/usr/include/llvm-3.9/llvm/Analysis/AliasAnalysis.h is in llvm-3.9-dev 1:3.9.1-19ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 | //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the generic AliasAnalysis interface, which is used as the
// common interface used by all clients of alias analysis information, and
// implemented by all alias analysis implementations. Mod/Ref information is
// also captured by this interface.
//
// Implementations of this interface must implement the various virtual methods,
// which automatically provides functionality for the entire suite of client
// APIs.
//
// This API identifies memory regions with the MemoryLocation class. The pointer
// component specifies the base memory address of the region. The Size specifies
// the maximum size (in address units) of the memory region, or
// MemoryLocation::UnknownSize if the size is not known. The TBAA tag
// identifies the "type" of the memory reference; see the
// TypeBasedAliasAnalysis class for details.
//
// Some non-obvious details include:
// - Pointers that point to two completely different objects in memory never
// alias, regardless of the value of the Size component.
// - NoAlias doesn't imply inequal pointers. The most obvious example of this
// is two pointers to constant memory. Even if they are equal, constant
// memory is never stored to, so there will never be any dependencies.
// In this and other situations, the pointers may be both NoAlias and
// MustAlias at the same time. The current API can only return one result,
// though this is rarely a problem in practice.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
#define LLVM_ANALYSIS_ALIASANALYSIS_H
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
namespace llvm {
class BasicAAResult;
class LoadInst;
class StoreInst;
class VAArgInst;
class DataLayout;
class Pass;
class AnalysisUsage;
class MemTransferInst;
class MemIntrinsic;
class DominatorTree;
class OrderedBasicBlock;
/// The possible results of an alias query.
///
/// These results are always computed between two MemoryLocation objects as
/// a query to some alias analysis.
///
/// Note that these are unscoped enumerations because we would like to support
/// implicitly testing a result for the existence of any possible aliasing with
/// a conversion to bool, but an "enum class" doesn't support this. The
/// canonical names from the literature are suffixed and unique anyways, and so
/// they serve as global constants in LLVM for these results.
///
/// See docs/AliasAnalysis.html for more information on the specific meanings
/// of these values.
enum AliasResult {
/// The two locations do not alias at all.
///
/// This value is arranged to convert to false, while all other values
/// convert to true. This allows a boolean context to convert the result to
/// a binary flag indicating whether there is the possibility of aliasing.
NoAlias = 0,
/// The two locations may or may not alias. This is the least precise result.
MayAlias,
/// The two locations alias, but only due to a partial overlap.
PartialAlias,
/// The two locations precisely alias each other.
MustAlias,
};
/// Flags indicating whether a memory access modifies or references memory.
///
/// This is no access at all, a modification, a reference, or both
/// a modification and a reference. These are specifically structured such that
/// they form a two bit matrix and bit-tests for 'mod' or 'ref' work with any
/// of the possible values.
enum ModRefInfo {
/// The access neither references nor modifies the value stored in memory.
MRI_NoModRef = 0,
/// The access references the value stored in memory.
MRI_Ref = 1,
/// The access modifies the value stored in memory.
MRI_Mod = 2,
/// The access both references and modifies the value stored in memory.
MRI_ModRef = MRI_Ref | MRI_Mod
};
/// The locations at which a function might access memory.
///
/// These are primarily used in conjunction with the \c AccessKind bits to
/// describe both the nature of access and the locations of access for a
/// function call.
enum FunctionModRefLocation {
/// Base case is no access to memory.
FMRL_Nowhere = 0,
/// Access to memory via argument pointers.
FMRL_ArgumentPointees = 4,
/// Access to any memory.
FMRL_Anywhere = 8 | FMRL_ArgumentPointees
};
/// Summary of how a function affects memory in the program.
///
/// Loads from constant globals are not considered memory accesses for this
/// interface. Also, functions may freely modify stack space local to their
/// invocation without having to report it through these interfaces.
enum FunctionModRefBehavior {
/// This function does not perform any non-local loads or stores to memory.
