/usr/include/llvm-3.9/llvm/Analysis/RegionInfo.h is in llvm-3.9-dev 1:3.9.1-19ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 | //===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Calculate a program structure tree built out of single entry single exit
// regions.
// The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
// David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
// Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
// Koehler - 2009".
// The algorithm to calculate these data structures however is completely
// different, as it takes advantage of existing information already available
// in (Post)dominace tree and dominance frontier passes. This leads to a simpler
// and in practice hopefully better performing algorithm. The runtime of the
// algorithms described in the papers above are both linear in graph size,
// O(V+E), whereas this algorithm is not, as the dominance frontier information
// itself is not, but in practice runtime seems to be in the order of magnitude
// of dominance tree calculation.
//
// WARNING: LLVM is generally very concerned about compile time such that
// the use of additional analysis passes in the default
// optimization sequence is avoided as much as possible.
// Specifically, if you do not need the RegionInfo, but dominance
// information could be sufficient please base your work only on
// the dominator tree. Most passes maintain it, such that using
// it has often near zero cost. In contrast RegionInfo is by
// default not available, is not maintained by existing
// transformations and there is no intention to do so.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_REGIONINFO_H
#define LLVM_ANALYSIS_REGIONINFO_H
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/PassManager.h"
#include <map>
#include <memory>
#include <set>
namespace llvm {
// Class to be specialized for different users of RegionInfo
// (i.e. BasicBlocks or MachineBasicBlocks). This is only to avoid needing to
// pass around an unreasonable number of template parameters.
template <class FuncT_>
struct RegionTraits {
// FuncT
// BlockT
// RegionT
// RegionNodeT
// RegionInfoT
typedef typename FuncT_::UnknownRegionTypeError BrokenT;
};
class DominatorTree;
class DominanceFrontier;
class Loop;
class LoopInfo;
struct PostDominatorTree;
class raw_ostream;
class Region;
template <class RegionTr>
class RegionBase;
class RegionNode;
class RegionInfo;
template <class RegionTr>
class RegionInfoBase;
template <>
struct RegionTraits<Function> {
typedef Function FuncT;
typedef BasicBlock BlockT;
typedef Region RegionT;
typedef RegionNode RegionNodeT;
typedef RegionInfo RegionInfoT;
typedef DominatorTree DomTreeT;
typedef DomTreeNode DomTreeNodeT;
typedef DominanceFrontier DomFrontierT;
typedef PostDominatorTree PostDomTreeT;
typedef Instruction InstT;
typedef Loop LoopT;
typedef LoopInfo LoopInfoT;
static unsigned getNumSuccessors(BasicBlock *BB) {
return BB->getTerminator()->getNumSuccessors();
}
};
/// @brief Marker class to iterate over the elements of a Region in flat mode.
///
/// The class is used to either iterate in Flat mode or by not using it to not
/// iterate in Flat mode. During a Flat mode iteration all Regions are entered
/// and the iteration returns every BasicBlock. If the Flat mode is not
/// selected for SubRegions just one RegionNode containing the subregion is
/// returned.
template <class GraphType>
class FlatIt {};
/// @brief A RegionNode represents a subregion or a BasicBlock that is part of a
/// Region.
template <class Tr>
class RegionNodeBase {
friend class RegionBase<Tr>;
public:
typedef typename Tr::BlockT BlockT;
typedef typename Tr::RegionT RegionT;
private:
RegionNodeBase(const RegionNodeBase &) = delete;
const RegionNodeBase &operator=(const RegionNodeBase &) = delete;
/// This is the entry basic block that starts this region node. If this is a
/// BasicBlock RegionNode, then entry is just the basic block, that this
/// RegionNode represents. Otherwise it is the entry of this (Sub)RegionNode.
///
/// In the BBtoRegionNode map of the parent of this node, BB will always map
/// to this node no matter which kind of node this one is.
///
/// The node can hold either a Region or a BasicBlock.
/// Use one bit to save, if this RegionNode is a subregion or BasicBlock
/// RegionNode.
PointerIntPair<BlockT *, 1, bool> entry;
/// @brief The parent Region of this RegionNode.
