This file is indexed.

/usr/include/llvm-3.9/llvm/ADT/APSInt.h is in llvm-3.9-dev 1:3.9.1-19ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
//===-- llvm/ADT/APSInt.h - Arbitrary Precision Signed Int -----*- C++ -*--===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the APSInt class, which is a simple class that
// represents an arbitrary sized integer that knows its signedness.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_APSINT_H
#define LLVM_ADT_APSINT_H

#include "llvm/ADT/APInt.h"

namespace llvm {

class APSInt : public APInt {
  bool IsUnsigned;

public:
  /// Default constructor that creates an uninitialized APInt.
  explicit APSInt() : IsUnsigned(false) {}

  /// APSInt ctor - Create an APSInt with the specified width, default to
  /// unsigned.
  explicit APSInt(uint32_t BitWidth, bool isUnsigned = true)
   : APInt(BitWidth, 0), IsUnsigned(isUnsigned) {}

  explicit APSInt(APInt I, bool isUnsigned = true)
   : APInt(std::move(I)), IsUnsigned(isUnsigned) {}

  /// Construct an APSInt from a string representation.
  ///
  /// This constructor interprets the string \p Str using the radix of 10.
  /// The interpretation stops at the end of the string. The bit width of the
  /// constructed APSInt is determined automatically.
  ///
  /// \param Str the string to be interpreted.
  explicit APSInt(StringRef Str);

  APSInt &operator=(APInt RHS) {
    // Retain our current sign.
    APInt::operator=(std::move(RHS));
    return *this;
  }

  APSInt &operator=(uint64_t RHS) {
    // Retain our current sign.
    APInt::operator=(RHS);
    return *this;
  }

  // Query sign information.
  bool isSigned() const { return !IsUnsigned; }
  bool isUnsigned() const { return IsUnsigned; }
  void setIsUnsigned(bool Val) { IsUnsigned = Val; }
  void setIsSigned(bool Val) { IsUnsigned = !Val; }

  /// toString - Append this APSInt to the specified SmallString.
  void toString(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
    APInt::toString(Str, Radix, isSigned());
  }
  /// toString - Converts an APInt to a std::string.  This is an inefficient
  /// method; you should prefer passing in a SmallString instead.
  std::string toString(unsigned Radix) const {
    return APInt::toString(Radix, isSigned());
  }
  using APInt::toString;

  /// \brief Get the correctly-extended \c int64_t value.
  int64_t getExtValue() const {
    assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
    return isSigned() ? getSExtValue() : getZExtValue();
  }

  APSInt LLVM_ATTRIBUTE_UNUSED_RESULT trunc(uint32_t width) const {
    return APSInt(APInt::trunc(width), IsUnsigned);
  }

  APSInt LLVM_ATTRIBUTE_UNUSED_RESULT extend(uint32_t width) const {
    if (IsUnsigned)
      return APSInt(zext(width), IsUnsigned);
    else
      return APSInt(sext(width), IsUnsigned);
  }

  APSInt LLVM_ATTRIBUTE_UNUSED_RESULT extOrTrunc(uint32_t width) const {
      if (IsUnsigned)
        return APSInt(zextOrTrunc(width), IsUnsigned);
      else
        return APSInt(sextOrTrunc(width), IsUnsigned);
  }

  const APSInt &operator%=(const APSInt &RHS) {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    if (IsUnsigned)
      *this = urem(RHS);
    else
      *this = srem(RHS);
    return *this;
  }
  const APSInt &operator/=(const APSInt &RHS) {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    if (IsUnsigned)
      *this = udiv(RHS);
    else
      *this = sdiv(RHS);
    return *this;
  }
  APSInt operator%(const APSInt &RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return IsUnsigned ? APSInt(urem(RHS), true) : APSInt(srem(RHS), false);
  }
  APSInt operator/(const APSInt &RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return IsUnsigned ? APSInt(udiv(RHS), true) : APSInt(sdiv(RHS), false);
  }