///
/// This property corresponds to the GCC 'const' attribute.
/// This property corresponds to the LLVM IR 'readnone' attribute.
/// This property corresponds to the IntrNoMem LLVM intrinsic flag.
FMRB_DoesNotAccessMemory = FMRL_Nowhere | MRI_NoModRef,
/// The only memory references in this function (if it has any) are
/// non-volatile loads from objects pointed to by its pointer-typed
/// arguments, with arbitrary offsets.
///
/// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
FMRB_OnlyReadsArgumentPointees = FMRL_ArgumentPointees | MRI_Ref,
/// The only memory references in this function (if it has any) are
/// non-volatile loads and stores from objects pointed to by its
/// pointer-typed arguments, with arbitrary offsets.
///
/// This property corresponds to the IntrArgMemOnly LLVM intrinsic flag.
FMRB_OnlyAccessesArgumentPointees = FMRL_ArgumentPointees | MRI_ModRef,
/// This function does not perform any non-local stores or volatile loads,
/// but may read from any memory location.
///
/// This property corresponds to the GCC 'pure' attribute.
/// This property corresponds to the LLVM IR 'readonly' attribute.
/// This property corresponds to the IntrReadMem LLVM intrinsic flag.
FMRB_OnlyReadsMemory = FMRL_Anywhere | MRI_Ref,
// This function does not read from memory anywhere, but may write to any
// memory location.
//
// This property corresponds to the LLVM IR 'writeonly' attribute.
// This property corresponds to the IntrWriteMem LLVM intrinsic flag.
FMRB_DoesNotReadMemory = FMRL_Anywhere | MRI_Mod,
/// This indicates that the function could not be classified into one of the
/// behaviors above.
FMRB_UnknownModRefBehavior = FMRL_Anywhere | MRI_ModRef
};
class AAResults {
public:
// Make these results default constructable and movable. We have to spell
// these out because MSVC won't synthesize them.
AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
AAResults(AAResults &&Arg);
~AAResults();
/// Register a specific AA result.
template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
// FIXME: We should use a much lighter weight system than the usual
// polymorphic pattern because we don't own AAResult. It should
// ideally involve two pointers and no separate allocation.
AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
}
//===--------------------------------------------------------------------===//
/// \name Alias Queries
/// @{
/// The main low level interface to the alias analysis implementation.
/// Returns an AliasResult indicating whether the two pointers are aliased to
/// each other. This is the interface that must be implemented by specific
/// alias analysis implementations.
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
/// A convenience wrapper around the primary \c alias interface.
AliasResult alias(const Value *V1, uint64_t V1Size, const Value *V2,
uint64_t V2Size) {
return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
}
/// A convenience wrapper around the primary \c alias interface.
AliasResult alias(const Value *V1, const Value *V2) {
return alias(V1, MemoryLocation::UnknownSize, V2,
MemoryLocation::UnknownSize);
}
/// A trivial helper function to check to see if the specified pointers are
/// no-alias.
bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
return alias(LocA, LocB) == NoAlias;
}
/// A convenience wrapper around the \c isNoAlias helper interface.
bool isNoAlias(const Value *V1, uint64_t V1Size, const Value *V2,
uint64_t V2Size) {
return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
}
/// A convenience wrapper around the \c isNoAlias helper interface.
bool isNoAlias(const Value *V1, const Value *V2) {
return isNoAlias(MemoryLocation(V1), MemoryLocation(V2));
}
/// A trivial helper function to check to see if the specified pointers are
/// must-alias.
bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
return alias(LocA, LocB) == MustAlias;
}
/// A convenience wrapper around the \c isMustAlias helper interface.
bool isMustAlias(const Value *V1, const Value *V2) {
return alias(V1, 1, V2, 1) == MustAlias;
}
/// Checks whether the given location points to constant memory, or if
/// \p OrLocal is true whether it points to a local alloca.