/// @see getParent()
RegionT *parent;
protected:
/// @brief Create a RegionNode.
///
/// @param Parent The parent of this RegionNode.
/// @param Entry The entry BasicBlock of the RegionNode. If this
/// RegionNode represents a BasicBlock, this is the
/// BasicBlock itself. If it represents a subregion, this
/// is the entry BasicBlock of the subregion.
/// @param isSubRegion If this RegionNode represents a SubRegion.
inline RegionNodeBase(RegionT *Parent, BlockT *Entry,
bool isSubRegion = false)
: entry(Entry, isSubRegion), parent(Parent) {}
public:
/// @brief Get the parent Region of this RegionNode.
///
/// The parent Region is the Region this RegionNode belongs to. If for
/// example a BasicBlock is element of two Regions, there exist two
/// RegionNodes for this BasicBlock. Each with the getParent() function
/// pointing to the Region this RegionNode belongs to.
///
/// @return Get the parent Region of this RegionNode.
inline RegionT *getParent() const { return parent; }
/// @brief Get the entry BasicBlock of this RegionNode.
///
/// If this RegionNode represents a BasicBlock this is just the BasicBlock
/// itself, otherwise we return the entry BasicBlock of the Subregion
///
/// @return The entry BasicBlock of this RegionNode.
inline BlockT *getEntry() const { return entry.getPointer(); }
/// @brief Get the content of this RegionNode.
///
/// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
/// check the type of the content with the isSubRegion() function call.
///
/// @return The content of this RegionNode.
template <class T> inline T *getNodeAs() const;
/// @brief Is this RegionNode a subregion?
///
/// @return True if it contains a subregion. False if it contains a
/// BasicBlock.
inline bool isSubRegion() const { return entry.getInt(); }
};
//===----------------------------------------------------------------------===//
/// @brief A single entry single exit Region.
///
/// A Region is a connected subgraph of a control flow graph that has exactly
/// two connections to the remaining graph. It can be used to analyze or
/// optimize parts of the control flow graph.
///
/// A <em> simple Region </em> is connected to the remaining graph by just two
/// edges. One edge entering the Region and another one leaving the Region.
///
/// An <em> extended Region </em> (or just Region) is a subgraph that can be
/// transform into a simple Region. The transformation is done by adding
/// BasicBlocks that merge several entry or exit edges so that after the merge
/// just one entry and one exit edge exists.
///
/// The \e Entry of a Region is the first BasicBlock that is passed after
/// entering the Region. It is an element of the Region. The entry BasicBlock
/// dominates all BasicBlocks in the Region.
///
/// The \e Exit of a Region is the first BasicBlock that is passed after
/// leaving the Region. It is not an element of the Region. The exit BasicBlock,
/// postdominates all BasicBlocks in the Region.
///
/// A <em> canonical Region </em> cannot be constructed by combining smaller
/// Regions.
///
/// Region A is the \e parent of Region B, if B is completely contained in A.
///
/// Two canonical Regions either do not intersect at all or one is
/// the parent of the other.
///
/// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
/// Regions in the control flow graph and E is the \e parent relation of these
/// Regions.
///
/// Example:
///
/// \verbatim
/// A simple control flow graph, that contains two regions.
///
/// 1
/// / |
/// 2 |
/// / \ 3
/// 4 5 |
/// | | |
/// 6 7 8
/// \ | /
/// \ |/ Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
/// 9 Region B: 2 -> 9 {2,4,5,6,7}
/// \endverbatim
///
/// You can obtain more examples by either calling
///
/// <tt> "opt -regions -analyze anyprogram.ll" </tt>
/// or
/// <tt> "opt -view-regions-only anyprogram.ll" </tt>
///
/// on any LLVM file you are interested in.
