This file is indexed.

/usr/include/llvm-3.9/llvm/ADT/ImmutableSet.h is in llvm-3.9-dev 1:3.9.1-19ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
//===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ImutAVLTree and ImmutableSet classes.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_IMMUTABLESET_H
#define LLVM_ADT_IMMUTABLESET_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <functional>
#include <vector>

namespace llvm {

//===----------------------------------------------------------------------===//
// Immutable AVL-Tree Definition.
//===----------------------------------------------------------------------===//

template <typename ImutInfo> class ImutAVLFactory;
template <typename ImutInfo> class ImutIntervalAVLFactory;
template <typename ImutInfo> class ImutAVLTreeInOrderIterator;
template <typename ImutInfo> class ImutAVLTreeGenericIterator;

template <typename ImutInfo >
class ImutAVLTree {
public:
  typedef typename ImutInfo::key_type_ref   key_type_ref;
  typedef typename ImutInfo::value_type     value_type;
  typedef typename ImutInfo::value_type_ref value_type_ref;

  typedef ImutAVLFactory<ImutInfo>          Factory;
  friend class ImutAVLFactory<ImutInfo>;
  friend class ImutIntervalAVLFactory<ImutInfo>;

  friend class ImutAVLTreeGenericIterator<ImutInfo>;

  typedef ImutAVLTreeInOrderIterator<ImutInfo>  iterator;

  //===----------------------------------------------------===//
  // Public Interface.
  //===----------------------------------------------------===//

  /// Return a pointer to the left subtree.  This value
  ///  is NULL if there is no left subtree.
  ImutAVLTree *getLeft() const { return left; }

  /// Return a pointer to the right subtree.  This value is
  ///  NULL if there is no right subtree.
  ImutAVLTree *getRight() const { return right; }

  /// getHeight - Returns the height of the tree.  A tree with no subtrees
  ///  has a height of 1.
  unsigned getHeight() const { return height; }

  /// getValue - Returns the data value associated with the tree node.
  const value_type& getValue() const { return value; }

  /// find - Finds the subtree associated with the specified key value.
  ///  This method returns NULL if no matching subtree is found.
  ImutAVLTree* find(key_type_ref K) {
    ImutAVLTree *T = this;
    while (T) {
      key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue());
      if (ImutInfo::isEqual(K,CurrentKey))
        return T;
      else if (ImutInfo::isLess(K,CurrentKey))
        T = T->getLeft();
      else
        T = T->getRight();
    }
    return nullptr;
  }

  /// getMaxElement - Find the subtree associated with the highest ranged
  ///  key value.
  ImutAVLTree* getMaxElement() {
    ImutAVLTree *T = this;
    ImutAVLTree *Right = T->getRight();
    while (Right) { T = Right; Right = T->getRight(); }
    return T;
  }

  /// size - Returns the number of nodes in the tree, which includes
  ///  both leaves and non-leaf nodes.
  unsigned size() const {
    unsigned n = 1;
    if (const ImutAVLTree* L = getLeft())
      n += L->size();
    if (const ImutAVLTree* R = getRight())
      n += R->size();
    return n;
  }

  /// begin - Returns an iterator that iterates over the nodes of the tree
  ///  in an inorder traversal.  The returned iterator thus refers to the
  ///  the tree node with the minimum data element.
  iterator begin() const { return iterator(this); }

  /// end - Returns an iterator for the tree that denotes the end of an
  ///  inorder traversal.
  iterator end() const { return iterator(); }

  bool isElementEqual(value_type_ref V) const {
    // Compare the keys.
    if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()),
                           ImutInfo::KeyOfValue(V)))
      return false;

    // Also compare the data values.
    if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()),
                               ImutInfo::DataOfValue(V)))
      return false;

    return true;
  }

  bool isElementEqual(const ImutAVLTree* RHS) const {
    return isElementEqual(RHS->getValue());
  }

  /// isEqual - Compares two trees for structural equality and returns true
  ///   if they are equal.  This worst case performance of this operation is
  //    linear in the sizes of the trees.
  bool isEqual(const ImutAVLTree& RHS) const {
    if (&RHS == this)
      return true;

    iterator LItr = begin(), LEnd = end();
    iterator RItr = RHS.begin(), REnd = RHS.end();

    while (LItr != LEnd && RItr != REnd) {
      if (&*LItr == &*RItr) {
        LItr.skipSubTree();
        RItr.skipSubTree();
        continue;
      }

      if (!LItr->isElementEqual(&*RItr))
        return false;

      ++LItr;
      ++RItr;
    }

    return LItr == LEnd && RItr == REnd;
  }

  /// isNotEqual - Compares two trees for structural inequality.  Performance
  ///  is the same is isEqual.
  bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); }