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false);
/// A convenience wrapper around the primary \c pointsToConstantMemory
/// interface.
bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
return pointsToConstantMemory(MemoryLocation(P), OrLocal);
}
/// @}
//===--------------------------------------------------------------------===//
/// \name Simple mod/ref information
/// @{
/// Get the ModRef info associated with a pointer argument of a callsite. The
/// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
/// that these bits do not necessarily account for the overall behavior of
/// the function, but rather only provide additional per-argument
/// information.
ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx);
/// Return the behavior of the given call site.
FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS);
/// Return the behavior when calling the given function.
FunctionModRefBehavior getModRefBehavior(const Function *F);
/// Checks if the specified call is known to never read or write memory.
///
/// Note that if the call only reads from known-constant memory, it is also
/// legal to return true. Also, calls that unwind the stack are legal for
/// this predicate.
///
/// Many optimizations (such as CSE and LICM) can be performed on such calls
/// without worrying about aliasing properties, and many calls have this
/// property (e.g. calls to 'sin' and 'cos').
///
/// This property corresponds to the GCC 'const' attribute.
bool doesNotAccessMemory(ImmutableCallSite CS) {
return getModRefBehavior(CS) == FMRB_DoesNotAccessMemory;
}
/// Checks if the specified function is known to never read or write memory.
///
/// Note that if the function only reads from known-constant memory, it is
/// also legal to return true. Also, function that unwind the stack are legal
/// for this predicate.
///
/// Many optimizations (such as CSE and LICM) can be performed on such calls
/// to such functions without worrying about aliasing properties, and many
/// functions have this property (e.g. 'sin' and 'cos').
///
/// This property corresponds to the GCC 'const' attribute.
bool doesNotAccessMemory(const Function *F) {
return getModRefBehavior(F) == FMRB_DoesNotAccessMemory;
}
/// Checks if the specified call is known to only read from non-volatile
/// memory (or not access memory at all).
///
/// Calls that unwind the stack are legal for this predicate.
///
/// This property allows many common optimizations to be performed in the
/// absence of interfering store instructions, such as CSE of strlen calls.
///
/// This property corresponds to the GCC 'pure' attribute.
bool onlyReadsMemory(ImmutableCallSite CS) {
return onlyReadsMemory(getModRefBehavior(CS));
}
/// Checks if the specified function is known to only read from non-volatile
/// memory (or not access memory at all).
///
/// Functions that unwind the stack are legal for this predicate.
///
/// This property allows many common optimizations to be performed in the
/// absence of interfering store instructions, such as CSE of strlen calls.
///
/// This property corresponds to the GCC 'pure' attribute.
bool onlyReadsMemory(const Function *F) {
return onlyReadsMemory(getModRefBehavior(F));
}
/// Checks if functions with the specified behavior are known to only read
/// from non-volatile memory (or not access memory at all).
static bool onlyReadsMemory(FunctionModRefBehavior MRB) {
return !(MRB & MRI_Mod);
}
/// Checks if functions with the specified behavior are known to only write
/// memory (or not access memory at all).
static bool doesNotReadMemory(FunctionModRefBehavior MRB) {
return !(MRB & MRI_Ref);
}
/// Checks if functions with the specified behavior are known to read and
/// write at most from objects pointed to by their pointer-typed arguments
/// (with arbitrary offsets).
static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) {
return !(MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees);
}
/// Checks if functions with the specified behavior are known to potentially
/// read or write from objects pointed to be their pointer-typed arguments
/// (with arbitrary offsets).
static bool doesAccessArgPointees(FunctionModRefBehavior MRB) {
return (MRB & MRI_ModRef) && (MRB & FMRL_ArgumentPointees);
}
/// getModRefInfo (for call sites) - Return information about whether
/// a particular call site modifies or reads the specified memory location.
ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc);
/// getModRefInfo (for call sites) - A convenience wrapper.
ModRefInfo getModRefInfo(ImmutableCallSite CS, const Value *P,
uint64_t Size) {
return getModRefInfo(CS, MemoryLocation(P, Size));
}
/// getModRefInfo (for calls) - Return information about whether
/// a particular call modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const CallInst *C, const MemoryLocation &Loc) {
return getModRefInfo(ImmutableCallSite(C), Loc);
}
/// getModRefInfo (for calls) - A convenience wrapper.
ModRefInfo getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
return getModRefInfo(C, MemoryLocation(P, Size));
}
/// getModRefInfo (for invokes) - Return information about whether
/// a particular invoke modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const InvokeInst *I, const MemoryLocation &Loc) {
return getModRefInfo(ImmutableCallSite(I), Loc);
}
/// getModRefInfo (for invokes) - A convenience wrapper.
ModRefInfo getModRefInfo(const InvokeInst *I, const Value *P, uint64_t Size) {
return getModRefInfo(I, MemoryLocation(P, Size));
}
/// getModRefInfo (for loads) - Return information about whether
/// a particular load modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);
/// getModRefInfo (for loads) - A convenience wrapper.
ModRefInfo getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
return getModRefInfo(L, MemoryLocation(P, Size));
}
/// getModRefInfo (for stores) - Return information about whether
/// a particular store modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);
/// getModRefInfo (for stores) - A convenience wrapper.
ModRefInfo getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size) {
return getModRefInfo(S, MemoryLocation(P, Size));
}
/// getModRefInfo (for fences) - Return information about whether
/// a particular store modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
// Conservatively correct. (We could possibly be a bit smarter if
// Loc is a alloca that doesn't escape.)
return MRI_ModRef;
}
/// getModRefInfo (for fences) - A convenience wrapper.
ModRefInfo getModRefInfo(const FenceInst *S, const Value *P, uint64_t Size) {
return getModRefInfo(S, MemoryLocation(P, Size));
}
/// getModRefInfo (for cmpxchges) - Return information about whether
/// a particular cmpxchg modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
const MemoryLocation &Loc);
/// getModRefInfo (for cmpxchges) - A convenience wrapper.
ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P,
unsigned Size) {
return getModRefInfo(CX, MemoryLocation(P, Size));
}
/// getModRefInfo (for atomicrmws) - Return information about whether
/// a particular atomicrmw modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc);
/// getModRefInfo (for atomicrmws) - A convenience wrapper.
ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P,
unsigned Size) {
return getModRefInfo(RMW, MemoryLocation(P, Size));
}
/// getModRefInfo (for va_args) - Return information about whether
/// a particular va_arg modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);
/// getModRefInfo (for va_args) - A convenience wrapper.
ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P, uint64_t Size) {
return getModRefInfo(I, MemoryLocation(P, Size));
}
/// getModRefInfo (for catchpads) - Return information about whether
/// a particular catchpad modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc);
/// getModRefInfo (for catchpads) - A convenience wrapper.
ModRefInfo getModRefInfo(const CatchPadInst *I, const Value *P,
uint64_t Size) {
return getModRefInfo(I, MemoryLocation(P, Size));
}
/// getModRefInfo (for catchrets) - Return information about whether
/// a particular catchret modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc);
/// getModRefInfo (for catchrets) - A convenience wrapper.
ModRefInfo getModRefInfo(const CatchReturnInst *I, const Value *P,
uint64_t Size) {
return getModRefInfo(I, MemoryLocation(P, Size));
}
/// Check whether or not an instruction may read or write memory (without
/// regard to a specific location).
///
/// For function calls, this delegates to the alias-analysis specific
/// call-site mod-ref behavior queries. Otherwise it delegates to the generic
/// mod ref information query without a location.
