This file is indexed.

/usr/include/llvm-3.9/llvm/ADT/Optional.h is in llvm-3.9-dev 1:3.9.1-19ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
//===-- Optional.h - Simple variant for passing optional values ---*- C++ -*-=//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file provides Optional, a template class modeled in the spirit of
//  OCaml's 'opt' variant.  The idea is to strongly type whether or not
//  a value can be optional.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_OPTIONAL_H
#define LLVM_ADT_OPTIONAL_H

#include "llvm/ADT/None.h"
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Compiler.h"
#include <cassert>
#include <new>
#include <utility>

namespace llvm {

template<typename T>
class Optional {
  AlignedCharArrayUnion<T> storage;
  bool hasVal;
public:
  typedef T value_type;

  Optional(NoneType) : hasVal(false) {}
  explicit Optional() : hasVal(false) {}
  Optional(const T &y) : hasVal(true) {
    new (storage.buffer) T(y);
  }
  Optional(const Optional &O) : hasVal(O.hasVal) {
    if (hasVal)
      new (storage.buffer) T(*O);
  }

  Optional(T &&y) : hasVal(true) {
    new (storage.buffer) T(std::forward<T>(y));
  }
  Optional(Optional<T> &&O) : hasVal(O) {
    if (O) {
      new (storage.buffer) T(std::move(*O));
      O.reset();
    }
  }
  Optional &operator=(T &&y) {
    if (hasVal)
      **this = std::move(y);
    else {
      new (storage.buffer) T(std::move(y));
      hasVal = true;
    }
    return *this;
  }
  Optional &operator=(Optional &&O) {
    if (!O)
      reset();
    else {
      *this = std::move(*O);
      O.reset();
    }
    return *this;
  }

  /// Create a new object by constructing it in place with the given arguments.
  template<typename ...ArgTypes>
  void emplace(ArgTypes &&...Args) {
    reset();
    hasVal = true;
    new (storage.buffer) T(std::forward<ArgTypes>(Args)...);
  }

  static inline Optional create(const T* y) {
    return y ? Optional(*y) : Optional();
  }

  // FIXME: these assignments (& the equivalent const T&/const Optional& ctors)
  // could be made more efficient by passing by value, possibly unifying them
  // with the rvalue versions above - but this could place a different set of
  // requirements (notably: the existence of a default ctor) when implemented
  // in that way. Careful SFINAE to avoid such pitfalls would be required.
  Optional &operator=(const T &y) {
    if (hasVal)
      **this = y;
    else {
      new (storage.buffer) T(y);
      hasVal = true;
    }
    return *this;
  }

  Optional &operator=(const Optional &O) {
    if (!O)
      reset();
    else
      *this = *O;
    return *this;
  }

  void reset() {
    if (hasVal) {
      (**this).~T();
      hasVal = false;
    }
  }

  ~Optional() {
    reset();
  }

  const T* getPointer() const { assert(hasVal); return reinterpret_cast<const T*>(storage.buffer); }
  T* getPointer() { assert(hasVal); return reinterpret_cast<T*>(storage.buffer); }
  const T& getValue() const LLVM_LVALUE_FUNCTION { assert(hasVal); return *getPointer(); }
  T& getValue() LLVM_LVALUE_FUNCTION { assert(hasVal); return *getPointer(); }

  explicit operator bool() const { return hasVal; }
  bool hasValue() const { return hasVal; }
  const T* operator->() const { return getPointer(); }
  T* operator->() { return getPointer(); }
  const T& operator*() const LLVM_LVALUE_FUNCTION { assert(hasVal); return *getPointer(); }
  T& operator*() LLVM_LVALUE_FUNCTION { assert(hasVal); return *getPointer(); }

  template <typename U>
  LLVM_CONSTEXPR T getValueOr(U &&value) const LLVM_LVALUE_FUNCTION {
    return hasValue() ? getValue() : std::forward<U>(value);
  }

#if LLVM_HAS_RVALUE_REFERENCE_THIS
  T&& getValue() && { assert(hasVal); return std::move(*getPointer()); }
  T&& operator*() && { assert(hasVal); return std::move(*getPointer()); }

  template <typename U>
  T getValueOr(U &&value) && {
    return hasValue() ? std::move(getValue()) : std::forward<U>(value);
  }
#endif
};

template <typename T> struct isPodLike;
template <typename T> struct isPodLike<Optional<T> > {
  // An Optional<T> is pod-like if T is.
  static const bool value = isPodLike<T>::value;
};

/// \brief Poison comparison between two \c Optional objects. Clients needs to
/// explicitly compare the underlying values and account for empty \c Optional
/// objects.
///
/// This routine will never be defined. It returns \c void to help diagnose
/// errors at compile time.
template<typename T, typename U>
void operator==(const Optional<T> &X, const Optional<U> &Y);

template<typename T>
bool operator==(const Optional<T> &X, NoneType) {
  return !X.hasValue();
}

template<typename T>
bool operator==(NoneType, const Optional<T> &X) {
  return X == None;
}

template<typename T>
bool operator!=(const Optional<T> &X, NoneType) {
  return !(X == None);
}

template<typename T>
bool operator!=(NoneType, const Optional<T> &X) {
  return X != None;
}
/// \brief Poison comparison between two \c Optional objects. Clients needs to
/// explicitly compare the underlying values and account for empty \c Optional
/// objects.
///
/// This routine will never be defined. It returns \c void to help diagnose
/// errors at compile time.
template<typename T, typename U>
void operator!=(const Optional<T> &X, const Optional<U> &Y);

/// \brief Poison comparison between two \c Optional objects. Clients needs to
/// explicitly compare the underlying values and account for empty \c Optional
/// objects.
///
/// This routine will never be defined. It returns \c void to help diagnose
/// errors at compile time.
template<typename T, typename U>
void operator<(const Optional<T> &X, const Optional<U> &Y);

/// \brief Poison comparison between two \c Optional objects. Clients needs to
/// explicitly compare the underlying values and account for empty \c Optional
/// objects.
///
/// This routine will never be defined. It returns \c void to help diagnose
/// errors at compile time.
template<typename T, typename U>
void operator<=(const Optional<T> &X, const Optional<U> &Y);

/// \brief Poison comparison between two \c Optional objects. Clients needs to
/// explicitly compare the underlying values and account for empty \c Optional
/// objects.
///
/// This routine will never be defined. It returns \c void to help diagnose
/// errors at compile time.
template<typename T, typename U>
void operator>=(const Optional<T> &X, const Optional<U> &Y);

/// \brief Poison comparison between two \c Optional objects. Clients needs to
/// explicitly compare the underlying values and account for empty \c Optional
/// objects.
///
/// This routine will never be defined. It returns \c void to help diagnose
/// errors at compile time.
template<typename T, typename U>
void operator>(const Optional<T> &X, const Optional<U> &Y);

} // end llvm namespace

#endif