  /// contains - Returns true if this tree contains a subtree (node) that
  ///  has an data element that matches the specified key.  Complexity
  ///  is logarithmic in the size of the tree.
  bool contains(key_type_ref K) { return (bool) find(K); }

  /// foreach - A member template the accepts invokes operator() on a functor
  ///  object (specifed by Callback) for every node/subtree in the tree.
  ///  Nodes are visited using an inorder traversal.
  template <typename Callback>
  void foreach(Callback& C) {
    if (ImutAVLTree* L = getLeft())
      L->foreach(C);

    C(value);

    if (ImutAVLTree* R = getRight())
      R->foreach(C);
  }

  /// validateTree - A utility method that checks that the balancing and
  ///  ordering invariants of the tree are satisifed.  It is a recursive
  ///  method that returns the height of the tree, which is then consumed
  ///  by the enclosing validateTree call.  External callers should ignore the
  ///  return value.  An invalid tree will cause an assertion to fire in
  ///  a debug build.
  unsigned validateTree() const {
    unsigned HL = getLeft() ? getLeft()->validateTree() : 0;
    unsigned HR = getRight() ? getRight()->validateTree() : 0;
    (void) HL;
    (void) HR;

    assert(getHeight() == ( HL > HR ? HL : HR ) + 1
            && "Height calculation wrong");

    assert((HL > HR ? HL-HR : HR-HL) <= 2
           && "Balancing invariant violated");

    assert((!getLeft() ||
            ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()),
                             ImutInfo::KeyOfValue(getValue()))) &&
           "Value in left child is not less that current value");


    assert(!(getRight() ||
             ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()),
                              ImutInfo::KeyOfValue(getRight()->getValue()))) &&
           "Current value is not less that value of right child");

    return getHeight();
  }

  //===----------------------------------------------------===//
  // Internal values.
  //===----------------------------------------------------===//

private:
  Factory *factory;
  ImutAVLTree *left;
  ImutAVLTree *right;
  ImutAVLTree *prev;
  ImutAVLTree *next;

  unsigned height         : 28;
  unsigned IsMutable      : 1;
  unsigned IsDigestCached : 1;
  unsigned IsCanonicalized : 1;

  value_type value;
  uint32_t digest;
  uint32_t refCount;

  //===----------------------------------------------------===//
  // Internal methods (node manipulation; used by Factory).
  //===----------------------------------------------------===//

private:
  /// ImutAVLTree - Internal constructor that is only called by
  ///   ImutAVLFactory.
  ImutAVLTree(Factory *f, ImutAVLTree* l, ImutAVLTree* r, value_type_ref v,
              unsigned height)
    : factory(f), left(l), right(r), prev(nullptr), next(nullptr),
      height(height), IsMutable(true), IsDigestCached(false),
      IsCanonicalized(0), value(v), digest(0), refCount(0)
  {
    if (left) left->retain();
    if (right) right->retain();
  }

  /// isMutable - Returns true if the left and right subtree references
  ///  (as well as height) can be changed.  If this method returns false,
  ///  the tree is truly immutable.  Trees returned from an ImutAVLFactory
  ///  object should always have this method return true.  Further, if this
  ///  method returns false for an instance of ImutAVLTree, all subtrees
  ///  will also have this method return false.  The converse is not true.
  bool isMutable() const { return IsMutable; }

  /// hasCachedDigest - Returns true if the digest for this tree is cached.
  ///  This can only be true if the tree is immutable.
  bool hasCachedDigest() const { return IsDigestCached; }

  //===----------------------------------------------------===//
  // Mutating operations.  A tree root can be manipulated as
  // long as its reference has not "escaped" from internal
  // methods of a factory object (see below).  When a tree
  // pointer is externally viewable by client code, the
  // internal "mutable bit" is cleared to mark the tree
  // immutable.  Note that a tree that still has its mutable
  // bit set may have children (subtrees) that are themselves
  // immutable.
  //===----------------------------------------------------===//

  /// markImmutable - Clears the mutable flag for a tree.  After this happens,
  ///   it is an error to call setLeft(), setRight(), and setHeight().
  void markImmutable() {
    assert(isMutable() && "Mutable flag already removed.");
    IsMutable = false;
  }

  /// markedCachedDigest - Clears the NoCachedDigest flag for a tree.
  void markedCachedDigest() {
    assert(!hasCachedDigest() && "NoCachedDigest flag already removed.");
    IsDigestCached = true;
  }

  /// setHeight - Changes the height of the tree.  Used internally by
  ///  ImutAVLFactory.
  void setHeight(unsigned h) {
    assert(isMutable() && "Only a mutable tree can have its height changed.");
    height = h;
  }

  static uint32_t computeDigest(ImutAVLTree *L, ImutAVLTree *R,
                                value_type_ref V) {
    uint32_t digest = 0;

    if (L)
      digest += L->computeDigest();

