/usr/include/llvm-3.9/llvm/Analysis/ScalarEvolution.h is in llvm-3.9-dev 1:3.9.1-19ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 | //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The ScalarEvolution class is an LLVM pass which can be used to analyze and
// categorize scalar expressions in loops. It specializes in recognizing
// general induction variables, representing them with the abstract and opaque
// SCEV class. Given this analysis, trip counts of loops and other important
// properties can be obtained.
//
// This analysis is primarily useful for induction variable substitution and
// strength reduction.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
#define LLVM_ANALYSIS_SCALAREVOLUTION_H
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/ValueMap.h"
#include "llvm/Pass.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/DataTypes.h"
namespace llvm {
class APInt;
class AssumptionCache;
class Constant;
class ConstantInt;
class DominatorTree;
class Type;
class ScalarEvolution;
class DataLayout;
class TargetLibraryInfo;
class LLVMContext;
class Operator;
class SCEV;
class SCEVAddRecExpr;
class SCEVConstant;
class SCEVExpander;
class SCEVPredicate;
class SCEVUnknown;
class Function;
template <> struct FoldingSetTrait<SCEV>;
template <> struct FoldingSetTrait<SCEVPredicate>;
/// This class represents an analyzed expression in the program. These are
/// opaque objects that the client is not allowed to do much with directly.
///
class SCEV : public FoldingSetNode {
friend struct FoldingSetTrait<SCEV>;
/// A reference to an Interned FoldingSetNodeID for this node. The
/// ScalarEvolution's BumpPtrAllocator holds the data.
FoldingSetNodeIDRef FastID;
// The SCEV baseclass this node corresponds to
const unsigned short SCEVType;
protected:
/// This field is initialized to zero and may be used in subclasses to store
/// miscellaneous information.
unsigned short SubclassData;
private:
SCEV(const SCEV &) = delete;
void operator=(const SCEV &) = delete;
public:
/// NoWrapFlags are bitfield indices into SubclassData.
///
/// Add and Mul expressions may have no-unsigned-wrap <NUW> or
/// no-signed-wrap <NSW> properties, which are derived from the IR
/// operator. NSW is a misnomer that we use to mean no signed overflow or
/// underflow.
///
/// AddRec expressions may have a no-self-wraparound <NW> property if, in
/// the integer domain, abs(step) * max-iteration(loop) <=
/// unsigned-max(bitwidth). This means that the recurrence will never reach
/// its start value if the step is non-zero. Computing the same value on
/// each iteration is not considered wrapping, and recurrences with step = 0
/// are trivially <NW>. <NW> is independent of the sign of step and the
/// value the add recurrence starts with.
///
/// Note that NUW and NSW are also valid properties of a recurrence, and
/// either implies NW. For convenience, NW will be set for a recurrence
/// whenever either NUW or NSW are set.
enum NoWrapFlags { FlagAnyWrap = 0, // No guarantee.
FlagNW = (1 << 0), // No self-wrap.
FlagNUW = (1 << 1), // No unsigned wrap.
FlagNSW = (1 << 2), // No signed wrap.
NoWrapMask = (1 << 3) -1 };
explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
unsigned getSCEVType() const { return SCEVType; }
/// Return the LLVM type of this SCEV expression.
///
Type *getType() const;
/// Return true if the expression is a constant zero.
///
bool isZero() const;
/// Return true if the expression is a constant one.
///
bool isOne() const;
/// Return true if the expression is a constant all-ones value.
///
bool isAllOnesValue() const;
/// Return true if the specified scev is negated, but not a constant.
bool isNonConstantNegative() const;
/// Print out the internal representation of this scalar to the specified
/// stream. This should really only be used for debugging purposes.
void print(raw_ostream &OS) const;
/// This method is used for debugging.
///
void dump() const;
};
// Specialize FoldingSetTrait for SCEV to avoid needing to compute
// temporary FoldingSetNodeID values.
template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
ID = X.FastID;
}
static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
unsigned IDHash, FoldingSetNodeID &TempID) {
return ID == X.FastID;
}
static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
return X.FastID.ComputeHash();
}
};
inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
S.print(OS);
return OS;
}
/// An object of this class is returned by queries that could not be answered.
