This file is indexed.

/usr/include/llvm-3.9/llvm/ADT/Hashing.h is in llvm-3.9-dev 1:3.9.1-19ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
//===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the newly proposed standard C++ interfaces for hashing
// arbitrary data and building hash functions for user-defined types. This
// interface was originally proposed in N3333[1] and is currently under review
// for inclusion in a future TR and/or standard.
//
// The primary interfaces provide are comprised of one type and three functions:
//
//  -- 'hash_code' class is an opaque type representing the hash code for some
//     data. It is the intended product of hashing, and can be used to implement
//     hash tables, checksumming, and other common uses of hashes. It is not an
//     integer type (although it can be converted to one) because it is risky
//     to assume much about the internals of a hash_code. In particular, each
//     execution of the program has a high probability of producing a different
//     hash_code for a given input. Thus their values are not stable to save or
//     persist, and should only be used during the execution for the
//     construction of hashing datastructures.
//
//  -- 'hash_value' is a function designed to be overloaded for each
//     user-defined type which wishes to be used within a hashing context. It
//     should be overloaded within the user-defined type's namespace and found
//     via ADL. Overloads for primitive types are provided by this library.
//
//  -- 'hash_combine' and 'hash_combine_range' are functions designed to aid
//      programmers in easily and intuitively combining a set of data into
//      a single hash_code for their object. They should only logically be used
//      within the implementation of a 'hash_value' routine or similar context.
//
// Note that 'hash_combine_range' contains very special logic for hashing
// a contiguous array of integers or pointers. This logic is *extremely* fast,
// on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were
// benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys
// under 32-bytes.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_HASHING_H
#define LLVM_ADT_HASHING_H

#include "llvm/Support/DataTypes.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/SwapByteOrder.h"
#include "llvm/Support/type_traits.h"
#include <algorithm>
#include <cassert>
#include <cstring>
#include <string>
#include <utility>

namespace llvm {

/// \brief An opaque object representing a hash code.
///
/// This object represents the result of hashing some entity. It is intended to
/// be used to implement hashtables or other hashing-based data structures.
/// While it wraps and exposes a numeric value, this value should not be
/// trusted to be stable or predictable across processes or executions.
///
/// In order to obtain the hash_code for an object 'x':
/// \code
///   using llvm::hash_value;
///   llvm::hash_code code = hash_value(x);
/// \endcode
class hash_code {
  size_t value;

public:
  /// \brief Default construct a hash_code.
  /// Note that this leaves the value uninitialized.
  hash_code() = default;

  /// \brief Form a hash code directly from a numerical value.
  hash_code(size_t value) : value(value) {}

  /// \brief Convert the hash code to its numerical value for use.
  /*explicit*/ operator size_t() const { return value; }

  friend bool operator==(const hash_code &lhs, const hash_code &rhs) {
    return lhs.value == rhs.value;
  }
  friend bool operator!=(const hash_code &lhs, const hash_code &rhs) {
    return lhs.value != rhs.value;
  }

  /// \brief Allow a hash_code to be directly run through hash_value.
  friend size_t hash_value(const hash_code &code) { return code.value; }
};

/// \brief Compute a hash_code for any integer value.
///
/// Note that this function is intended to compute the same hash_code for
/// a particular value without regard to the pre-promotion type. This is in
/// contrast to hash_combine which may produce different hash_codes for
/// differing argument types even if they would implicit promote to a common
/// type without changing the value.
template <typename T>
typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type
hash_value(T value);

/// \brief Compute a hash_code for a pointer's address.
///
/// N.B.: This hashes the *address*. Not the value and not the type.
template <typename T> hash_code hash_value(const T *ptr);

/// \brief Compute a hash_code for a pair of objects.
template <typename T, typename U>
hash_code hash_value(const std::pair<T, U> &arg);

/// \brief Compute a hash_code for a standard string.
template <typename T>
hash_code hash_value(const std::basic_string<T> &arg);