///
/// The first call returns a textual representation of the program structure
/// tree, the second one creates a graphical representation using graphviz.
template <class Tr>
class RegionBase : public RegionNodeBase<Tr> {
typedef typename Tr::FuncT FuncT;
typedef typename Tr::BlockT BlockT;
typedef typename Tr::RegionInfoT RegionInfoT;
typedef typename Tr::RegionT RegionT;
typedef typename Tr::RegionNodeT RegionNodeT;
typedef typename Tr::DomTreeT DomTreeT;
typedef typename Tr::LoopT LoopT;
typedef typename Tr::LoopInfoT LoopInfoT;
typedef typename Tr::InstT InstT;
typedef GraphTraits<BlockT *> BlockTraits;
typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
typedef typename BlockTraits::ChildIteratorType SuccIterTy;
typedef typename InvBlockTraits::ChildIteratorType PredIterTy;
friend class RegionInfoBase<Tr>;
RegionBase(const RegionBase &) = delete;
const RegionBase &operator=(const RegionBase &) = delete;
// Information necessary to manage this Region.
RegionInfoT *RI;
DomTreeT *DT;
// The exit BasicBlock of this region.
// (The entry BasicBlock is part of RegionNode)
BlockT *exit;
typedef std::vector<std::unique_ptr<RegionT>> RegionSet;
// The subregions of this region.
RegionSet children;
typedef std::map<BlockT *, RegionNodeT *> BBNodeMapT;
// Save the BasicBlock RegionNodes that are element of this Region.
mutable BBNodeMapT BBNodeMap;
/// Check if a BB is in this Region. This check also works
/// if the region is incorrectly built. (EXPENSIVE!)
void verifyBBInRegion(BlockT *BB) const;
/// Walk over all the BBs of the region starting from BB and
/// verify that all reachable basic blocks are elements of the region.
/// (EXPENSIVE!)
void verifyWalk(BlockT *BB, std::set<BlockT *> *visitedBB) const;
/// Verify if the region and its children are valid regions (EXPENSIVE!)
void verifyRegionNest() const;
public:
/// @brief Create a new region.
///
/// @param Entry The entry basic block of the region.
/// @param Exit The exit basic block of the region.
/// @param RI The region info object that is managing this region.
/// @param DT The dominator tree of the current function.
/// @param Parent The surrounding region or NULL if this is a top level
/// region.
RegionBase(BlockT *Entry, BlockT *Exit, RegionInfoT *RI, DomTreeT *DT,
RegionT *Parent = nullptr);
/// Delete the Region and all its subregions.
~RegionBase();
/// @brief Get the entry BasicBlock of the Region.
/// @return The entry BasicBlock of the region.
BlockT *getEntry() const {
return RegionNodeBase<Tr>::getEntry();
}
/// @brief Replace the entry basic block of the region with the new basic
/// block.
///
/// @param BB The new entry basic block of the region.
void replaceEntry(BlockT *BB);
/// @brief Replace the exit basic block of the region with the new basic
/// block.
///
/// @param BB The new exit basic block of the region.
void replaceExit(BlockT *BB);
/// @brief Recursively replace the entry basic block of the region.
///
/// This function replaces the entry basic block with a new basic block. It
/// also updates all child regions that have the same entry basic block as
/// this region.
///
/// @param NewEntry The new entry basic block.
void replaceEntryRecursive(BlockT *NewEntry);
/// @brief Recursively replace the exit basic block of the region.
///
/// This function replaces the exit basic block with a new basic block. It
/// also updates all child regions that have the same exit basic block as
/// this region.
///
/// @param NewExit The new exit basic block.
void replaceExitRecursive(BlockT *NewExit);
/// @brief Get the exit BasicBlock of the Region.
/// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
/// Region.
BlockT *getExit() const { return exit; }
/// @brief Get the parent of the Region.
/// @return The parent of the Region or NULL if this is a top level
/// Region.
RegionT *getParent() const {
return RegionNodeBase<Tr>::getParent();
}
/// @brief Get the RegionNode representing the current Region.
/// @return The RegionNode representing the current Region.
RegionNodeT *getNode() const {
return const_cast<RegionNodeT *>(
reinterpret_cast<const RegionNodeT *>(this));
}
/// @brief Get the nesting level of this Region.
///
/// An toplevel Region has depth 0.
///
/// @return The depth of the region.
unsigned getDepth() const;
/// @brief Check if a Region is the TopLevel region.