ModRefInfo getModRefInfo(const Instruction *I) {
if (auto CS = ImmutableCallSite(I)) {
auto MRB = getModRefBehavior(CS);
if ((MRB & MRI_ModRef) == MRI_ModRef)
return MRI_ModRef;
if (MRB & MRI_Ref)
return MRI_Ref;
if (MRB & MRI_Mod)
return MRI_Mod;
return MRI_NoModRef;
}
return getModRefInfo(I, MemoryLocation());
}
/// Check whether or not an instruction may read or write the specified
/// memory location.
///
/// An instruction that doesn't read or write memory may be trivially LICM'd
/// for example.
///
/// This primarily delegates to specific helpers above.
ModRefInfo getModRefInfo(const Instruction *I, const MemoryLocation &Loc) {
switch (I->getOpcode()) {
case Instruction::VAArg: return getModRefInfo((const VAArgInst*)I, Loc);
case Instruction::Load: return getModRefInfo((const LoadInst*)I, Loc);
case Instruction::Store: return getModRefInfo((const StoreInst*)I, Loc);
case Instruction::Fence: return getModRefInfo((const FenceInst*)I, Loc);
case Instruction::AtomicCmpXchg:
return getModRefInfo((const AtomicCmpXchgInst*)I, Loc);
case Instruction::AtomicRMW:
return getModRefInfo((const AtomicRMWInst*)I, Loc);
case Instruction::Call: return getModRefInfo((const CallInst*)I, Loc);
case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
case Instruction::CatchPad:
return getModRefInfo((const CatchPadInst *)I, Loc);
case Instruction::CatchRet:
return getModRefInfo((const CatchReturnInst *)I, Loc);
default:
return MRI_NoModRef;
}
}
/// A convenience wrapper for constructing the memory location.
ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
uint64_t Size) {
return getModRefInfo(I, MemoryLocation(P, Size));
}
/// Return information about whether a call and an instruction may refer to
/// the same memory locations.
ModRefInfo getModRefInfo(Instruction *I, ImmutableCallSite Call);
/// Return information about whether two call sites may refer to the same set
/// of memory locations. See the AA documentation for details:
/// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2);
/// \brief Return information about whether a particular call site modifies
/// or reads the specified memory location \p MemLoc before instruction \p I
/// in a BasicBlock. A ordered basic block \p OBB can be used to speed up
/// instruction ordering queries inside the BasicBlock containing \p I.
ModRefInfo callCapturesBefore(const Instruction *I,
const MemoryLocation &MemLoc, DominatorTree *DT,
OrderedBasicBlock *OBB = nullptr);
/// \brief A convenience wrapper to synthesize a memory location.
ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
uint64_t Size, DominatorTree *DT,
OrderedBasicBlock *OBB = nullptr) {
return callCapturesBefore(I, MemoryLocation(P, Size), DT, OBB);
}
/// @}
//===--------------------------------------------------------------------===//
/// \name Higher level methods for querying mod/ref information.
/// @{
/// Check if it is possible for execution of the specified basic block to
/// modify the location Loc.
bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
/// A convenience wrapper synthesizing a memory location.
bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
uint64_t Size) {
return canBasicBlockModify(BB, MemoryLocation(P, Size));
}
/// Check if it is possible for the execution of the specified instructions
/// to mod\ref (according to the mode) the location Loc.
///
/// The instructions to consider are all of the instructions in the range of
/// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
const MemoryLocation &Loc,
const ModRefInfo Mode);
/// A convenience wrapper synthesizing a memory location.
bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
const Value *Ptr, uint64_t Size,
const ModRefInfo Mode) {
return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
}
private:
class Concept;
template <typename T> class Model;
template <typename T> friend class AAResultBase;
const TargetLibraryInfo &TLI;
std::vector<std::unique_ptr<Concept>> AAs;
};
/// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
/// pointer or reference.
typedef AAResults AliasAnalysis;
/// A private abstract base class describing the concept of an individual alias
/// analysis implementation.
