeadingZeroes32(aValue);
}
/**
* Compute the number of low-order zero bits in the NON-ZERO number |aValue|.
* That is, looking at the bitwise representation of the number, with the
* lowest- valued bits at the start, return the number of zeroes before the
* first one is observed.
*
* CountTrailingZeroes32(0x0100FFFF) is 0;
* CountTrailingZeroes32(0x7000FFFE) is 1;
* CountTrailingZeroes32(0x0080FFFC) is 2;
* CountTrailingZeroes32(0x0080FFF8) is 3; and so on.
*/
inline uint_fast8_t
CountTrailingZeroes32(uint32_t aValue)
{
MOZ_ASSERT(aValue != 0);
return detail::CountTrailingZeroes32(aValue);
}
/**
* Compute the number of one bits in the number |aValue|,
*/
inline uint_fast8_t
CountPopulation32(uint32_t aValue)
{
return detail::CountPopulation32(aValue);
}
/** Analogous to CountPopulation32, but for 64-bit numbers */
inline uint_fast8_t
CountPopulation64(uint64_t aValue)
{
return detail::CountPopulation64(aValue);
}
/** Analogous to CountLeadingZeroes32, but for 64-bit numbers. */
inline uint_fast8_t
CountLeadingZeroes64(uint64_t aValue)
{
MOZ_ASSERT(aValue != 0);
return detail::CountLeadingZeroes64(aValue);
}
/** Analogous to CountTrailingZeroes32, but for 64-bit numbers. */
inline uint_fast8_t
CountTrailingZeroes64(uint64_t aValue)
{
MOZ_ASSERT(aValue != 0);
return detail::CountTrailingZeroes64(aValue);
}
namespace detail {
template<typename T, size_t Size = sizeof(T)>
class CeilingLog2;
template<typename T>
class CeilingLog2<T, 4>
{
public:
static uint_fast8_t compute(const T aValue)
{
// Check for <= 1 to avoid the == 0 undefined case.
return aValue <= 1 ? 0u : 32u - CountLeadingZeroes32(aValue - 1);
}
};
template<typename T>
class CeilingLog2<T, 8>
{
public:
static uint_fast8_t compute(const T aValue)
{
// Check for <= 1 to avoid the == 0 undefined case.
return aValue <= 1 ? 0u : 64u - CountLeadingZeroes64(aValue - 1);
}
};
} // namespace detail
/**
* Compute the log of the least power of 2 greater than or equal to |aValue|.
*
* CeilingLog2(0..1) is 0;
* CeilingLog2(2) is 1;
* CeilingLog2(3..4) is 2;
* CeilingLog2(5..8) is 3;
* CeilingLog2(9..16) is 4; and so on.
*/
template<typename T>
inline uint_fast8_t
CeilingLog2(const T aValue)
{
return detail::CeilingLog2<T>::compute(aValue);
}
/** A CeilingLog2 variant that accepts only size_t. */
inline uint_fast8_t
CeilingLog2Size(size_t aValue)
{
return CeilingLog2(aValue);
}
namespace detail {
template<typename T, size_t Size = sizeof(T)>
class FloorLog2;
template<typename T>
class FloorLog2<T, 4>
{
public:
static uint_fast8_t compute(const T aValue)
{
return 31u - CountLeadingZeroes32(aValue | 1);
}
};
template<typename T>
class FloorLog2<T, 8>
{
public:
static uint_fast8_t compute(const T aValue)
{
return 63u - CountLeadingZeroes64(aValue | 1);
}
};
} // namespace detail
/**
* Compute the log of the greatest power of 2 less than or equal to |aValue|.
*
* FloorLog2(0..1) is 0;
* FloorLog2(2..3) is 1;
* FloorLog2(4..7) is 2;
* FloorLog2(8..15) is 3; and so on.
*/
template<typename T>
inline uint_fast8_t
FloorLog2(const T aValue)
{
return detail::FloorLog2<T>::compute(aValue);
}
/** A FloorLog2 variant that accepts only size_t. */
inline uint_fast8_t
FloorLog2Size(size_t aValue)
{
return FloorLog2(aValue);
}
/*
* Compute the smallest power of 2 greater than or equal to |x|. |x| must not
* be so great that the computed value would overflow |size_t|.
*/
inline size_t
RoundUpPow2(size_t aValue)
{
MOZ_ASSERT(aValue <= (size_t(1) << (sizeof(size_t) * CHAR_BIT - 1)),
"can't round up -- will overflow!");
return size_t(1) << CeilingLog2(aValue);
}
/**
* Rotates the bits of the given value left by the amount of the shift width.
*/
template<typename T>
inline T
RotateLeft(const T aValue, uint_fast8_t aShift)
{
MOZ_ASSERT(aShift < sizeof(T) * CHAR_BIT, "Shift value is too large!");
MOZ_ASSERT(aShift > 0,
"Rotation by value length is undefined behavior, but compilers "
"do not currently fold a test into the rotate instruction. "
"Please remove this restriction when compilers optimize the "
"zero case (http://blog.regehr.org/archives/1063).");
static_assert(IsUnsigned<T>::value, "Rotates require unsigned values");
return (aValue << aShift) | (aValue >> (sizeof(T) * CHAR_BIT - aShift));
}
/**
* Rotates the bits of the given value right by the amount of the shift width.
*/
template<typename T>
inline T
RotateRight(const T aValue, uint_fast8_t aShift)
{
MOZ_ASSERT(aShift < sizeof(T) * CHAR_BIT, "Shift value is too large!");
MOZ_ASSERT(aShift > 0,
"Rotation by value length is undefined behavior, but compilers "
"do not currently fold a test into the rotate instruction. "
"Please remove this restriction when compilers optimize the "
"zero case (http://blog.regehr.org/archives/1063).");
static_assert(IsUnsigned<T>::value, "Rotates require unsigned values");
return (aValue >> aShift) | (aValue << (sizeof(T) * CHAR_BIT - aShift));
}
/**
* Returns true if |x| is a power of two.
* Zero is not an integer power of two. (-Inf is not an integer)
*/
template<typename T>
constexpr bool
IsPowerOfTwo(T x)
{
static_assert(IsUnsigned<T>::value,
"IsPowerOfTwo requires unsigned values");
return x && (x & (x - 1)) == 0;
}
template<typename T>
inline T
Clamp(const T aValue, const T aMin, const T aMax)
{
static_assert(IsIntegral<T>::value,
"Clamp accepts only integral types, so that it doesn't have"
" to distinguish differently-signed zeroes (which users may"
" or may not care to distinguish, likely at a perf cost) or"
" to decide how to clamp NaN or a range with a NaN"
" endpoint.");
MOZ_ASSERT(aMin <= aMax);
if (aValue <= aMin)
return aMin;
if (aValue >= aMax)
return aMax;
return aValue;
}
} /* namespace mozilla */
#endif /* mozilla_MathAlgorithms_h */
|