///
/// The toplevel region represents the whole function.
bool isTopLevelRegion() const { return exit == nullptr; }
/// @brief Return a new (non-canonical) region, that is obtained by joining
/// this region with its predecessors.
///
/// @return A region also starting at getEntry(), but reaching to the next
/// basic block that forms with getEntry() a (non-canonical) region.
/// NULL if such a basic block does not exist.
RegionT *getExpandedRegion() const;
/// @brief Return the first block of this region's single entry edge,
/// if existing.
///
/// @return The BasicBlock starting this region's single entry edge,
/// else NULL.
BlockT *getEnteringBlock() const;
/// @brief Return the first block of this region's single exit edge,
/// if existing.
///
/// @return The BasicBlock starting this region's single exit edge,
/// else NULL.
BlockT *getExitingBlock() const;
/// @brief Is this a simple region?
///
/// A region is simple if it has exactly one exit and one entry edge.
///
/// @return True if the Region is simple.
bool isSimple() const;
/// @brief Returns the name of the Region.
/// @return The Name of the Region.
std::string getNameStr() const;
/// @brief Return the RegionInfo object, that belongs to this Region.
RegionInfoT *getRegionInfo() const { return RI; }
/// PrintStyle - Print region in difference ways.
enum PrintStyle { PrintNone, PrintBB, PrintRN };
/// @brief Print the region.
///
/// @param OS The output stream the Region is printed to.
/// @param printTree Print also the tree of subregions.
/// @param level The indentation level used for printing.
void print(raw_ostream &OS, bool printTree = true, unsigned level = 0,
PrintStyle Style = PrintNone) const;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// @brief Print the region to stderr.
void dump() const;
#endif
/// @brief Check if the region contains a BasicBlock.
///
/// @param BB The BasicBlock that might be contained in this Region.
/// @return True if the block is contained in the region otherwise false.
bool contains(const BlockT *BB) const;
/// @brief Check if the region contains another region.
///
/// @param SubRegion The region that might be contained in this Region.
/// @return True if SubRegion is contained in the region otherwise false.
bool contains(const RegionT *SubRegion) const {
// Toplevel Region.
if (!getExit())
return true;
return contains(SubRegion->getEntry()) &&
(contains(SubRegion->getExit()) ||
SubRegion->getExit() == getExit());
}
/// @brief Check if the region contains an Instruction.
///
/// @param Inst The Instruction that might be contained in this region.
/// @return True if the Instruction is contained in the region otherwise
/// false.
bool contains(const InstT *Inst) const { return contains(Inst->getParent()); }
/// @brief Check if the region contains a loop.
///
/// @param L The loop that might be contained in this region.
/// @return True if the loop is contained in the region otherwise false.
/// In case a NULL pointer is passed to this function the result
/// is false, except for the region that describes the whole function.
/// In that case true is returned.
bool contains(const LoopT *L) const;
/// @brief Get the outermost loop in the region that contains a loop.
///
/// Find for a Loop L the outermost loop OuterL that is a parent loop of L
/// and is itself contained in the region.
///
/// @param L The loop the lookup is started.
/// @return The outermost loop in the region, NULL if such a loop does not
/// exist or if the region describes the whole function.
LoopT *outermostLoopInRegion(LoopT *L) const;
/// @brief Get the outermost loop in the region that contains a basic block.
///
/// Find for a basic block BB the outermost loop L that contains BB and is
/// itself contained in the region.
///
/// @param LI A pointer to a LoopInfo analysis.
/// @param BB The basic block surrounded by the loop.
/// @return The outermost loop in the region, NULL if such a loop does not
/// exist or if the region describes the whole function.
LoopT *outermostLoopInRegion(LoopInfoT *LI, BlockT *BB) const;
/// @brief Get the subregion that starts at a BasicBlock
///
/// @param BB The BasicBlock the subregion should start.
/// @return The Subregion if available, otherwise NULL.
RegionT *getSubRegionNode(BlockT *BB) const;
/// @brief Get the RegionNode for a BasicBlock
///
/// @param BB The BasicBlock at which the RegionNode should start.
/// @return If available, the RegionNode that represents the subregion
/// starting at BB. If no subregion starts at BB, the RegionNode
/// representing BB.
