/usr/lib/ruby/2.5.0/rubygems/security.rb is in libruby2.5 2.5.1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 | # frozen_string_literal: true
#--
# Copyright 2006 by Chad Fowler, Rich Kilmer, Jim Weirich and others.
# All rights reserved.
# See LICENSE.txt for permissions.
#++
require 'rubygems/exceptions'
require 'fileutils'
begin
require 'openssl'
rescue LoadError => e
raise unless (e.respond_to?(:path) && e.path == 'openssl') ||
e.message =~ / -- openssl$/
end
##
# = Signing gems
#
# The Gem::Security implements cryptographic signatures for gems. The section
# below is a step-by-step guide to using signed gems and generating your own.
#
# == Walkthrough
#
# === Building your certificate
#
# In order to start signing your gems, you'll need to build a private key and
# a self-signed certificate. Here's how:
#
# # build a private key and certificate for yourself:
# $ gem cert --build you@example.com
#
# This could take anywhere from a few seconds to a minute or two, depending on
# the speed of your computer (public key algorithms aren't exactly the
# speediest crypto algorithms in the world). When it's finished, you'll see
# the files "gem-private_key.pem" and "gem-public_cert.pem" in the current
# directory.
#
# First things first: Move both files to ~/.gem if you don't already have a
# key and certificate in that directory. Ensure the file permissions make the
# key unreadable by others (by default the file is saved securely).
#
# Keep your private key hidden; if it's compromised, someone can sign packages
# as you (note: PKI has ways of mitigating the risk of stolen keys; more on
# that later).
#
# === Signing Gems
#
# In RubyGems 2 and newer there is no extra work to sign a gem. RubyGems will
# automatically find your key and certificate in your home directory and use
# them to sign newly packaged gems.
#
# If your certificate is not self-signed (signed by a third party) RubyGems
# will attempt to load the certificate chain from the trusted certificates.
# Use <code>gem cert --add signing_cert.pem</code> to add your signers as
# trusted certificates. See below for further information on certificate
# chains.
#
# If you build your gem it will automatically be signed. If you peek inside
# your gem file, you'll see a couple of new files have been added:
#
# $ tar tf your-gem-1.0.gem
# metadata.gz
# metadata.gz.sum
# metadata.gz.sig # metadata signature
# data.tar.gz
# data.tar.gz.sum
# data.tar.gz.sig # data signature
#
# === Manually signing gems
#
# If you wish to store your key in a separate secure location you'll need to
# set your gems up for signing by hand. To do this, set the
# <code>signing_key</code> and <code>cert_chain</code> in the gemspec before
# packaging your gem:
#
# s.signing_key = '/secure/path/to/gem-private_key.pem'
# s.cert_chain = %w[/secure/path/to/gem-public_cert.pem]
#
# When you package your gem with these options set RubyGems will automatically
# load your key and certificate from the secure paths.
#
# === Signed gems and security policies
#
# Now let's verify the signature. Go ahead and install the gem, but add the
# following options: <code>-P HighSecurity</code>, like this:
#
# # install the gem with using the security policy "HighSecurity"
# $ sudo gem install your.gem -P HighSecurity
#
# The <code>-P</code> option sets your security policy -- we'll talk about
# that in just a minute. Eh, what's this?
#
# $ gem install -P HighSecurity your-gem-1.0.gem
# ERROR: While executing gem ... (Gem::Security::Exception)
# root cert /CN=you/DC=example is not trusted
#
# The culprit here is the security policy. RubyGems has several different
# security policies. Let's take a short break and go over the security
# policies. Here's a list of the available security policies, and a brief
# description of each one:
#
# * NoSecurity - Well, no security at all. Signed packages are treated like
# unsigned packages.
# * LowSecurity - Pretty much no security. If a package is signed then
# RubyGems will make sure the signature matches the signing
# certificate, and that the signing certificate hasn't expired, but
# that's it. A malicious user could easily circumvent this kind of
# security.