/// \brief Override the execution seed with a fixed value.
///
/// This hashing library uses a per-execution seed designed to change on each
/// run with high probability in order to ensure that the hash codes are not
/// attackable and to ensure that output which is intended to be stable does
/// not rely on the particulars of the hash codes produced.
///
/// That said, there are use cases where it is important to be able to
/// reproduce *exactly* a specific behavior. To that end, we provide a function
/// which will forcibly set the seed to a fixed value. This must be done at the
/// start of the program, before any hashes are computed. Also, it cannot be
/// undone. This makes it thread-hostile and very hard to use outside of
/// immediately on start of a simple program designed for reproducible
/// behavior.
void set_fixed_execution_hash_seed(size_t fixed_value);


// All of the implementation details of actually computing the various hash
// code values are held within this namespace. These routines are included in
// the header file mainly to allow inlining and constant propagation.
namespace hashing {
namespace detail {

inline uint64_t fetch64(const char *p) {
  uint64_t result;
  memcpy(&result, p, sizeof(result));
  if (sys::IsBigEndianHost)
    sys::swapByteOrder(result);
  return result;
}

inline uint32_t fetch32(const char *p) {
  uint32_t result;
  memcpy(&result, p, sizeof(result));
  if (sys::IsBigEndianHost)
    sys::swapByteOrder(result);
  return result;
}

/// Some primes between 2^63 and 2^64 for various uses.
static const uint64_t k0 = 0xc3a5c85c97cb3127ULL;
static const uint64_t k1 = 0xb492b66fbe98f273ULL;
static const uint64_t k2 = 0x9ae16a3b2f90404fULL;
static const uint64_t k3 = 0xc949d7c7509e6557ULL;

/// \brief Bitwise right rotate.
/// Normally this will compile to a single instruction, especially if the
/// shift is a manifest constant.
inline uint64_t rotate(uint64_t val, size_t shift) {
  // Avoid shifting by 64: doing so yields an undefined result.
  return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
}

inline uint64_t shift_mix(uint64_t val) {
  return val ^ (val >> 47);
}

inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) {
  // Murmur-inspired hashing.
  const uint64_t kMul = 0x9ddfea08eb382d69ULL;
  uint64_t a = (low ^ high) * kMul;
  a ^= (a >> 47);
  uint64_t b = (high ^ a) * kMul;
  b ^= (b >> 47);
  b *= kMul;
  return b;
}

inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) {
  uint8_t a = s[0];
  uint8_t b = s[len >> 1];
  uint8_t c = s[len - 1];
  uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
  uint32_t z = len + (static_cast<uint32_t>(c) << 2);
  return shift_mix(y * k2 ^ z * k3 ^ seed) * k2;
}

inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) {
  uint64_t a = fetch32(s);
  return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4));
}

inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) {
  uint64_t a = fetch64(s);
  uint64_t b = fetch64(s + len - 8);
  return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b;
}

inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) {
  uint64_t a = fetch64(s) * k1;
  uint64_t b = fetch64(s + 8);
  uint64_t c = fetch64(s + len - 8) * k2;
  uint64_t d = fetch64(s + len - 16) * k0;
  return hash_16_bytes(rotate(a - b, 43) + rotate(c ^ seed, 30) + d,
                       a + rotate(b ^ k3, 20) - c + len + seed);
}

inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) {
  uint64_t z = fetch64(s + 24);
  uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0;
  uint64_t b = rotate(a + z, 52);
  uint64_t c = rotate(a, 37);
  a += fetch64(s + 8);
  c += rotate(a, 7);
  a += fetch64(s + 16);
  uint64_t vf = a + z;
  uint64_t vs = b + rotate(a, 31) + c;
  a = fetch64(s + 16) + fetch64(s + len - 32);
  z = fetch64(s + len - 8);
  b = rotate(a + z, 52);
  c = rotate(a, 37);
  a += fetch64(s + len - 24);
  c += rotate(a, 7);
  a += fetch64(s + len - 16);
  uint64_t wf = a + z;
  uint64_t ws = b + rotate(a, 31) + c;
  uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0);
  return shift_mix((seed ^ (r * k0)) + vs) * k2;
}

inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) {
  if (length >= 4 && length <= 8)
    return hash_4to8_bytes(s, length, seed);
  if (length > 8 && length <= 16)
    return hash_9to16_bytes(s, length, seed);
  if (length > 16 && length <= 32)
    return hash_17to32_bytes(s, length, seed);
  if (length > 32)
    return hash_33to64_bytes(s, length, seed);
  if (length != 0)
    return hash_1to3_bytes(s, length, seed);

  return k2 ^ seed;
}

/// \brief The intermediate state used during hashing.
/// Currently, the algorithm for computing hash codes is based on CityHash and
/// keeps 56 bytes of arbitrary state.
struct hash_state {
  uint64_t h0, h1, h2, h3, h4, h5, h6;

  /// \brief Create a new hash_state structure and initialize it based on the
  /// seed and the first 64-byte chunk.
  /// This effectively performs the initial mix.
  static hash_state create(const char *s, uint64_t seed) {
    hash_state state = {
      0, seed, hash_16_bytes(seed, k1), rotate(seed ^ k1, 49),
      seed * k1, shift_mix(seed), 0 };
    state.h6 = hash_16_bytes(state.h4, state.h5);
    state.mix(s);
    return state;
  }

  /// \brief Mix 32-bytes from the input sequence into the 16-bytes of 'a'
  /// and 'b', including whatever is already in 'a' and 'b'.
  static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) {
    a += fetch64(s);
    uint64_t c = fetch64(s + 24);
    b = rotate(b + a + c, 21);
    uint64_t d = a;
    a += fetch64(s + 8) + fetch64(s + 16);
    b += rotate(a, 44) + d;
    a += c;
  }

  /// \brief Mix in a 64-byte buffer of data.
  /// We mix all 64 bytes even when the chunk length is smaller, but we
  /// record the actual length.
  void mix(const char *s) {
    h0 = rotate(h0 + h1 + h3 + fetch64(s + 8), 37) * k1;
    h1 = rotate(h1 + h4 + fetch64(s + 48), 42) * k1;
    h0 ^= h6;
    h1 += h3 + fetch64(s + 40);
    h2 = rotate(h2 + h5, 33) * k1;
    h3 = h4 * k1;
    h4 = h0 + h5;
    mix_32_bytes(s, h3, h4);
    h5 = h2 + h6;
    h6 = h1 + fetch64(s + 16);
    mix_32_bytes(s + 32, h5, h6);
    std::swap(h2, h0);
  }

  /// \brief Compute the final 64-bit hash code value based on the current
  /// state and the length of bytes hashed.
  uint64_t finalize(size_t length) {
    return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2,
                         hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0);
  }
};


/// \brief A global, fixed seed-override variable.
///
/// This variable can be set using the \see llvm::set_fixed_execution_seed
/// function. See that function for details. Do not, under any circumstances,
/// set or read this variable.
extern size_t fixed_seed_override;

inline size_t get_execution_seed() {
  // FIXME: This needs to be a per-execution seed. This is just a placeholder
  // implementation. Switching to a per-execution seed is likely to flush out
  // instability bugs and so will happen as its own commit.
  //
  // However, if there is a fixed seed override set the first time this is
  // called, return that instead of the per-execution seed.
  const uint64_t seed_prime = 0xff51afd7ed558ccdULL;
  static size_t seed = fixed_seed_override ? fixed_seed_override
                                           : (size_t)seed_prime;
  return seed;
}