RegionNodeT *getNode(BlockT *BB) const;
/// @brief Get the BasicBlock RegionNode for a BasicBlock
///
/// @param BB The BasicBlock for which the RegionNode is requested.
/// @return The RegionNode representing the BB.
RegionNodeT *getBBNode(BlockT *BB) const;
/// @brief Add a new subregion to this Region.
///
/// @param SubRegion The new subregion that will be added.
/// @param moveChildren Move the children of this region, that are also
/// contained in SubRegion into SubRegion.
void addSubRegion(RegionT *SubRegion, bool moveChildren = false);
/// @brief Remove a subregion from this Region.
///
/// The subregion is not deleted, as it will probably be inserted into another
/// region.
/// @param SubRegion The SubRegion that will be removed.
RegionT *removeSubRegion(RegionT *SubRegion);
/// @brief Move all direct child nodes of this Region to another Region.
///
/// @param To The Region the child nodes will be transferred to.
void transferChildrenTo(RegionT *To);
/// @brief Verify if the region is a correct region.
///
/// Check if this is a correctly build Region. This is an expensive check, as
/// the complete CFG of the Region will be walked.
void verifyRegion() const;
/// @brief Clear the cache for BB RegionNodes.
///
/// After calling this function the BasicBlock RegionNodes will be stored at
/// different memory locations. RegionNodes obtained before this function is
/// called are therefore not comparable to RegionNodes abtained afterwords.
void clearNodeCache();
/// @name Subregion Iterators
///
/// These iterators iterator over all subregions of this Region.
//@{
typedef typename RegionSet::iterator iterator;
typedef typename RegionSet::const_iterator const_iterator;
iterator begin() { return children.begin(); }
iterator end() { return children.end(); }
const_iterator begin() const { return children.begin(); }
const_iterator end() const { return children.end(); }
//@}
/// @name BasicBlock Iterators
///
/// These iterators iterate over all BasicBlocks that are contained in this
/// Region. The iterator also iterates over BasicBlocks that are elements of
/// a subregion of this Region. It is therefore called a flat iterator.
//@{
template <bool IsConst>
class block_iterator_wrapper
: public df_iterator<
typename std::conditional<IsConst, const BlockT, BlockT>::type *> {
typedef df_iterator<
typename std::conditional<IsConst, const BlockT, BlockT>::type *> super;
public:
typedef block_iterator_wrapper<IsConst> Self;
typedef typename super::pointer pointer;
// Construct the begin iterator.
block_iterator_wrapper(pointer Entry, pointer Exit)
: super(df_begin(Entry)) {
// Mark the exit of the region as visited, so that the children of the
// exit and the exit itself, i.e. the block outside the region will never
// be visited.
super::Visited.insert(Exit);
}
// Construct the end iterator.
block_iterator_wrapper() : super(df_end<pointer>((BlockT *)nullptr)) {}
/*implicit*/ block_iterator_wrapper(super I) : super(I) {}
// FIXME: Even a const_iterator returns a non-const BasicBlock pointer.
// This was introduced for backwards compatibility, but should
// be removed as soon as all users are fixed.
BlockT *operator*() const {
return const_cast<BlockT *>(super::operator*());
}
};
typedef block_iterator_wrapper<false> block_iterator;
typedef block_iterator_wrapper<true> const_block_iterator;
block_iterator block_begin() { return block_iterator(getEntry(), getExit()); }
block_iterator block_end() { return block_iterator(); }
const_block_iterator block_begin() const {
return const_block_iterator(getEntry(), getExit());
}
const_block_iterator block_end() const { return const_block_iterator(); }
typedef iterator_range<block_iterator> block_range;
typedef iterator_range<const_block_iterator> const_block_range;
/// @brief Returns a range view of the basic blocks in the region.
inline block_range blocks() {
return block_range(block_begin(), block_end());
}
/// @brief Returns a range view of the basic blocks in the region.