    // Compute digest of stored data.
    FoldingSetNodeID ID;
    ImutInfo::Profile(ID,V);
    digest += ID.ComputeHash();

    if (R)
      digest += R->computeDigest();

    return digest;
  }

  uint32_t computeDigest() {
    // Check the lowest bit to determine if digest has actually been
    // pre-computed.
    if (hasCachedDigest())
      return digest;

    uint32_t X = computeDigest(getLeft(), getRight(), getValue());
    digest = X;
    markedCachedDigest();
    return X;
  }

  //===----------------------------------------------------===//
  // Reference count operations.
  //===----------------------------------------------------===//

public:
  void retain() { ++refCount; }
  void release() {
    assert(refCount > 0);
    if (--refCount == 0)
      destroy();
  }
  void destroy() {
    if (left)
      left->release();
    if (right)
      right->release();
    if (IsCanonicalized) {
      if (next)
        next->prev = prev;

      if (prev)
        prev->next = next;
      else
        factory->Cache[factory->maskCacheIndex(computeDigest())] = next;
    }

    // We need to clear the mutability bit in case we are
    // destroying the node as part of a sweep in ImutAVLFactory::recoverNodes().
    IsMutable = false;
    factory->freeNodes.push_back(this);
  }
};

//===----------------------------------------------------------------------===//
// Immutable AVL-Tree Factory class.
//===----------------------------------------------------------------------===//

template <typename ImutInfo >
class ImutAVLFactory {
  friend class ImutAVLTree<ImutInfo>;
  typedef ImutAVLTree<ImutInfo> TreeTy;
  typedef typename TreeTy::value_type_ref value_type_ref;
  typedef typename TreeTy::key_type_ref   key_type_ref;

  typedef DenseMap<unsigned, TreeTy*> CacheTy;

  CacheTy Cache;
  uintptr_t Allocator;
  std::vector<TreeTy*> createdNodes;
  std::vector<TreeTy*> freeNodes;

  bool ownsAllocator() const {
    return Allocator & 0x1 ? false : true;
  }

  BumpPtrAllocator& getAllocator() const {
    return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1);
  }

  //===--------------------------------------------------===//
  // Public interface.
  //===--------------------------------------------------===//

public:
  ImutAVLFactory()
    : Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {}

  ImutAVLFactory(BumpPtrAllocator& Alloc)
    : Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {}

  ~ImutAVLFactory() {
    if (ownsAllocator()) delete &getAllocator();
  }

  TreeTy* add(TreeTy* T, value_type_ref V) {
    T = add_internal(V,T);
    markImmutable(T);
    recoverNodes();
    return T;
  }

  TreeTy* remove(TreeTy* T, key_type_ref V) {
    T = remove_internal(V,T);
    markImmutable(T);
    recoverNodes();
    return T;
  }

  TreeTy* getEmptyTree() const { return nullptr; }

protected:

  //===--------------------------------------------------===//
  // A bunch of quick helper functions used for reasoning
  // about the properties of trees and their children.
  // These have succinct names so that the balancing code
  // is as terse (and readable) as possible.
  //===--------------------------------------------------===//

  bool            isEmpty(TreeTy* T) const { return !T; }
  unsigned        getHeight(TreeTy* T) const { return T ? T->getHeight() : 0; }
  TreeTy*         getLeft(TreeTy* T) const { return T->getLeft(); }
  TreeTy*         getRight(TreeTy* T) const { return T->getRight(); }
  value_type_ref  getValue(TreeTy* T) const { return T->value; }

  // Make sure the index is not the Tombstone or Entry key of the DenseMap.
  static unsigned maskCacheIndex(unsigned I) { return (I & ~0x02); }

  unsigned incrementHeight(TreeTy* L, TreeTy* R) const {
    unsigned hl = getHeight(L);
    unsigned hr = getHeight(R);
    return (hl > hr ? hl : hr) + 1;
  }

  static bool compareTreeWithSection(TreeTy* T,
                                     typename TreeTy::iterator& TI,
                                     typename TreeTy::iterator& TE) {
    typename TreeTy::iterator I = T->begin(), E = T->end();
    for ( ; I!=E ; ++I, ++TI) {
      if (TI == TE || !I->isElementEqual(&*TI))
        return false;
    }
    return true;
  }

  //===--------------------------------------------------===//
  // "createNode" is used to generate new tree roots that link
  // to other trees.  The functon may also simply move links
  // in an existing root if that root is still marked mutable.
  // This is necessary because otherwise our balancing code
  // would leak memory as it would create nodes that are
  // then discarded later before the finished tree is
  // returned to the caller.
  //===--------------------------------------------------===//