# * MediumSecurity - Better than LowSecurity and NoSecurity, but still
# fallible. Package contents are verified against the signing
# certificate, and the signing certificate is checked for validity,
# and checked against the rest of the certificate chain (if you don't
# know what a certificate chain is, stay tuned, we'll get to that).
# The biggest improvement over LowSecurity is that MediumSecurity
# won't install packages that are signed by untrusted sources.
# Unfortunately, MediumSecurity still isn't totally secure -- a
# malicious user can still unpack the gem, strip the signatures, and
# distribute the gem unsigned.
# * HighSecurity - Here's the bugger that got us into this mess.
# The HighSecurity policy is identical to the MediumSecurity policy,
# except that it does not allow unsigned gems. A malicious user
# doesn't have a whole lot of options here; they can't modify the
# package contents without invalidating the signature, and they can't
# modify or remove signature or the signing certificate chain, or
# RubyGems will simply refuse to install the package. Oh well, maybe
# they'll have better luck causing problems for CPAN users instead :).
#
# The reason RubyGems refused to install your shiny new signed gem was because
# it was from an untrusted source. Well, your code is infallible (naturally),
# so you need to add yourself as a trusted source:
#
# # add trusted certificate
# gem cert --add ~/.gem/gem-public_cert.pem
#
# You've now added your public certificate as a trusted source. Now you can
# install packages signed by your private key without any hassle. Let's try
# the install command above again:
#
# # install the gem with using the HighSecurity policy (and this time
# # without any shenanigans)
# $ gem install -P HighSecurity your-gem-1.0.gem
# Successfully installed your-gem-1.0
# 1 gem installed
#
# This time RubyGems will accept your signed package and begin installing.
#
# While you're waiting for RubyGems to work it's magic, have a look at some of
# the other security commands by running <code>gem help cert</code>:
#
# Options:
# -a, --add CERT Add a trusted certificate.
# -l, --list [FILTER] List trusted certificates where the
# subject contains FILTER
# -r, --remove FILTER Remove trusted certificates where the
# subject contains FILTER
# -b, --build EMAIL_ADDR Build private key and self-signed
# certificate for EMAIL_ADDR
# -C, --certificate CERT Signing certificate for --sign
# -K, --private-key KEY Key for --sign or --build
# -s, --sign CERT Signs CERT with the key from -K
# and the certificate from -C
#
# We've already covered the <code>--build</code> option, and the
# <code>--add</code>, <code>--list</code>, and <code>--remove</code> commands
# seem fairly straightforward; they allow you to add, list, and remove the
# certificates in your trusted certificate list. But what's with this
# <code>--sign</code> option?
#
# === Certificate chains
#
# To answer that question, let's take a look at "certificate chains", a
# concept I mentioned earlier. There are a couple of problems with
# self-signed certificates: first of all, self-signed certificates don't offer
# a whole lot of security. Sure, the certificate says Yukihiro Matsumoto, but
# how do I know it was actually generated and signed by matz himself unless he
# gave me the certificate in person?
#
# The second problem is scalability. Sure, if there are 50 gem authors, then
# I have 50 trusted certificates, no problem. What if there are 500 gem
# authors? 1000? Having to constantly add new trusted certificates is a
# pain, and it actually makes the trust system less secure by encouraging
# RubyGems users to blindly trust new certificates.