///
/// This is the 'const' version of the range view.
inline const_block_range blocks() const {
return const_block_range(block_begin(), block_end());
}
//@}
/// @name Element Iterators
///
/// These iterators iterate over all BasicBlock and subregion RegionNodes that
/// are direct children of this Region. It does not iterate over any
/// RegionNodes that are also element of a subregion of this Region.
//@{
typedef df_iterator<RegionNodeT *, SmallPtrSet<RegionNodeT *, 8>, false,
GraphTraits<RegionNodeT *>> element_iterator;
typedef df_iterator<const RegionNodeT *, SmallPtrSet<const RegionNodeT *, 8>,
false,
GraphTraits<const RegionNodeT *>> const_element_iterator;
element_iterator element_begin();
element_iterator element_end();
const_element_iterator element_begin() const;
const_element_iterator element_end() const;
//@}
};
/// Print a RegionNode.
template <class Tr>
inline raw_ostream &operator<<(raw_ostream &OS, const RegionNodeBase<Tr> &Node);
//===----------------------------------------------------------------------===//
/// @brief Analysis that detects all canonical Regions.
///
/// The RegionInfo pass detects all canonical regions in a function. The Regions
/// are connected using the parent relation. This builds a Program Structure
/// Tree.
template <class Tr>
class RegionInfoBase {
typedef typename Tr::BlockT BlockT;
typedef typename Tr::FuncT FuncT;
typedef typename Tr::RegionT RegionT;
typedef typename Tr::RegionInfoT RegionInfoT;
typedef typename Tr::DomTreeT DomTreeT;
typedef typename Tr::DomTreeNodeT DomTreeNodeT;
typedef typename Tr::PostDomTreeT PostDomTreeT;
typedef typename Tr::DomFrontierT DomFrontierT;
typedef GraphTraits<BlockT *> BlockTraits;
typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
typedef typename BlockTraits::ChildIteratorType SuccIterTy;
typedef typename InvBlockTraits::ChildIteratorType PredIterTy;
friend class RegionInfo;
friend class MachineRegionInfo;
typedef DenseMap<BlockT *, BlockT *> BBtoBBMap;
typedef DenseMap<BlockT *, RegionT *> BBtoRegionMap;
typedef SmallPtrSet<RegionT *, 4> RegionSet;
RegionInfoBase();
virtual ~RegionInfoBase();
RegionInfoBase(const RegionInfoBase &) = delete;
const RegionInfoBase &operator=(const RegionInfoBase &) = delete;
RegionInfoBase(RegionInfoBase &&Arg)
: DT(std::move(Arg.DT)), PDT(std::move(Arg.PDT)), DF(std::move(Arg.DF)),
TopLevelRegion(std::move(Arg.TopLevelRegion)),
BBtoRegion(std::move(Arg.BBtoRegion)) {
Arg.wipe();
}
RegionInfoBase &operator=(RegionInfoBase &&RHS) {
DT = std::move(RHS.DT);
PDT = std::move(RHS.PDT);
DF = std::move(RHS.DF);
TopLevelRegion = std::move(RHS.TopLevelRegion);
BBtoRegion = std::move(RHS.BBtoRegion);
RHS.wipe();
return *this;
}
DomTreeT *DT;
PostDomTreeT *PDT;
DomFrontierT *DF;
/// The top level region.
RegionT *TopLevelRegion;
private:
/// Map every BB to the smallest region, that contains BB.
BBtoRegionMap BBtoRegion;
/// \brief Wipe this region tree's state without releasing any resources.
///
/// This is essentially a post-move helper only. It leaves the object in an
/// assignable and destroyable state, but otherwise invalid.
void wipe() {
DT = nullptr;
PDT = nullptr;
DF = nullptr;
TopLevelRegion = nullptr;
BBtoRegion.clear();
}
// Check whether the entries of BBtoRegion for the BBs of region
// SR are correct. Triggers an assertion if not. Calls itself recursively for
// subregions.
void verifyBBMap(const RegionT *SR) const;
// Returns true if BB is in the dominance frontier of
// entry, because it was inherited from exit. In the other case there is an
// edge going from entry to BB without passing exit.
bool isCommonDomFrontier(BlockT *BB, BlockT *entry, BlockT *exit) const;
// Check if entry and exit surround a valid region, based on
// dominance tree and dominance frontier.
bool isRegion(BlockT *entry, BlockT *exit) const;
// Saves a shortcut pointing from entry to exit.