  TreeTy* createNode(TreeTy* L, value_type_ref V, TreeTy* R) {
    BumpPtrAllocator& A = getAllocator();
    TreeTy* T;
    if (!freeNodes.empty()) {
      T = freeNodes.back();
      freeNodes.pop_back();
      assert(T != L);
      assert(T != R);
    } else {
      T = (TreeTy*) A.Allocate<TreeTy>();
    }
    new (T) TreeTy(this, L, R, V, incrementHeight(L,R));
    createdNodes.push_back(T);
    return T;
  }

  TreeTy* createNode(TreeTy* newLeft, TreeTy* oldTree, TreeTy* newRight) {
    return createNode(newLeft, getValue(oldTree), newRight);
  }

  void recoverNodes() {
    for (unsigned i = 0, n = createdNodes.size(); i < n; ++i) {
      TreeTy *N = createdNodes[i];
      if (N->isMutable() && N->refCount == 0)
        N->destroy();
    }
    createdNodes.clear();
  }

  /// balanceTree - Used by add_internal and remove_internal to
  ///  balance a newly created tree.
  TreeTy* balanceTree(TreeTy* L, value_type_ref V, TreeTy* R) {
    unsigned hl = getHeight(L);
    unsigned hr = getHeight(R);

    if (hl > hr + 2) {
      assert(!isEmpty(L) && "Left tree cannot be empty to have a height >= 2");

      TreeTy *LL = getLeft(L);
      TreeTy *LR = getRight(L);

      if (getHeight(LL) >= getHeight(LR))
        return createNode(LL, L, createNode(LR,V,R));

      assert(!isEmpty(LR) && "LR cannot be empty because it has a height >= 1");

      TreeTy *LRL = getLeft(LR);
      TreeTy *LRR = getRight(LR);

      return createNode(createNode(LL,L,LRL), LR, createNode(LRR,V,R));
    }

    if (hr > hl + 2) {
      assert(!isEmpty(R) && "Right tree cannot be empty to have a height >= 2");

      TreeTy *RL = getLeft(R);
      TreeTy *RR = getRight(R);

      if (getHeight(RR) >= getHeight(RL))
        return createNode(createNode(L,V,RL), R, RR);

      assert(!isEmpty(RL) && "RL cannot be empty because it has a height >= 1");

      TreeTy *RLL = getLeft(RL);
      TreeTy *RLR = getRight(RL);

      return createNode(createNode(L,V,RLL), RL, createNode(RLR,R,RR));
    }

    return createNode(L,V,R);
  }

  /// add_internal - Creates a new tree that includes the specified
  ///  data and the data from the original tree.  If the original tree
  ///  already contained the data item, the original tree is returned.
  TreeTy* add_internal(value_type_ref V, TreeTy* T) {
    if (isEmpty(T))
      return createNode(T, V, T);
    assert(!T->isMutable());

    key_type_ref K = ImutInfo::KeyOfValue(V);
    key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));

    if (ImutInfo::isEqual(K,KCurrent))
      return createNode(getLeft(T), V, getRight(T));
    else if (ImutInfo::isLess(K,KCurrent))
      return balanceTree(add_internal(V, getLeft(T)), getValue(T), getRight(T));
    else
      return balanceTree(getLeft(T), getValue(T), add_internal(V, getRight(T)));
  }

  /// remove_internal - Creates a new tree that includes all the data
  ///  from the original tree except the specified data.  If the
  ///  specified data did not exist in the original tree, the original
  ///  tree is returned.
  TreeTy* remove_internal(key_type_ref K, TreeTy* T) {
    if (isEmpty(T))
      return T;

    assert(!T->isMutable());

    key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));

    if (ImutInfo::isEqual(K,KCurrent)) {
      return combineTrees(getLeft(T), getRight(T));
    } else if (ImutInfo::isLess(K,KCurrent)) {
      return balanceTree(remove_internal(K, getLeft(T)),
                                            getValue(T), getRight(T));
    } else {
      return balanceTree(getLeft(T), getValue(T),
                         remove_internal(K, getRight(T)));
    }
  }

  TreeTy* combineTrees(TreeTy* L, TreeTy* R) {
    if (isEmpty(L))
      return R;
    if (isEmpty(R))
      return L;
    TreeTy* OldNode;
    TreeTy* newRight = removeMinBinding(R,OldNode);
    return balanceTree(L, getValue(OldNode), newRight);
  }

  TreeTy* removeMinBinding(TreeTy* T, TreeTy*& Noderemoved) {
    assert(!isEmpty(T));
    if (isEmpty(getLeft(T))) {
      Noderemoved = T;
      return getRight(T);
    }
    return balanceTree(removeMinBinding(getLeft(T), Noderemoved),
                       getValue(T), getRight(T));
  }