  APSInt operator>>(unsigned Amt) const {
    return IsUnsigned ? APSInt(lshr(Amt), true) : APSInt(ashr(Amt), false);
  }
  APSInt& operator>>=(unsigned Amt) {
    *this = *this >> Amt;
    return *this;
  }

  inline bool operator<(const APSInt& RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return IsUnsigned ? ult(RHS) : slt(RHS);
  }
  inline bool operator>(const APSInt& RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return IsUnsigned ? ugt(RHS) : sgt(RHS);
  }
  inline bool operator<=(const APSInt& RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return IsUnsigned ? ule(RHS) : sle(RHS);
  }
  inline bool operator>=(const APSInt& RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return IsUnsigned ? uge(RHS) : sge(RHS);
  }
  inline bool operator==(const APSInt& RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return eq(RHS);
  }
  inline bool operator!=(const APSInt& RHS) const {
    return !((*this) == RHS);
  }

  bool operator==(int64_t RHS) const {
    return compareValues(*this, get(RHS)) == 0;
  }
  bool operator!=(int64_t RHS) const {
    return compareValues(*this, get(RHS)) != 0;
  }
  bool operator<=(int64_t RHS) const {
    return compareValues(*this, get(RHS)) <= 0;
  }
  bool operator>=(int64_t RHS) const {
    return compareValues(*this, get(RHS)) >= 0;
  }
  bool operator<(int64_t RHS) const {
    return compareValues(*this, get(RHS)) < 0;
  }
  bool operator>(int64_t RHS) const {
    return compareValues(*this, get(RHS)) > 0;
  }

  // The remaining operators just wrap the logic of APInt, but retain the
  // signedness information.

  APSInt operator<<(unsigned Bits) const {
    return APSInt(static_cast<const APInt&>(*this) << Bits, IsUnsigned);
  }
  APSInt& operator<<=(unsigned Amt) {
    *this = *this << Amt;
    return *this;
  }

  APSInt& operator++() {
    ++(static_cast<APInt&>(*this));
    return *this;
  }
  APSInt& operator--() {
    --(static_cast<APInt&>(*this));
    return *this;
  }
  APSInt operator++(int) {
    return APSInt(++static_cast<APInt&>(*this), IsUnsigned);
  }
  APSInt operator--(int) {
    return APSInt(--static_cast<APInt&>(*this), IsUnsigned);
  }
  APSInt operator-() const {
    return APSInt(-static_cast<const APInt&>(*this), IsUnsigned);
  }
  APSInt& operator+=(const APSInt& RHS) {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    static_cast<APInt&>(*this) += RHS;
    return *this;
  }
  APSInt& operator-=(const APSInt& RHS) {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    static_cast<APInt&>(*this) -= RHS;
    return *this;
  }
  APSInt& operator*=(const APSInt& RHS) {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    static_cast<APInt&>(*this) *= RHS;
    return *this;
  }
  APSInt& operator&=(const APSInt& RHS) {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    static_cast<APInt&>(*this) &= RHS;
    return *this;
  }
  APSInt& operator|=(const APSInt& RHS) {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    static_cast<APInt&>(*this) |= RHS;
    return *this;
  }
  APSInt& operator^=(const APSInt& RHS) {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    static_cast<APInt&>(*this) ^= RHS;
    return *this;
  }

  APSInt operator&(const APSInt& RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return APSInt(static_cast<const APInt&>(*this) & RHS, IsUnsigned);
  }
  APSInt LLVM_ATTRIBUTE_UNUSED_RESULT And(const APSInt& RHS) const {
    return this->operator&(RHS);
  }

  APSInt operator|(const APSInt& RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return APSInt(static_cast<const APInt&>(*this) | RHS, IsUnsigned);
  }
  APSInt LLVM_ATTRIBUTE_UNUSED_RESULT Or(const APSInt& RHS) const {
    return this->operator|(RHS);
  }