///
/// This interface is implemented by any \c Model instantiation. It is also the
/// interface which a type used to instantiate the model must provide.
///
/// All of these methods model methods by the same name in the \c
/// AAResults class. Only differences and specifics to how the
/// implementations are called are documented here.
class AAResults::Concept {
public:
virtual ~Concept() = 0;
/// An update API used internally by the AAResults to provide
/// a handle back to the top level aggregation.
virtual void setAAResults(AAResults *NewAAR) = 0;
//===--------------------------------------------------------------------===//
/// \name Alias Queries
/// @{
/// The main low level interface to the alias analysis implementation.
/// Returns an AliasResult indicating whether the two pointers are aliased to
/// each other. This is the interface that must be implemented by specific
/// alias analysis implementations.
virtual AliasResult alias(const MemoryLocation &LocA,
const MemoryLocation &LocB) = 0;
/// Checks whether the given location points to constant memory, or if
/// \p OrLocal is true whether it points to a local alloca.
virtual bool pointsToConstantMemory(const MemoryLocation &Loc,
bool OrLocal) = 0;
/// @}
//===--------------------------------------------------------------------===//
/// \name Simple mod/ref information
/// @{
/// Get the ModRef info associated with a pointer argument of a callsite. The
/// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
/// that these bits do not necessarily account for the overall behavior of
/// the function, but rather only provide additional per-argument
/// information.
virtual ModRefInfo getArgModRefInfo(ImmutableCallSite CS,
unsigned ArgIdx) = 0;
/// Return the behavior of the given call site.
virtual FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) = 0;
/// Return the behavior when calling the given function.
virtual FunctionModRefBehavior getModRefBehavior(const Function *F) = 0;
/// getModRefInfo (for call sites) - Return information about whether
/// a particular call site modifies or reads the specified memory location.
virtual ModRefInfo getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) = 0;
/// Return information about whether two call sites may refer to the same set
/// of memory locations. See the AA documentation for details:
/// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
virtual ModRefInfo getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) = 0;
/// @}
};
/// A private class template which derives from \c Concept and wraps some other
/// type.
///
/// This models the concept by directly forwarding each interface point to the
/// wrapped type which must implement a compatible interface. This provides
/// a type erased binding.
template <typename AAResultT> class AAResults::Model final : public Concept {
AAResultT &Result;
public:
explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {
Result.setAAResults(&AAR);
}
~Model() override {}
void setAAResults(AAResults *NewAAR) override { Result.setAAResults(NewAAR); }
AliasResult alias(const MemoryLocation &LocA,
const MemoryLocation &LocB) override {
return Result.alias(LocA, LocB);
}
bool pointsToConstantMemory(const MemoryLocation &Loc,
bool OrLocal) override {
return Result.pointsToConstantMemory(Loc, OrLocal);
}
ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) override {
return Result.getArgModRefInfo(CS, ArgIdx);
}
FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) override {
return Result.getModRefBehavior(CS);
}
FunctionModRefBehavior getModRefBehavior(const Function *F) override {
return Result.getModRefBehavior(F);
}
ModRefInfo getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) override {
return Result.getModRefInfo(CS, Loc);
}
ModRefInfo getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) override {
return Result.getModRefInfo(CS1, CS2);
}
};
/// A CRTP-driven "mixin" base class to help implement the function alias
/// analysis results concept.
///
/// Because of the nature of many alias analysis implementations, they often
/// only implement a subset of the interface. This base class will attempt to
/// implement the remaining portions of the interface in terms of simpler forms
/// of the interface where possible, and otherwise provide conservatively
/// correct fallback implementations.