  /// markImmutable - Clears the mutable bits of a root and all of its
  ///  descendants.
  void markImmutable(TreeTy* T) {
    if (!T || !T->isMutable())
      return;
    T->markImmutable();
    markImmutable(getLeft(T));
    markImmutable(getRight(T));
  }

public:
  TreeTy *getCanonicalTree(TreeTy *TNew) {
    if (!TNew)
      return nullptr;

    if (TNew->IsCanonicalized)
      return TNew;

    // Search the hashtable for another tree with the same digest, and
    // if find a collision compare those trees by their contents.
    unsigned digest = TNew->computeDigest();
    TreeTy *&entry = Cache[maskCacheIndex(digest)];
    do {
      if (!entry)
        break;
      for (TreeTy *T = entry ; T != nullptr; T = T->next) {
        // Compare the Contents('T') with Contents('TNew')
        typename TreeTy::iterator TI = T->begin(), TE = T->end();
        if (!compareTreeWithSection(TNew, TI, TE))
          continue;
        if (TI != TE)
          continue; // T has more contents than TNew.
        // Trees did match!  Return 'T'.
        if (TNew->refCount == 0)
          TNew->destroy();
        return T;
      }
      entry->prev = TNew;
      TNew->next = entry;
    }
    while (false);

    entry = TNew;
    TNew->IsCanonicalized = true;
    return TNew;
  }
};

//===----------------------------------------------------------------------===//
// Immutable AVL-Tree Iterators.
//===----------------------------------------------------------------------===//

template <typename ImutInfo>
class ImutAVLTreeGenericIterator
    : public std::iterator<std::bidirectional_iterator_tag,
                           ImutAVLTree<ImutInfo>> {
  SmallVector<uintptr_t,20> stack;
public:
  enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3,
                   Flags=0x3 };

  typedef ImutAVLTree<ImutInfo> TreeTy;

  ImutAVLTreeGenericIterator() {}
  ImutAVLTreeGenericIterator(const TreeTy *Root) {
    if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root));
  }

  TreeTy &operator*() const {
    assert(!stack.empty());
    return *reinterpret_cast<TreeTy *>(stack.back() & ~Flags);
  }
  TreeTy *operator->() const { return &*this; }

  uintptr_t getVisitState() const {
    assert(!stack.empty());
    return stack.back() & Flags;
  }


  bool atEnd() const { return stack.empty(); }

  bool atBeginning() const {
    return stack.size() == 1 && getVisitState() == VisitedNone;
  }

  void skipToParent() {
    assert(!stack.empty());
    stack.pop_back();
    if (stack.empty())
      return;
    switch (getVisitState()) {
      case VisitedNone:
        stack.back() |= VisitedLeft;
        break;
      case VisitedLeft:
        stack.back() |= VisitedRight;
        break;
      default:
        llvm_unreachable("Unreachable.");
    }
  }

  bool operator==(const ImutAVLTreeGenericIterator &x) const {
    return stack == x.stack;
  }

  bool operator!=(const ImutAVLTreeGenericIterator &x) const {
    return !(*this == x);
  }

  ImutAVLTreeGenericIterator &operator++() {
    assert(!stack.empty());
    TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
    assert(Current);
    switch (getVisitState()) {
      case VisitedNone:
        if (TreeTy* L = Current->getLeft())
          stack.push_back(reinterpret_cast<uintptr_t>(L));
        else
          stack.back() |= VisitedLeft;
        break;
      case VisitedLeft:
        if (TreeTy* R = Current->getRight())
          stack.push_back(reinterpret_cast<uintptr_t>(R));
        else
          stack.back() |= VisitedRight;
        break;
      case VisitedRight:
        skipToParent();
        break;
      default:
        llvm_unreachable("Unreachable.");
    }
    return *this;
  }

  ImutAVLTreeGenericIterator &operator--() {
    assert(!stack.empty());
    TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
    assert(Current);
    switch (getVisitState()) {
      case VisitedNone:
        stack.pop_back();
        break;
      case VisitedLeft:
        stack.back() &= ~Flags; // Set state to "VisitedNone."
        if (TreeTy* L = Current->getLeft())
          stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight);
        break;
      case VisitedRight:
        stack.back() &= ~Flags;
        stack.back() |= VisitedLeft;
        if (TreeTy* R = Current->getRight())
          stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight);
        break;
      default:
        llvm_unreachable("Unreachable.");
    }
    return *this;
  }
};

template <typename ImutInfo>
class ImutAVLTreeInOrderIterator
    : public std::iterator<std::bidirectional_iterator_tag,
                           ImutAVLTree<ImutInfo>> {
  typedef ImutAVLTreeGenericIterator<ImutInfo> InternalIteratorTy;
  InternalIteratorTy InternalItr;

public:
  typedef ImutAVLTree<ImutInfo> TreeTy;

  ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) {
    if (Root)
      ++*this; // Advance to first element.
  }

  ImutAVLTreeInOrderIterator() : InternalItr() {}

  bool operator==(const ImutAVLTreeInOrderIterator &x) const {
    return InternalItr == x.InternalItr;
  }

  bool operator!=(const ImutAVLTreeInOrderIterator &x) const {
    return !(*this == x);
  }

  TreeTy &operator*() const { return *InternalItr; }
  TreeTy *operator->() const { return &*InternalItr; }

  ImutAVLTreeInOrderIterator &operator++() {
    do ++InternalItr;
    while (!InternalItr.atEnd() &&
           InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);

    return *this;
  }

  ImutAVLTreeInOrderIterator &operator--() {
    do --InternalItr;
    while (!InternalItr.atBeginning() &&
           InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);

    return *this;
  }

  void skipSubTree() {
    InternalItr.skipToParent();

    while (!InternalItr.atEnd() &&
           InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft)
      ++InternalItr;
  }
};

/// Generic iterator that wraps a T::TreeTy::iterator and exposes
/// iterator::getValue() on dereference.
template <typename T>
struct ImutAVLValueIterator
    : iterator_adaptor_base<
          ImutAVLValueIterator<T>, typename T::TreeTy::iterator,
          typename std::iterator_traits<
              typename T::TreeTy::iterator>::iterator_category,
          const typename T::value_type> {
  ImutAVLValueIterator() = default;
  explicit ImutAVLValueIterator(typename T::TreeTy *Tree)
      : ImutAVLValueIterator::iterator_adaptor_base(Tree) {}

  typename ImutAVLValueIterator::reference operator*() const {
    return this->I->getValue();
  }
};

//===----------------------------------------------------------------------===//
// Trait classes for Profile information.
//===----------------------------------------------------------------------===//

/// Generic profile template.  The default behavior is to invoke the
/// profile method of an object.  Specializations for primitive integers
/// and generic handling of pointers is done below.
template <typename T>
struct ImutProfileInfo {
  typedef const T  value_type;
  typedef const T& value_type_ref;

  static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
    FoldingSetTrait<T>::Profile(X,ID);
  }
};

/// Profile traits for integers.
template <typename T>
struct ImutProfileInteger {
  typedef const T  value_type;
  typedef const T& value_type_ref;

  static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
    ID.AddInteger(X);
  }
};

#define PROFILE_INTEGER_INFO(X)\
template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {};

PROFILE_INTEGER_INFO(char)
PROFILE_INTEGER_INFO(unsigned char)
PROFILE_INTEGER_INFO(short)
PROFILE_INTEGER_INFO(unsigned short)
PROFILE_INTEGER_INFO(unsigned)
PROFILE_INTEGER_INFO(signed)
PROFILE_INTEGER_INFO(long)
PROFILE_INTEGER_INFO(unsigned long)
PROFILE_INTEGER_INFO(long long)
PROFILE_INTEGER_INFO(unsigned long long)

#undef PROFILE_INTEGER_INFO

/// Profile traits for booleans.
template <>
struct ImutProfileInfo<bool> {
  typedef const bool  value_type;
  typedef const bool& value_type_ref;

  static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
    ID.AddBoolean(X);
  }
};


/// Generic profile trait for pointer types.  We treat pointers as
/// references to unique objects.
template <typename T>
struct ImutProfileInfo<T*> {
  typedef const T*   value_type;
  typedef value_type value_type_ref;

  static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
    ID.AddPointer(X);
  }
};

//===----------------------------------------------------------------------===//
// Trait classes that contain element comparison operators and type
//  definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap.  These
//  inherit from the profile traits (ImutProfileInfo) to include operations
//  for element profiling.
//===----------------------------------------------------------------------===//


/// ImutContainerInfo - Generic definition of comparison operations for
///   elements of immutable containers that defaults to using
///   std::equal_to<> and std::less<> to perform comparison of elements.
template <typename T>
struct ImutContainerInfo : public ImutProfileInfo<T> {
  typedef typename ImutProfileInfo<T>::value_type      value_type;
  typedef typename ImutProfileInfo<T>::value_type_ref  value_type_ref;
  typedef value_type      key_type;
  typedef value_type_ref  key_type_ref;
  typedef bool            data_type;
  typedef bool            data_type_ref;

  static key_type_ref KeyOfValue(value_type_ref D) { return D; }
  static data_type_ref DataOfValue(value_type_ref) { return true; }

  static bool isEqual(key_type_ref LHS, key_type_ref RHS) {
    return std::equal_to<key_type>()(LHS,RHS);
  }

  static bool isLess(key_type_ref LHS, key_type_ref RHS) {
    return std::less<key_type>()(LHS,RHS);
  }

  static bool isDataEqual(data_type_ref, data_type_ref) { return true; }
};