#
# Here's where certificate chains come in. A certificate chain establishes an
# arbitrarily long chain of trust between an issuing certificate and a child
# certificate. So instead of trusting certificates on a per-developer basis,
# we use the PKI concept of certificate chains to build a logical hierarchy of
# trust. Here's a hypothetical example of a trust hierarchy based (roughly)
# on geography:
#
# --------------------------
# | rubygems@rubygems.org |
# --------------------------
# |
# -----------------------------------
# | |
# ---------------------------- -----------------------------
# | seattlerb@seattlerb.org | | dcrubyists@richkilmer.com |
# ---------------------------- -----------------------------
# | | | |
# --------------- ---------------- ----------- --------------
# | drbrain | | zenspider | | pabs@dc | | tomcope@dc |
# --------------- ---------------- ----------- --------------
#
#
# Now, rather than having 4 trusted certificates (one for drbrain, zenspider,
# pabs@dc, and tomecope@dc), a user could actually get by with one
# certificate, the "rubygems@rubygems.org" certificate.
#
# Here's how it works:
#
# I install "rdoc-3.12.gem", a package signed by "drbrain". I've never heard
# of "drbrain", but his certificate has a valid signature from the
# "seattle.rb@seattlerb.org" certificate, which in turn has a valid signature
# from the "rubygems@rubygems.org" certificate. Voila! At this point, it's
# much more reasonable for me to trust a package signed by "drbrain", because
# I can establish a chain to "rubygems@rubygems.org", which I do trust.
#
# === Signing certificates
#
# The <code>--sign</code> option allows all this to happen. A developer
# creates their build certificate with the <code>--build</code> option, then
# has their certificate signed by taking it with them to their next regional
# Ruby meetup (in our hypothetical example), and it's signed there by the
# person holding the regional RubyGems signing certificate, which is signed at
# the next RubyConf by the holder of the top-level RubyGems certificate. At
# each point the issuer runs the same command:
#
# # sign a certificate with the specified key and certificate
# # (note that this modifies client_cert.pem!)
# $ gem cert -K /mnt/floppy/issuer-priv_key.pem -C issuer-pub_cert.pem
# --sign client_cert.pem
#
# Then the holder of issued certificate (in this case, your buddy "drbrain"),
# can start using this signed certificate to sign RubyGems. By the way, in
# order to let everyone else know about his new fancy signed certificate,
# "drbrain" would save his newly signed certificate as
# <code>~/.gem/gem-public_cert.pem</code>
#
# Obviously this RubyGems trust infrastructure doesn't exist yet. Also, in
# the "real world", issuers actually generate the child certificate from a
# certificate request, rather than sign an existing certificate. And our
# hypothetical infrastructure is missing a certificate revocation system.
# These are that can be fixed in the future...
#
# At this point you should know how to do all of these new and interesting
# things:
#
# * build a gem signing key and certificate
# * adjust your security policy
# * modify your trusted certificate list
# * sign a certificate
#
# == Manually verifying signatures
#
# In case you don't trust RubyGems you can verify gem signatures manually:
#
# 1. Fetch and unpack the gem
#
# gem fetch some_signed_gem
# tar -xf some_signed_gem-1.0.gem
#
# 2. Grab the public key from the gemspec
#
# gem spec some_signed_gem-1.0.gem cert_chain | \
# ruby -ryaml -e 'puts YAML.load_documents($stdin)' > public_key.crt
#
# 3. Generate a SHA1 hash of the data.tar.gz
#
# openssl dgst -sha1 < data.tar.gz > my.hash
#
# 4. Verify the signature
#
# openssl rsautl -verify -inkey public_key.crt -certin \
# -in data.tar.gz.sig > verified.hash
#
# 5. Compare your hash to the verified hash
#
# diff -s verified.hash my.hash
#
# 6. Repeat 5 and 6 with metadata.gz
#
# == OpenSSL Reference
#
# The .pem files generated by --build and --sign are PEM files. Here's a
# couple of useful OpenSSL commands for manipulating them:
#
# # convert a PEM format X509 certificate into DER format:
# # (note: Windows .cer files are X509 certificates in DER format)
# $ openssl x509 -in input.pem -outform der -out output.der
#
# # print out the certificate in a human-readable format:
# $ openssl x509 -in input.pem -noout -text
#
# And you can do the same thing with the private key file as well:
#
# # convert a PEM format RSA key into DER format:
# $ openssl rsa -in input_key.pem -outform der -out output_key.der
#
# # print out the key in a human readable format:
# $ openssl rsa -in input_key.pem -noout -text
#
# == Bugs/TODO
#
# * There's no way to define a system-wide trust list.