///
/// Implementors of an alias analysis should derive from this CRTP, and then
/// override specific methods that they wish to customize. There is no need to
/// use virtual anywhere, the CRTP base class does static dispatch to the
/// derived type passed into it.
template <typename DerivedT> class AAResultBase {
// Expose some parts of the interface only to the AAResults::Model
// for wrapping. Specifically, this allows the model to call our
// setAAResults method without exposing it as a fully public API.
friend class AAResults::Model<DerivedT>;
/// A pointer to the AAResults object that this AAResult is
/// aggregated within. May be null if not aggregated.
AAResults *AAR;
/// Helper to dispatch calls back through the derived type.
DerivedT &derived() { return static_cast<DerivedT &>(*this); }
/// A setter for the AAResults pointer, which is used to satisfy the
/// AAResults::Model contract.
void setAAResults(AAResults *NewAAR) { AAR = NewAAR; }
protected:
/// This proxy class models a common pattern where we delegate to either the
/// top-level \c AAResults aggregation if one is registered, or to the
/// current result if none are registered.
class AAResultsProxy {
AAResults *AAR;
DerivedT &CurrentResult;
public:
AAResultsProxy(AAResults *AAR, DerivedT &CurrentResult)
: AAR(AAR), CurrentResult(CurrentResult) {}
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
return AAR ? AAR->alias(LocA, LocB) : CurrentResult.alias(LocA, LocB);
}
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) {
return AAR ? AAR->pointsToConstantMemory(Loc, OrLocal)
: CurrentResult.pointsToConstantMemory(Loc, OrLocal);
}
ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
return AAR ? AAR->getArgModRefInfo(CS, ArgIdx) : CurrentResult.getArgModRefInfo(CS, ArgIdx);
}
FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
return AAR ? AAR->getModRefBehavior(CS) : CurrentResult.getModRefBehavior(CS);
}
FunctionModRefBehavior getModRefBehavior(const Function *F) {
return AAR ? AAR->getModRefBehavior(F) : CurrentResult.getModRefBehavior(F);
}
ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) {
return AAR ? AAR->getModRefInfo(CS, Loc)
: CurrentResult.getModRefInfo(CS, Loc);
}
ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
return AAR ? AAR->getModRefInfo(CS1, CS2) : CurrentResult.getModRefInfo(CS1, CS2);
}
};
explicit AAResultBase() {}
// Provide all the copy and move constructors so that derived types aren't
// constrained.
AAResultBase(const AAResultBase &Arg) {}
AAResultBase(AAResultBase &&Arg) {}
/// Get a proxy for the best AA result set to query at this time.
///
/// When this result is part of a larger aggregation, this will proxy to that
/// aggregation. When this result is used in isolation, it will just delegate
/// back to the derived class's implementation.
///
/// Note that callers of this need to take considerable care to not cause
/// performance problems when they use this routine, in the case of a large
/// number of alias analyses being aggregated, it can be expensive to walk
/// back across the chain.
AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); }
public:
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
return MayAlias;
}
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) {
return false;
}
ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
return MRI_ModRef;
}
FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
return FMRB_UnknownModRefBehavior;
}
FunctionModRefBehavior getModRefBehavior(const Function *F) {
return FMRB_UnknownModRefBehavior;
}
ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) {
return MRI_ModRef;
}
ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
return MRI_ModRef;
}
};
/// Return true if this pointer is returned by a noalias function.
bool isNoAliasCall(const Value *V);
/// Return true if this is an argument with the noalias attribute.
bool isNoAliasArgument(const Value *V);
/// Return true if this pointer refers to a distinct and identifiable object.
/// This returns true for:
/// Global Variables and Functions (but not Global Aliases)
/// Allocas
/// ByVal and NoAlias Arguments
/// NoAlias returns (e.g. calls to malloc)
///
bool isIdentifiedObject(const Value *V);
/// Return true if V is umabigously identified at the function-level.
/// Different IdentifiedFunctionLocals can't alias.