/// \brief Trait to indicate whether a type's bits can be hashed directly.
///
/// A type trait which is true if we want to combine values for hashing by
/// reading the underlying data. It is false if values of this type must
/// first be passed to hash_value, and the resulting hash_codes combined.
//
// FIXME: We want to replace is_integral_or_enum and is_pointer here with
// a predicate which asserts that comparing the underlying storage of two
// values of the type for equality is equivalent to comparing the two values
// for equality. For all the platforms we care about, this holds for integers
// and pointers, but there are platforms where it doesn't and we would like to
// support user-defined types which happen to satisfy this property.
template <typename T> struct is_hashable_data
  : std::integral_constant<bool, ((is_integral_or_enum<T>::value ||
                                   std::is_pointer<T>::value) &&
                                  64 % sizeof(T) == 0)> {};

// Special case std::pair to detect when both types are viable and when there
// is no alignment-derived padding in the pair. This is a bit of a lie because
// std::pair isn't truly POD, but it's close enough in all reasonable
// implementations for our use case of hashing the underlying data.
template <typename T, typename U> struct is_hashable_data<std::pair<T, U> >
  : std::integral_constant<bool, (is_hashable_data<T>::value &&
                                  is_hashable_data<U>::value &&
                                  (sizeof(T) + sizeof(U)) ==
                                   sizeof(std::pair<T, U>))> {};

/// \brief Helper to get the hashable data representation for a type.
/// This variant is enabled when the type itself can be used.
template <typename T>
typename std::enable_if<is_hashable_data<T>::value, T>::type
get_hashable_data(const T &value) {
  return value;
}
/// \brief Helper to get the hashable data representation for a type.
/// This variant is enabled when we must first call hash_value and use the
/// result as our data.
template <typename T>
typename std::enable_if<!is_hashable_data<T>::value, size_t>::type
get_hashable_data(const T &value) {
  using ::llvm::hash_value;
  return hash_value(value);
}

/// \brief Helper to store data from a value into a buffer and advance the
/// pointer into that buffer.
///
/// This routine first checks whether there is enough space in the provided
/// buffer, and if not immediately returns false. If there is space, it
/// copies the underlying bytes of value into the buffer, advances the
/// buffer_ptr past the copied bytes, and returns true.
template <typename T>
bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value,
                       size_t offset = 0) {
  size_t store_size = sizeof(value) - offset;
  if (buffer_ptr + store_size > buffer_end)
    return false;
  const char *value_data = reinterpret_cast<const char *>(&value);
  memcpy(buffer_ptr, value_data + offset, store_size);
  buffer_ptr += store_size;
  return true;
}

/// \brief Implement the combining of integral values into a hash_code.
///
/// This overload is selected when the value type of the iterator is
/// integral. Rather than computing a hash_code for each object and then
/// combining them, this (as an optimization) directly combines the integers.
template <typename InputIteratorT>
hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) {
  const size_t seed = get_execution_seed();
  char buffer[64], *buffer_ptr = buffer;
  char *const buffer_end = std::end(buffer);
  while (first != last && store_and_advance(buffer_ptr, buffer_end,
                                            get_hashable_data(*first)))
    ++first;
  if (first == last)
    return hash_short(buffer, buffer_ptr - buffer, seed);
  assert(buffer_ptr == buffer_end);

  hash_state state = state.create(buffer, seed);
  size_t length = 64;
  while (first != last) {
    // Fill up the buffer. We don't clear it, which re-mixes the last round
    // when only a partial 64-byte chunk is left.
    buffer_ptr = buffer;
    while (first != last && store_and_advance(buffer_ptr, buffer_end,
                                              get_hashable_data(*first)))
      ++first;

    // Rotate the buffer if we did a partial fill in order to simulate doing
    // a mix of the last 64-bytes. That is how the algorithm works when we
    // have a contiguous byte sequence, and we want to emulate that here.
    std::rotate(buffer, buffer_ptr, buffer_end);