# * custom security policies (from a YAML file, etc)
# * Simple method to generate a signed certificate request
# * Support for OCSP, SCVP, CRLs, or some other form of cert status check
# (list is in order of preference)
# * Support for encrypted private keys
# * Some sort of semi-formal trust hierarchy (see long-winded explanation
# above)
# * Path discovery (for gem certificate chains that don't have a self-signed
# root) -- by the way, since we don't have this, THE ROOT OF THE CERTIFICATE
# CHAIN MUST BE SELF SIGNED if Policy#verify_root is true (and it is for the
# MediumSecurity and HighSecurity policies)
# * Better explanation of X509 naming (ie, we don't have to use email
# addresses)
# * Honor AIA field (see note about OCSP above)
# * Honor extension restrictions
# * Might be better to store the certificate chain as a PKCS#7 or PKCS#12
# file, instead of an array embedded in the metadata.
# * Flexible signature and key algorithms, not hard-coded to RSA and SHA1.
#
# == Original author
#
# Paul Duncan <pabs@pablotron.org>
# http://pablotron.org/
module Gem::Security
##
# Gem::Security default exception type
class Exception < Gem::Exception; end
##
# Digest algorithm used to sign gems
DIGEST_ALGORITHM =
if defined?(OpenSSL::Digest::SHA256) then
OpenSSL::Digest::SHA256
elsif defined?(OpenSSL::Digest::SHA1) then
OpenSSL::Digest::SHA1
end
##
# Used internally to select the signing digest from all computed digests
DIGEST_NAME = # :nodoc:
if DIGEST_ALGORITHM then
DIGEST_ALGORITHM.new.name
end
##
# Algorithm for creating the key pair used to sign gems
KEY_ALGORITHM =
if defined?(OpenSSL::PKey::RSA) then
OpenSSL::PKey::RSA
end
##
# Length of keys created by KEY_ALGORITHM
KEY_LENGTH = 3072
##
# Cipher used to encrypt the key pair used to sign gems.
# Must be in the list returned by OpenSSL::Cipher.ciphers
KEY_CIPHER = OpenSSL::Cipher.new('AES-256-CBC') if defined?(OpenSSL::Cipher)
##
# One day in seconds
ONE_DAY = 86400
##
# One year in seconds
ONE_YEAR = ONE_DAY * 365
##
# The default set of extensions are:
#
# * The certificate is not a certificate authority
# * The key for the certificate may be used for key and data encipherment
# and digital signatures
# * The certificate contains a subject key identifier
EXTENSIONS = {
'basicConstraints' => 'CA:FALSE',
'keyUsage' =>
'keyEncipherment,dataEncipherment,digitalSignature',
'subjectKeyIdentifier' => 'hash',
}
def self.alt_name_or_x509_entry certificate, x509_entry
alt_name = certificate.extensions.find do |extension|
extension.oid == "#{x509_entry}AltName"
end
return alt_name.value if alt_name
certificate.send x509_entry
end
##
# Creates an unsigned certificate for +subject+ and +key+. The lifetime of
# the key is from the current time to +age+ which defaults to one year.
#
# The +extensions+ restrict the key to the indicated uses.
def self.create_cert subject, key, age = ONE_YEAR, extensions = EXTENSIONS,
serial = 1
cert = OpenSSL::X509::Certificate.new
cert.public_key = key.public_key
cert.version = 2
cert.serial = serial
cert.not_before = Time.now
cert.not_after = Time.now + age
cert.subject = subject
ef = OpenSSL::X509::ExtensionFactory.new nil, cert
cert.extensions = extensions.map do |ext_name, value|
ef.create_extension ext_name, value
end
cert
end
##
# Creates a self-signed certificate with an issuer and subject from +email+,
# a subject alternative name of +email+ and the given +extensions+ for the
# +key+.
def self.create_cert_email email, key, age = ONE_YEAR, extensions = EXTENSIONS
subject = email_to_name email
extensions = extensions.merge "subjectAltName" => "email:#{email}"