// This function may extend this shortcut if possible.
void insertShortCut(BlockT *entry, BlockT *exit, BBtoBBMap *ShortCut) const;
// Returns the next BB that postdominates N, while skipping
// all post dominators that cannot finish a canonical region.
DomTreeNodeT *getNextPostDom(DomTreeNodeT *N, BBtoBBMap *ShortCut) const;
// A region is trivial, if it contains only one BB.
bool isTrivialRegion(BlockT *entry, BlockT *exit) const;
// Creates a single entry single exit region.
RegionT *createRegion(BlockT *entry, BlockT *exit);
// Detect all regions starting with bb 'entry'.
void findRegionsWithEntry(BlockT *entry, BBtoBBMap *ShortCut);
// Detects regions in F.
void scanForRegions(FuncT &F, BBtoBBMap *ShortCut);
// Get the top most parent with the same entry block.
RegionT *getTopMostParent(RegionT *region);
// Build the region hierarchy after all region detected.
void buildRegionsTree(DomTreeNodeT *N, RegionT *region);
// Update statistic about created regions.
virtual void updateStatistics(RegionT *R) = 0;
// Detect all regions in function and build the region tree.
void calculate(FuncT &F);
public:
static bool VerifyRegionInfo;
static typename RegionT::PrintStyle printStyle;
void print(raw_ostream &OS) const;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void dump() const;
#endif
void releaseMemory();
/// @brief Get the smallest region that contains a BasicBlock.
///
/// @param BB The basic block.
/// @return The smallest region, that contains BB or NULL, if there is no
/// region containing BB.
RegionT *getRegionFor(BlockT *BB) const;
/// @brief Set the smallest region that surrounds a basic block.
///
/// @param BB The basic block surrounded by a region.
/// @param R The smallest region that surrounds BB.
void setRegionFor(BlockT *BB, RegionT *R);
/// @brief A shortcut for getRegionFor().
///
/// @param BB The basic block.
/// @return The smallest region, that contains BB or NULL, if there is no
/// region containing BB.
RegionT *operator[](BlockT *BB) const;
/// @brief Return the exit of the maximal refined region, that starts at a
/// BasicBlock.
///
/// @param BB The BasicBlock the refined region starts.
BlockT *getMaxRegionExit(BlockT *BB) const;
/// @brief Find the smallest region that contains two regions.
///
/// @param A The first region.
/// @param B The second region.
/// @return The smallest region containing A and B.
RegionT *getCommonRegion(RegionT *A, RegionT *B) const;
/// @brief Find the smallest region that contains two basic blocks.
///
/// @param A The first basic block.
/// @param B The second basic block.
/// @return The smallest region that contains A and B.
RegionT *getCommonRegion(BlockT *A, BlockT *B) const {
return getCommonRegion(getRegionFor(A), getRegionFor(B));
}
/// @brief Find the smallest region that contains a set of regions.
///
/// @param Regions A vector of regions.
/// @return The smallest region that contains all regions in Regions.
RegionT *getCommonRegion(SmallVectorImpl<RegionT *> &Regions) const;
/// @brief Find the smallest region that contains a set of basic blocks.
///
/// @param BBs A vector of basic blocks.
/// @return The smallest region that contains all basic blocks in BBS.
RegionT *getCommonRegion(SmallVectorImpl<BlockT *> &BBs) const;
RegionT *getTopLevelRegion() const { return TopLevelRegion; }
/// @brief Clear the Node Cache for all Regions.