/// For example, if you ask for the number of iterations of a linked-list
/// traversal loop, you will get one of these. None of the standard SCEV
/// operations are valid on this class, it is just a marker.
struct SCEVCouldNotCompute : public SCEV {
SCEVCouldNotCompute();
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const SCEV *S);
};
/// This class represents an assumption made using SCEV expressions which can
/// be checked at run-time.
class SCEVPredicate : public FoldingSetNode {
friend struct FoldingSetTrait<SCEVPredicate>;
/// A reference to an Interned FoldingSetNodeID for this node. The
/// ScalarEvolution's BumpPtrAllocator holds the data.
FoldingSetNodeIDRef FastID;
public:
enum SCEVPredicateKind { P_Union, P_Equal, P_Wrap };
protected:
SCEVPredicateKind Kind;
~SCEVPredicate() = default;
SCEVPredicate(const SCEVPredicate&) = default;
SCEVPredicate &operator=(const SCEVPredicate&) = default;
public:
SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);
SCEVPredicateKind getKind() const { return Kind; }
/// Returns the estimated complexity of this predicate. This is roughly
/// measured in the number of run-time checks required.
virtual unsigned getComplexity() const { return 1; }
/// Returns true if the predicate is always true. This means that no
/// assumptions were made and nothing needs to be checked at run-time.
virtual bool isAlwaysTrue() const = 0;
/// Returns true if this predicate implies \p N.
virtual bool implies(const SCEVPredicate *N) const = 0;
/// Prints a textual representation of this predicate with an indentation of
/// \p Depth.
virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;
/// Returns the SCEV to which this predicate applies, or nullptr if this is
/// a SCEVUnionPredicate.
virtual const SCEV *getExpr() const = 0;
};
inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) {
P.print(OS);
return OS;
}
// Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
// temporary FoldingSetNodeID values.
template <>
struct FoldingSetTrait<SCEVPredicate>
: DefaultFoldingSetTrait<SCEVPredicate> {
static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
ID = X.FastID;
}
static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
unsigned IDHash, FoldingSetNodeID &TempID) {
return ID == X.FastID;
}
static unsigned ComputeHash(const SCEVPredicate &X,
FoldingSetNodeID &TempID) {
return X.FastID.ComputeHash();
}
};
/// This class represents an assumption that two SCEV expressions are equal,
/// and this can be checked at run-time. We assume that the left hand side is
/// a SCEVUnknown and the right hand side a constant.
class SCEVEqualPredicate final : public SCEVPredicate {
/// We assume that LHS == RHS, where LHS is a SCEVUnknown and RHS a
/// constant.
const SCEVUnknown *LHS;
const SCEVConstant *RHS;
public:
SCEVEqualPredicate(const FoldingSetNodeIDRef ID, const SCEVUnknown *LHS,
const SCEVConstant *RHS);
/// Implementation of the SCEVPredicate interface
bool implies(const SCEVPredicate *N) const override;
void print(raw_ostream &OS, unsigned Depth = 0) const override;
bool isAlwaysTrue() const override;
const SCEV *getExpr() const override;
/// Returns the left hand side of the equality.
const SCEVUnknown *getLHS() const { return LHS; }
/// Returns the right hand side of the equality.
const SCEVConstant *getRHS() const { return RHS; }
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEVPredicate *P) {
return P->getKind() == P_Equal;
}
};
/// This class represents an assumption made on an AddRec expression. Given an
/// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw
/// flags (defined below) in the first X iterations of the loop, where X is a
/// SCEV expression returned by getPredicatedBackedgeTakenCount).