/// ImutContainerInfo - Specialization for pointer values to treat pointers
///  as references to unique objects.  Pointers are thus compared by
///  their addresses.
template <typename T>
struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> {
  typedef typename ImutProfileInfo<T*>::value_type      value_type;
  typedef typename ImutProfileInfo<T*>::value_type_ref  value_type_ref;
  typedef value_type      key_type;
  typedef value_type_ref  key_type_ref;
  typedef bool            data_type;
  typedef bool            data_type_ref;

  static key_type_ref KeyOfValue(value_type_ref D) { return D; }
  static data_type_ref DataOfValue(value_type_ref) { return true; }

  static bool isEqual(key_type_ref LHS, key_type_ref RHS) { return LHS == RHS; }

  static bool isLess(key_type_ref LHS, key_type_ref RHS) { return LHS < RHS; }

  static bool isDataEqual(data_type_ref, data_type_ref) { return true; }
};

//===----------------------------------------------------------------------===//
// Immutable Set
//===----------------------------------------------------------------------===//

template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> >
class ImmutableSet {
public:
  typedef typename ValInfo::value_type      value_type;
  typedef typename ValInfo::value_type_ref  value_type_ref;
  typedef ImutAVLTree<ValInfo> TreeTy;

private:
  TreeTy *Root;

public:
  /// Constructs a set from a pointer to a tree root.  In general one
  /// should use a Factory object to create sets instead of directly
  /// invoking the constructor, but there are cases where make this
  /// constructor public is useful.
  explicit ImmutableSet(TreeTy* R) : Root(R) {
    if (Root) { Root->retain(); }
  }
  ImmutableSet(const ImmutableSet &X) : Root(X.Root) {
    if (Root) { Root->retain(); }
  }
  ImmutableSet &operator=(const ImmutableSet &X) {
    if (Root != X.Root) {
      if (X.Root) { X.Root->retain(); }
      if (Root) { Root->release(); }
      Root = X.Root;
    }
    return *this;
  }
  ~ImmutableSet() {
    if (Root) { Root->release(); }
  }

  class Factory {
    typename TreeTy::Factory F;
    const bool Canonicalize;

  public:
    Factory(bool canonicalize = true)
      : Canonicalize(canonicalize) {}

    Factory(BumpPtrAllocator& Alloc, bool canonicalize = true)
      : F(Alloc), Canonicalize(canonicalize) {}

    /// getEmptySet - Returns an immutable set that contains no elements.
    ImmutableSet getEmptySet() {
      return ImmutableSet(F.getEmptyTree());
    }

    /// add - Creates a new immutable set that contains all of the values
    ///  of the original set with the addition of the specified value.  If
    ///  the original set already included the value, then the original set is
    ///  returned and no memory is allocated.  The time and space complexity
    ///  of this operation is logarithmic in the size of the original set.
    ///  The memory allocated to represent the set is released when the
    ///  factory object that created the set is destroyed.
    ImmutableSet add(ImmutableSet Old, value_type_ref V) {
      TreeTy *NewT = F.add(Old.Root, V);
      return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
    }

    /// remove - Creates a new immutable set that contains all of the values
    ///  of the original set with the exception of the specified value.  If
    ///  the original set did not contain the value, the original set is
    ///  returned and no memory is allocated.  The time and space complexity
    ///  of this operation is logarithmic in the size of the original set.
    ///  The memory allocated to represent the set is released when the
    ///  factory object that created the set is destroyed.
    ImmutableSet remove(ImmutableSet Old, value_type_ref V) {
      TreeTy *NewT = F.remove(Old.Root, V);
      return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
    }

    BumpPtrAllocator& getAllocator() { return F.getAllocator(); }

    typename TreeTy::Factory *getTreeFactory() const {
      return const_cast<typename TreeTy::Factory *>(&F);
    }

  private:
    Factory(const Factory& RHS) = delete;
    void operator=(const Factory& RHS) = delete;
  };

  friend class Factory;

  /// Returns true if the set contains the specified value.
  bool contains(value_type_ref V) const {
    return Root ? Root->contains(V) : false;
  }

  bool operator==(const ImmutableSet &RHS) const {
    return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
  }

  bool operator!=(const ImmutableSet &RHS) const {
    return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
  }