///
/// @see Region::clearNodeCache()
void clearNodeCache() {
if (TopLevelRegion)
TopLevelRegion->clearNodeCache();
}
void verifyAnalysis() const;
};
class Region;
class RegionNode : public RegionNodeBase<RegionTraits<Function>> {
public:
inline RegionNode(Region *Parent, BasicBlock *Entry, bool isSubRegion = false)
: RegionNodeBase<RegionTraits<Function>>(Parent, Entry, isSubRegion) {}
bool operator==(const Region &RN) const {
return this == reinterpret_cast<const RegionNode *>(&RN);
}
};
class Region : public RegionBase<RegionTraits<Function>> {
public:
Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo *RI, DominatorTree *DT,
Region *Parent = nullptr);
~Region();
bool operator==(const RegionNode &RN) const {
return &RN == reinterpret_cast<const RegionNode *>(this);
}
};
class RegionInfo : public RegionInfoBase<RegionTraits<Function>> {
public:
typedef RegionInfoBase<RegionTraits<Function>> Base;
explicit RegionInfo();
~RegionInfo() override;
RegionInfo(RegionInfo &&Arg)
: Base(std::move(static_cast<Base &>(Arg))) {}
RegionInfo &operator=(RegionInfo &&RHS) {
Base::operator=(std::move(static_cast<Base &>(RHS)));
return *this;
}
// updateStatistics - Update statistic about created regions.
void updateStatistics(Region *R) final;
void recalculate(Function &F, DominatorTree *DT, PostDominatorTree *PDT,
DominanceFrontier *DF);
#ifndef NDEBUG
/// @brief Opens a viewer to show the GraphViz visualization of the regions.
///
/// Useful during debugging as an alternative to dump().
void view();
/// @brief Opens a viewer to show the GraphViz visualization of this region
/// without instructions in the BasicBlocks.
///
/// Useful during debugging as an alternative to dump().
void viewOnly();
#endif
};
class RegionInfoPass : public FunctionPass {
RegionInfo RI;
public:
static char ID;
explicit RegionInfoPass();
~RegionInfoPass() override;
RegionInfo &getRegionInfo() { return RI; }
const RegionInfo &getRegionInfo() const { return RI; }
/// @name FunctionPass interface
//@{
bool runOnFunction(Function &F) override;
void releaseMemory() override;
void verifyAnalysis() const override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
void print(raw_ostream &OS, const Module *) const override;
void dump() const;
//@}
};
/// \brief Analysis pass that exposes the \c RegionInfo for a function.
class RegionInfoAnalysis : public AnalysisInfoMixin<RegionInfoAnalysis> {
friend AnalysisInfoMixin<RegionInfoAnalysis>;
static char PassID;
public:
typedef RegionInfo Result;
RegionInfo run(Function &F, AnalysisManager<Function> &AM);
};
/// \brief Printer pass for the \c RegionInfo.
class RegionInfoPrinterPass : public PassInfoMixin<RegionInfoPrinterPass> {
raw_ostream &OS;
public:
explicit RegionInfoPrinterPass(raw_ostream &OS);
PreservedAnalyses run(Function &F, AnalysisManager<Function> &AM);
};
/// \brief Verifier pass for the \c RegionInfo.
struct RegionInfoVerifierPass : PassInfoMixin<RegionInfoVerifierPass> {
PreservedAnalyses run(Function &F, AnalysisManager<Function> &AM);
};
template <>
template <>
inline BasicBlock *
RegionNodeBase<RegionTraits<Function>>::getNodeAs<BasicBlock>() const {
assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
return getEntry();
}
template <>
template <>
inline Region *
RegionNodeBase<RegionTraits<Function>>::getNodeAs<Region>() const {
assert(isSubRegion() && "This is not a subregion RegionNode!");
auto Unconst = const_cast<RegionNodeBase<RegionTraits<Function>> *>(this);
return reinterpret_cast<Region *>(Unconst);
}
template <class Tr>
inline raw_ostream &operator<<(raw_ostream &OS,
const RegionNodeBase<Tr> &Node) {
typedef typename Tr::BlockT BlockT;
typedef typename Tr::RegionT RegionT;
if (Node.isSubRegion())
return OS << Node.template getNodeAs<RegionT>()->getNameStr();
else
return OS << Node.template getNodeAs<BlockT>()->getName();
}
extern template class RegionBase<RegionTraits<Function>>;
extern template class RegionNodeBase<RegionTraits<Function>>;
extern template class RegionInfoBase<RegionTraits<Function>>;
} // End llvm namespace
#endif
|