    // Mix this chunk into the current state.
    state.mix(buffer);
    length += buffer_ptr - buffer;
  };

  return state.finalize(length);
}

/// \brief Implement the combining of integral values into a hash_code.
///
/// This overload is selected when the value type of the iterator is integral
/// and when the input iterator is actually a pointer. Rather than computing
/// a hash_code for each object and then combining them, this (as an
/// optimization) directly combines the integers. Also, because the integers
/// are stored in contiguous memory, this routine avoids copying each value
/// and directly reads from the underlying memory.
template <typename ValueT>
typename std::enable_if<is_hashable_data<ValueT>::value, hash_code>::type
hash_combine_range_impl(ValueT *first, ValueT *last) {
  const size_t seed = get_execution_seed();
  const char *s_begin = reinterpret_cast<const char *>(first);
  const char *s_end = reinterpret_cast<const char *>(last);
  const size_t length = std::distance(s_begin, s_end);
  if (length <= 64)
    return hash_short(s_begin, length, seed);

  const char *s_aligned_end = s_begin + (length & ~63);
  hash_state state = state.create(s_begin, seed);
  s_begin += 64;
  while (s_begin != s_aligned_end) {
    state.mix(s_begin);
    s_begin += 64;
  }
  if (length & 63)
    state.mix(s_end - 64);

  return state.finalize(length);
}

} // namespace detail
} // namespace hashing


/// \brief Compute a hash_code for a sequence of values.
///
/// This hashes a sequence of values. It produces the same hash_code as
/// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences
/// and is significantly faster given pointers and types which can be hashed as
/// a sequence of bytes.
template <typename InputIteratorT>
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) {
  return ::llvm::hashing::detail::hash_combine_range_impl(first, last);
}


// Implementation details for hash_combine.
namespace hashing {
namespace detail {

/// \brief Helper class to manage the recursive combining of hash_combine
/// arguments.
///
/// This class exists to manage the state and various calls involved in the
/// recursive combining of arguments used in hash_combine. It is particularly
/// useful at minimizing the code in the recursive calls to ease the pain
/// caused by a lack of variadic functions.
struct hash_combine_recursive_helper {
  char buffer[64];
  hash_state state;
  const size_t seed;

public:
  /// \brief Construct a recursive hash combining helper.
  ///
  /// This sets up the state for a recursive hash combine, including getting
  /// the seed and buffer setup.
  hash_combine_recursive_helper()
    : seed(get_execution_seed()) {}

  /// \brief Combine one chunk of data into the current in-flight hash.
  ///
  /// This merges one chunk of data into the hash. First it tries to buffer
  /// the data. If the buffer is full, it hashes the buffer into its
  /// hash_state, empties it, and then merges the new chunk in. This also
  /// handles cases where the data straddles the end of the buffer.
  template <typename T>
  char *combine_data(size_t &length, char *buffer_ptr, char *buffer_end, T data) {
    if (!store_and_advance(buffer_ptr, buffer_end, data)) {
      // Check for skew which prevents the buffer from being packed, and do
      // a partial store into the buffer to fill it. This is only a concern
      // with the variadic combine because that formation can have varying
      // argument types.
      size_t partial_store_size = buffer_end - buffer_ptr;
      memcpy(buffer_ptr, &data, partial_store_size);

      // If the store fails, our buffer is full and ready to hash. We have to
      // either initialize the hash state (on the first full buffer) or mix
      // this buffer into the existing hash state. Length tracks the *hashed*
      // length, not the buffered length.
      if (length == 0) {
        state = state.create(buffer, seed);
        length = 64;
      } else {
        // Mix this chunk into the current state and bump length up by 64.
        state.mix(buffer);
        length += 64;
      }
      // Reset the buffer_ptr to the head of the buffer for the next chunk of
      // data.
      buffer_ptr = buffer;

      // Try again to store into the buffer -- this cannot fail as we only
      // store types smaller than the buffer.
      if (!store_and_advance(buffer_ptr, buffer_end, data,
                             partial_store_size))
        abort();
    }
    return buffer_ptr;
  }