  APSInt operator^(const APSInt &RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return APSInt(static_cast<const APInt&>(*this) ^ RHS, IsUnsigned);
  }
  APSInt LLVM_ATTRIBUTE_UNUSED_RESULT Xor(const APSInt& RHS) const {
    return this->operator^(RHS);
  }

  APSInt operator*(const APSInt& RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return APSInt(static_cast<const APInt&>(*this) * RHS, IsUnsigned);
  }
  APSInt operator+(const APSInt& RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return APSInt(static_cast<const APInt&>(*this) + RHS, IsUnsigned);
  }
  APSInt operator-(const APSInt& RHS) const {
    assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
    return APSInt(static_cast<const APInt&>(*this) - RHS, IsUnsigned);
  }
  APSInt operator~() const {
    return APSInt(~static_cast<const APInt&>(*this), IsUnsigned);
  }

  /// getMaxValue - Return the APSInt representing the maximum integer value
  ///  with the given bit width and signedness.
  static APSInt getMaxValue(uint32_t numBits, bool Unsigned) {
    return APSInt(Unsigned ? APInt::getMaxValue(numBits)
                           : APInt::getSignedMaxValue(numBits), Unsigned);
  }

  /// getMinValue - Return the APSInt representing the minimum integer value
  ///  with the given bit width and signedness.
  static APSInt getMinValue(uint32_t numBits, bool Unsigned) {
    return APSInt(Unsigned ? APInt::getMinValue(numBits)
                           : APInt::getSignedMinValue(numBits), Unsigned);
  }

  /// \brief Determine if two APSInts have the same value, zero- or
  /// sign-extending as needed.
  static bool isSameValue(const APSInt &I1, const APSInt &I2) {
    return !compareValues(I1, I2);
  }

  /// \brief Compare underlying values of two numbers.
  static int compareValues(const APSInt &I1, const APSInt &I2) {
    if (I1.getBitWidth() == I2.getBitWidth() && I1.isSigned() == I2.isSigned())
      return I1 == I2 ? 0 : I1 > I2 ? 1 : -1;

    // Check for a bit-width mismatch.
    if (I1.getBitWidth() > I2.getBitWidth())
      return compareValues(I1, I2.extend(I1.getBitWidth()));
    else if (I2.getBitWidth() > I1.getBitWidth())
      return compareValues(I1.extend(I2.getBitWidth()), I2);

    // We have a signedness mismatch. Check for negative values and do an
    // unsigned compare if both are positive.
    if (I1.isSigned()) {
      assert(!I2.isSigned() && "Expected signed mismatch");
      if (I1.isNegative())
        return -1;
    } else {
      assert(I2.isSigned() && "Expected signed mismatch");
      if (I2.isNegative())
        return 1;
    }

    return I1.eq(I2) ? 0 : I1.ugt(I2) ? 1 : -1;
  }

  static APSInt get(int64_t X) { return APSInt(APInt(64, X), false); }
  static APSInt getUnsigned(uint64_t X) { return APSInt(APInt(64, X), true); }

  /// Profile - Used to insert APSInt objects, or objects that contain APSInt
  ///  objects, into FoldingSets.
  void Profile(FoldingSetNodeID& ID) const;
};

inline bool operator==(int64_t V1, const APSInt &V2) { return V2 == V1; }
inline bool operator!=(int64_t V1, const APSInt &V2) { return V2 != V1; }
inline bool operator<=(int64_t V1, const APSInt &V2) { return V2 >= V1; }
inline bool operator>=(int64_t V1, const APSInt &V2) { return V2 <= V1; }
inline bool operator<(int64_t V1, const APSInt &V2) { return V2 > V1; }
inline bool operator>(int64_t V1, const APSInt &V2) { return V2 < V1; }

inline raw_ostream &operator<<(raw_ostream &OS, const APSInt &I) {
  I.print(OS, I.isSigned());
  return OS;
}

} // end namespace llvm

#endif