///
/// Note that this does not imply that X is equal to the backedge taken
/// count. This means that if we have a nusw predicate for i32 {0,+,1} with a
/// predicated backedge taken count of X, we only guarantee that {0,+,1} has
/// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we
/// have more than X iterations.
class SCEVWrapPredicate final : public SCEVPredicate {
public:
/// Similar to SCEV::NoWrapFlags, but with slightly different semantics
/// for FlagNUSW. The increment is considered to be signed, and a + b
/// (where b is the increment) is considered to wrap if:
/// zext(a + b) != zext(a) + sext(b)
///
/// If Signed is a function that takes an n-bit tuple and maps to the
/// integer domain as the tuples value interpreted as twos complement,
/// and Unsigned a function that takes an n-bit tuple and maps to the
/// integer domain as as the base two value of input tuple, then a + b
/// has IncrementNUSW iff:
///
/// 0 <= Unsigned(a) + Signed(b) < 2^n
///
/// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW.
///
/// Note that the IncrementNUSW flag is not commutative: if base + inc
/// has IncrementNUSW, then inc + base doesn't neccessarily have this
/// property. The reason for this is that this is used for sign/zero
/// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is
/// assumed. A {base,+,inc} expression is already non-commutative with
/// regards to base and inc, since it is interpreted as:
/// (((base + inc) + inc) + inc) ...
enum IncrementWrapFlags {
IncrementAnyWrap = 0, // No guarantee.
IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap.
IncrementNSSW = (1 << 1), // No signed with signed increment wrap
// (equivalent with SCEV::NSW)
IncrementNoWrapMask = (1 << 2) - 1
};
/// Convenient IncrementWrapFlags manipulation methods.
static SCEVWrapPredicate::IncrementWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
SCEVWrapPredicate::IncrementWrapFlags OffFlags) {
assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
assert((OffFlags & IncrementNoWrapMask) == OffFlags &&
"Invalid flags value!");
return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags);
}
static SCEVWrapPredicate::IncrementWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) {
assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!");
return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask);
}
static SCEVWrapPredicate::IncrementWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
SCEVWrapPredicate::IncrementWrapFlags OnFlags) {
assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
assert((OnFlags & IncrementNoWrapMask) == OnFlags &&
"Invalid flags value!");
return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags);
}
/// Returns the set of SCEVWrapPredicate no wrap flags implied by a
/// SCEVAddRecExpr.
static SCEVWrapPredicate::IncrementWrapFlags
getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE);
private:
const SCEVAddRecExpr *AR;
IncrementWrapFlags Flags;
public:
explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
const SCEVAddRecExpr *AR,
IncrementWrapFlags Flags);
/// Returns the set assumed no overflow flags.
IncrementWrapFlags getFlags() const { return Flags; }
/// Implementation of the SCEVPredicate interface
const SCEV *getExpr() const override;
bool implies(const SCEVPredicate *N) const override;
void print(raw_ostream &OS, unsigned Depth = 0) const override;
bool isAlwaysTrue() const override;
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEVPredicate *P) {
return P->getKind() == P_Wrap;
}
};
/// This class represents a composition of other SCEV predicates, and is the
/// class that most clients will interact with. This is equivalent to a
/// logical "AND" of all the predicates in the union.
class SCEVUnionPredicate final : public SCEVPredicate {
private:
typedef DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>
PredicateMap;
/// Vector with references to all predicates in this union.
SmallVector<const SCEVPredicate *, 16> Preds;
/// Maps SCEVs to predicates for quick look-ups.
PredicateMap SCEVToPreds;
public:
SCEVUnionPredicate();
const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const {
return Preds;
}
/// Adds a predicate to this union.
void add(const SCEVPredicate *N);
/// Returns a reference to a vector containing all predicates which apply to
/// \p Expr.