  TreeTy *getRoot() {
    if (Root) { Root->retain(); }
    return Root;
  }

  TreeTy *getRootWithoutRetain() const {
    return Root;
  }

  /// isEmpty - Return true if the set contains no elements.
  bool isEmpty() const { return !Root; }

  /// isSingleton - Return true if the set contains exactly one element.
  ///   This method runs in constant time.
  bool isSingleton() const { return getHeight() == 1; }

  template <typename Callback>
  void foreach(Callback& C) { if (Root) Root->foreach(C); }

  template <typename Callback>
  void foreach() { if (Root) { Callback C; Root->foreach(C); } }

  //===--------------------------------------------------===//
  // Iterators.
  //===--------------------------------------------------===//

  typedef ImutAVLValueIterator<ImmutableSet> iterator;

  iterator begin() const { return iterator(Root); }
  iterator end() const { return iterator(); }

  //===--------------------------------------------------===//
  // Utility methods.
  //===--------------------------------------------------===//

  unsigned getHeight() const { return Root ? Root->getHeight() : 0; }

  static void Profile(FoldingSetNodeID &ID, const ImmutableSet &S) {
    ID.AddPointer(S.Root);
  }

  void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); }

  //===--------------------------------------------------===//
  // For testing.
  //===--------------------------------------------------===//

  void validateTree() const { if (Root) Root->validateTree(); }
};

// NOTE: This may some day replace the current ImmutableSet.
template <typename ValT, typename ValInfo = ImutContainerInfo<ValT> >
class ImmutableSetRef {
public:
  typedef typename ValInfo::value_type      value_type;
  typedef typename ValInfo::value_type_ref  value_type_ref;
  typedef ImutAVLTree<ValInfo> TreeTy;
  typedef typename TreeTy::Factory          FactoryTy;

private:
  TreeTy *Root;
  FactoryTy *Factory;

public:
  /// Constructs a set from a pointer to a tree root.  In general one
  /// should use a Factory object to create sets instead of directly
  /// invoking the constructor, but there are cases where make this
  /// constructor public is useful.
  explicit ImmutableSetRef(TreeTy* R, FactoryTy *F)
    : Root(R),
      Factory(F) {
    if (Root) { Root->retain(); }
  }
  ImmutableSetRef(const ImmutableSetRef &X)
    : Root(X.Root),
      Factory(X.Factory) {
    if (Root) { Root->retain(); }
  }
  ImmutableSetRef &operator=(const ImmutableSetRef &X) {
    if (Root != X.Root) {
      if (X.Root) { X.Root->retain(); }
      if (Root) { Root->release(); }
      Root = X.Root;
      Factory = X.Factory;
    }
    return *this;
  }
  ~ImmutableSetRef() {
    if (Root) { Root->release(); }
  }

  static ImmutableSetRef getEmptySet(FactoryTy *F) {
    return ImmutableSetRef(0, F);
  }

  ImmutableSetRef add(value_type_ref V) {
    return ImmutableSetRef(Factory->add(Root, V), Factory);
  }

  ImmutableSetRef remove(value_type_ref V) {
    return ImmutableSetRef(Factory->remove(Root, V), Factory);
  }

  /// Returns true if the set contains the specified value.
  bool contains(value_type_ref V) const {
    return Root ? Root->contains(V) : false;
  }

  ImmutableSet<ValT> asImmutableSet(bool canonicalize = true) const {
    return ImmutableSet<ValT>(canonicalize ?
                              Factory->getCanonicalTree(Root) : Root);
  }

  TreeTy *getRootWithoutRetain() const {
    return Root;
  }

  bool operator==(const ImmutableSetRef &RHS) const {
    return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
  }

  bool operator!=(const ImmutableSetRef &RHS) const {
    return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
  }

  /// isEmpty - Return true if the set contains no elements.
  bool isEmpty() const { return !Root; }

  /// isSingleton - Return true if the set contains exactly one element.
  ///   This method runs in constant time.
  bool isSingleton() const { return getHeight() == 1; }

  //===--------------------------------------------------===//
  // Iterators.
  //===--------------------------------------------------===//

  typedef ImutAVLValueIterator<ImmutableSetRef> iterator;

  iterator begin() const { return iterator(Root); }
  iterator end() const { return iterator(); }

  //===--------------------------------------------------===//
  // Utility methods.
  //===--------------------------------------------------===//

  unsigned getHeight() const { return Root ? Root->getHeight() : 0; }

  static void Profile(FoldingSetNodeID &ID, const ImmutableSetRef &S) {
    ID.AddPointer(S.Root);
  }

  void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); }

  //===--------------------------------------------------===//
  // For testing.
  //===--------------------------------------------------===//

  void validateTree() const { if (Root) Root->validateTree(); }
};

} // end namespace llvm

#endif