/// Further, an IdentifiedFunctionLocal can not alias with any function
/// arguments other than itself, which is not necessarily true for
/// IdentifiedObjects.
bool isIdentifiedFunctionLocal(const Value *V);
/// A manager for alias analyses.
///
/// This class can have analyses registered with it and when run, it will run
/// all of them and aggregate their results into single AA results interface
/// that dispatches across all of the alias analysis results available.
///
/// Note that the order in which analyses are registered is very significant.
/// That is the order in which the results will be aggregated and queried.
///
/// This manager effectively wraps the AnalysisManager for registering alias
/// analyses. When you register your alias analysis with this manager, it will
/// ensure the analysis itself is registered with its AnalysisManager.
class AAManager : public AnalysisInfoMixin<AAManager> {
public:
typedef AAResults Result;
// This type hase value semantics. We have to spell these out because MSVC
// won't synthesize them.
AAManager() {}
AAManager(AAManager &&Arg) : ResultGetters(std::move(Arg.ResultGetters)) {}
AAManager(const AAManager &Arg) : ResultGetters(Arg.ResultGetters) {}
AAManager &operator=(AAManager &&RHS) {
ResultGetters = std::move(RHS.ResultGetters);
return *this;
}
AAManager &operator=(const AAManager &RHS) {
ResultGetters = RHS.ResultGetters;
return *this;
}
/// Register a specific AA result.
template <typename AnalysisT> void registerFunctionAnalysis() {
ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
}
/// Register a specific AA result.
template <typename AnalysisT> void registerModuleAnalysis() {
ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
}
Result run(Function &F, AnalysisManager<Function> &AM) {
Result R(AM.getResult<TargetLibraryAnalysis>(F));
for (auto &Getter : ResultGetters)
(*Getter)(F, AM, R);
return R;
}
private:
friend AnalysisInfoMixin<AAManager>;
static char PassID;
SmallVector<void (*)(Function &F, AnalysisManager<Function> &AM,
AAResults &AAResults),
4> ResultGetters;
template <typename AnalysisT>
static void getFunctionAAResultImpl(Function &F,
AnalysisManager<Function> &AM,
AAResults &AAResults) {
AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
}
template <typename AnalysisT>
static void getModuleAAResultImpl(Function &F, AnalysisManager<Function> &AM,
AAResults &AAResults) {
auto &MAM =
AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
if (auto *R = MAM.template getCachedResult<AnalysisT>(*F.getParent()))
AAResults.addAAResult(*R);
}
};
/// A wrapper pass to provide the legacy pass manager access to a suitably
/// prepared AAResults object.
class AAResultsWrapperPass : public FunctionPass {
std::unique_ptr<AAResults> AAR;
public:
static char ID;
AAResultsWrapperPass();
AAResults &getAAResults() { return *AAR; }
const AAResults &getAAResults() const { return *AAR; }
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
};
FunctionPass *createAAResultsWrapperPass();
/// A wrapper pass around a callback which can be used to populate the
/// AAResults in the AAResultsWrapperPass from an external AA.
///
/// The callback provided here will be used each time we prepare an AAResults
/// object, and will receive a reference to the function wrapper pass, the
/// function, and the AAResults object to populate. This should be used when
/// setting up a custom pass pipeline to inject a hook into the AA results.
ImmutablePass *createExternalAAWrapperPass(
std::function<void(Pass &, Function &, AAResults &)> Callback);
/// A helper for the legacy pass manager to create a \c AAResults
/// object populated to the best of our ability for a particular function when
/// inside of a \c ModulePass or a \c CallGraphSCCPass.
///
/// If a \c ModulePass or a \c CallGraphSCCPass calls \p
/// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p
/// getAnalysisUsage.
AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);
/// A helper for the legacy pass manager to populate \p AU to add uses to make
/// sure the analyses required by \p createLegacyPMAAResults are available.
void getAAResultsAnalysisUsage(AnalysisUsage &AU);
} // End llvm namespace
#endif
|