ArrayRef<const SCEVPredicate *> getPredicatesForExpr(const SCEV *Expr);
/// Implementation of the SCEVPredicate interface
bool isAlwaysTrue() const override;
bool implies(const SCEVPredicate *N) const override;
void print(raw_ostream &OS, unsigned Depth) const override;
const SCEV *getExpr() const override;
/// We estimate the complexity of a union predicate as the size number of
/// predicates in the union.
unsigned getComplexity() const override { return Preds.size(); }
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SCEVPredicate *P) {
return P->getKind() == P_Union;
}
};
/// The main scalar evolution driver. Because client code (intentionally)
/// can't do much with the SCEV objects directly, they must ask this class
/// for services.
class ScalarEvolution {
public:
/// An enum describing the relationship between a SCEV and a loop.
enum LoopDisposition {
LoopVariant, ///< The SCEV is loop-variant (unknown).
LoopInvariant, ///< The SCEV is loop-invariant.
LoopComputable ///< The SCEV varies predictably with the loop.
};
/// An enum describing the relationship between a SCEV and a basic block.
enum BlockDisposition {
DoesNotDominateBlock, ///< The SCEV does not dominate the block.
DominatesBlock, ///< The SCEV dominates the block.
ProperlyDominatesBlock ///< The SCEV properly dominates the block.
};
/// Convenient NoWrapFlags manipulation that hides enum casts and is
/// visible in the ScalarEvolution name space.
static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
maskFlags(SCEV::NoWrapFlags Flags, int Mask) {
return (SCEV::NoWrapFlags)(Flags & Mask);
}
static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
setFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OnFlags) {
return (SCEV::NoWrapFlags)(Flags | OnFlags);
}
static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
}
private:
/// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
/// Value is deleted.
class SCEVCallbackVH final : public CallbackVH {
ScalarEvolution *SE;
void deleted() override;
void allUsesReplacedWith(Value *New) override;
public:
SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
};
friend class SCEVCallbackVH;
friend class SCEVExpander;
friend class SCEVUnknown;
/// The function we are analyzing.
///
Function &F;
/// Does the module have any calls to the llvm.experimental.guard intrinsic
/// at all? If this is false, we avoid doing work that will only help if
/// thare are guards present in the IR.
///
bool HasGuards;
/// The target library information for the target we are targeting.
///
TargetLibraryInfo &TLI;
/// The tracker for @llvm.assume intrinsics in this function.
AssumptionCache &AC;
/// The dominator tree.
///
DominatorTree &DT;
/// The loop information for the function we are currently analyzing.
///
LoopInfo &LI;
/// This SCEV is used to represent unknown trip counts and things.
std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
/// The typedef for HasRecMap.
///
typedef DenseMap<const SCEV *, bool> HasRecMapType;
/// This is a cache to record whether a SCEV contains any scAddRecExpr.
HasRecMapType HasRecMap;
/// The typedef for ExprValueMap.
///
typedef DenseMap<const SCEV *, SetVector<Value *>> ExprValueMapType;
/// ExprValueMap -- This map records the original values from which
/// the SCEV expr is generated from.
ExprValueMapType ExprValueMap;
/// The typedef for ValueExprMap.
///
typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> >
ValueExprMapType;
/// This is a cache of the values we have analyzed so far.
///
ValueExprMapType ValueExprMap;
/// Mark predicate values currently being processed by isImpliedCond.
DenseSet<Value*> PendingLoopPredicates;
/// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
/// conditions dominating the backedge of a loop.
bool WalkingBEDominatingConds;
/// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
/// predicate by splitting it into a set of independent predicates.
bool ProvingSplitPredicate;
/// Information about the number of loop iterations for which a loop exit's
/// branch condition evaluates to the not-taken path. This is a temporary
/// pair of exact and max expressions that are eventually summarized in
/// ExitNotTakenInfo and BackedgeTakenInfo.
struct ExitLimit {
const SCEV *Exact;
const SCEV *Max;
/// A predicate union guard for this ExitLimit. The result is only
/// valid if this predicate evaluates to 'true' at run-time.