  /// \brief Recursive, variadic combining method.
  ///
  /// This function recurses through each argument, combining that argument
  /// into a single hash.
  template <typename T, typename ...Ts>
  hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
                    const T &arg, const Ts &...args) {
    buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg));

    // Recurse to the next argument.
    return combine(length, buffer_ptr, buffer_end, args...);
  }

  /// \brief Base case for recursive, variadic combining.
  ///
  /// The base case when combining arguments recursively is reached when all
  /// arguments have been handled. It flushes the remaining buffer and
  /// constructs a hash_code.
  hash_code combine(size_t length, char *buffer_ptr, char *buffer_end) {
    // Check whether the entire set of values fit in the buffer. If so, we'll
    // use the optimized short hashing routine and skip state entirely.
    if (length == 0)
      return hash_short(buffer, buffer_ptr - buffer, seed);

    // Mix the final buffer, rotating it if we did a partial fill in order to
    // simulate doing a mix of the last 64-bytes. That is how the algorithm
    // works when we have a contiguous byte sequence, and we want to emulate
    // that here.
    std::rotate(buffer, buffer_ptr, buffer_end);

    // Mix this chunk into the current state.
    state.mix(buffer);
    length += buffer_ptr - buffer;

    return state.finalize(length);
  }
};

} // namespace detail
} // namespace hashing

/// \brief Combine values into a single hash_code.
///
/// This routine accepts a varying number of arguments of any type. It will
/// attempt to combine them into a single hash_code. For user-defined types it
/// attempts to call a \see hash_value overload (via ADL) for the type. For
/// integer and pointer types it directly combines their data into the
/// resulting hash_code.
///
/// The result is suitable for returning from a user's hash_value
/// *implementation* for their user-defined type. Consumers of a type should
/// *not* call this routine, they should instead call 'hash_value'.
template <typename ...Ts> hash_code hash_combine(const Ts &...args) {
  // Recursively hash each argument using a helper class.
  ::llvm::hashing::detail::hash_combine_recursive_helper helper;
  return helper.combine(0, helper.buffer, helper.buffer + 64, args...);
}

// Implementation details for implementations of hash_value overloads provided
// here.
namespace hashing {
namespace detail {

/// \brief Helper to hash the value of a single integer.
///
/// Overloads for smaller integer types are not provided to ensure consistent
/// behavior in the presence of integral promotions. Essentially,
/// "hash_value('4')" and "hash_value('0' + 4)" should be the same.
inline hash_code hash_integer_value(uint64_t value) {
  // Similar to hash_4to8_bytes but using a seed instead of length.
  const uint64_t seed = get_execution_seed();
  const char *s = reinterpret_cast<const char *>(&value);
  const uint64_t a = fetch32(s);
  return hash_16_bytes(seed + (a << 3), fetch32(s + 4));
}

} // namespace detail
} // namespace hashing

// Declared and documented above, but defined here so that any of the hashing
// infrastructure is available.
template <typename T>
typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type
hash_value(T value) {
  return ::llvm::hashing::detail::hash_integer_value(
      static_cast<uint64_t>(value));
}

// Declared and documented above, but defined here so that any of the hashing
// infrastructure is available.
template <typename T> hash_code hash_value(const T *ptr) {
  return ::llvm::hashing::detail::hash_integer_value(
    reinterpret_cast<uintptr_t>(ptr));
}

// Declared and documented above, but defined here so that any of the hashing
// infrastructure is available.
template <typename T, typename U>
hash_code hash_value(const std::pair<T, U> &arg) {
  return hash_combine(arg.first, arg.second);
}

// Declared and documented above, but defined here so that any of the hashing
// infrastructure is available.
template <typename T>
hash_code hash_value(const std::basic_string<T> &arg) {
  return hash_combine_range(arg.begin(), arg.end());
}

} // namespace llvm

#endif