create_cert_self_signed subject, key, age, extensions
end
##
# Creates a self-signed certificate with an issuer and subject of +subject+
# and the given +extensions+ for the +key+.
def self.create_cert_self_signed subject, key, age = ONE_YEAR,
extensions = EXTENSIONS, serial = 1
certificate = create_cert subject, key, age, extensions
sign certificate, key, certificate, age, extensions, serial
end
##
# Creates a new key pair of the specified +length+ and +algorithm+. The
# default is a 3072 bit RSA key.
def self.create_key length = KEY_LENGTH, algorithm = KEY_ALGORITHM
algorithm.new length
end
##
# Turns +email_address+ into an OpenSSL::X509::Name
def self.email_to_name email_address
email_address = email_address.gsub(/[^\w@.-]+/i, '_')
cn, dcs = email_address.split '@'
dcs = dcs.split '.'
name = "CN=#{cn}/#{dcs.map { |dc| "DC=#{dc}" }.join '/'}"
OpenSSL::X509::Name.parse name
end
##
# Signs +expired_certificate+ with +private_key+ if the keys match and the
# expired certificate was self-signed.
#--
# TODO increment serial
def self.re_sign expired_certificate, private_key, age = ONE_YEAR,
extensions = EXTENSIONS
raise Gem::Security::Exception,
"incorrect signing key for re-signing " +
"#{expired_certificate.subject}" unless
expired_certificate.public_key.to_pem == private_key.public_key.to_pem
unless expired_certificate.subject.to_s ==
expired_certificate.issuer.to_s then
subject = alt_name_or_x509_entry expired_certificate, :subject
issuer = alt_name_or_x509_entry expired_certificate, :issuer
raise Gem::Security::Exception,
"#{subject} is not self-signed, contact #{issuer} " +
"to obtain a valid certificate"
end
serial = expired_certificate.serial + 1
create_cert_self_signed(expired_certificate.subject, private_key, age,
extensions, serial)
end
##
# Resets the trust directory for verifying gems.
def self.reset
@trust_dir = nil
end
##
# Sign the public key from +certificate+ with the +signing_key+ and
# +signing_cert+, using the Gem::Security::DIGEST_ALGORITHM. Uses the
# default certificate validity range and extensions.
#
# Returns the newly signed certificate.
def self.sign certificate, signing_key, signing_cert,
age = ONE_YEAR, extensions = EXTENSIONS, serial = 1
signee_subject = certificate.subject
signee_key = certificate.public_key
alt_name = certificate.extensions.find do |extension|
extension.oid == 'subjectAltName'
end
extensions = extensions.merge 'subjectAltName' => alt_name.value if
alt_name
issuer_alt_name = signing_cert.extensions.find do |extension|
extension.oid == 'subjectAltName'
end
extensions = extensions.merge 'issuerAltName' => issuer_alt_name.value if
issuer_alt_name
signed = create_cert signee_subject, signee_key, age, extensions, serial
signed.issuer = signing_cert.subject
signed.sign signing_key, Gem::Security::DIGEST_ALGORITHM.new
end
##
# Returns a Gem::Security::TrustDir which wraps the directory where trusted
# certificates live.
def self.trust_dir
return @trust_dir if @trust_dir
dir = File.join Gem.user_home, '.gem', 'trust'
@trust_dir ||= Gem::Security::TrustDir.new dir
end
##
# Enumerates the trusted certificates via Gem::Security::TrustDir.
def self.trusted_certificates &block
trust_dir.each_certificate(&block)
end
##
# Writes +pemmable+, which must respond to +to_pem+ to +path+ with the given
# +permissions+. If passed +cipher+ and +passphrase+ those arguments will be
# passed to +to_pem+.
def self.write pemmable, path, permissions = 0600, passphrase = nil, cipher = KEY_CIPHER
path = File.expand_path path
File.open path, 'wb', permissions do |io|
if passphrase and cipher
io.write pemmable.to_pem cipher, passphrase
else
io.write pemmable.to_pem
end
end
path
end
reset
end
if defined?(OpenSSL::SSL) then
require 'rubygems/security/policy'
require 'rubygems/security/policies'
require 'rubygems/security/trust_dir'
end
require 'rubygems/security/signer'
|