SCEVUnionPredicate Pred;
/*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {}
ExitLimit(const SCEV *E, const SCEV *M, SCEVUnionPredicate &P)
: Exact(E), Max(M), Pred(P) {
assert((isa<SCEVCouldNotCompute>(Exact) ||
!isa<SCEVCouldNotCompute>(Max)) &&
"Exact is not allowed to be less precise than Max");
}
/// Test whether this ExitLimit contains any computed information, or
/// whether it's all SCEVCouldNotCompute values.
bool hasAnyInfo() const {
return !isa<SCEVCouldNotCompute>(Exact) ||
!isa<SCEVCouldNotCompute>(Max);
}
/// Test whether this ExitLimit contains all information.
bool hasFullInfo() const { return !isa<SCEVCouldNotCompute>(Exact); }
};
/// Forward declaration of ExitNotTakenExtras
struct ExitNotTakenExtras;
/// Information about the number of times a particular loop exit may be
/// reached before exiting the loop.
struct ExitNotTakenInfo {
AssertingVH<BasicBlock> ExitingBlock;
const SCEV *ExactNotTaken;
ExitNotTakenExtras *ExtraInfo;
bool Complete;
ExitNotTakenInfo()
: ExitingBlock(nullptr), ExactNotTaken(nullptr), ExtraInfo(nullptr),
Complete(true) {}
ExitNotTakenInfo(BasicBlock *ExitBlock, const SCEV *Expr,
ExitNotTakenExtras *Ptr)
: ExitingBlock(ExitBlock), ExactNotTaken(Expr), ExtraInfo(Ptr),
Complete(true) {}
/// Return true if all loop exits are computable.
bool isCompleteList() const { return Complete; }
/// Sets the incomplete property, indicating that one of the loop exits
/// doesn't have a corresponding ExitNotTakenInfo entry.
void setIncomplete() { Complete = false; }
/// Returns a pointer to the predicate associated with this information,
/// or nullptr if this doesn't exist (meaning always true).
SCEVUnionPredicate *getPred() const {
if (ExtraInfo)
return &ExtraInfo->Pred;
return nullptr;
}
/// Return true if the SCEV predicate associated with this information
/// is always true.
bool hasAlwaysTruePred() const {
return !getPred() || getPred()->isAlwaysTrue();
}
/// Defines a simple forward iterator for ExitNotTakenInfo.
class ExitNotTakenInfoIterator
: public std::iterator<std::forward_iterator_tag, ExitNotTakenInfo> {
const ExitNotTakenInfo *Start;
unsigned Position;
public:
ExitNotTakenInfoIterator(const ExitNotTakenInfo *Start,
unsigned Position)
: Start(Start), Position(Position) {}
const ExitNotTakenInfo &operator*() const {
if (Position == 0)
return *Start;
return Start->ExtraInfo->Exits[Position - 1];
}
const ExitNotTakenInfo *operator->() const {
if (Position == 0)
return Start;
return &Start->ExtraInfo->Exits[Position - 1];
}
bool operator==(const ExitNotTakenInfoIterator &RHS) const {
return Start == RHS.Start && Position == RHS.Position;
}
bool operator!=(const ExitNotTakenInfoIterator &RHS) const {
return Start != RHS.Start || Position != RHS.Position;
}
ExitNotTakenInfoIterator &operator++() { // Preincrement
if (!Start)
return *this;
unsigned Elements =
Start->ExtraInfo ? Start->ExtraInfo->Exits.size() + 1 : 1;
++Position;
// We've run out of elements.
if (Position == Elements) {
Start = nullptr;
Position = 0;
}
return *this;
}
ExitNotTakenInfoIterator operator++(int) { // Postincrement
ExitNotTakenInfoIterator Tmp = *this;
++*this;
return Tmp;
}
};
/// Iterators
ExitNotTakenInfoIterator begin() const {
return ExitNotTakenInfoIterator(this, 0);
}
ExitNotTakenInfoIterator end() const {
return ExitNotTakenInfoIterator(nullptr, 0);
}
};
/// Describes the extra information that a ExitNotTakenInfo can have.
struct ExitNotTakenExtras {
/// The predicate associated with the ExitNotTakenInfo struct.
SCEVUnionPredicate Pred;
/// The extra exits in the loop. Only the ExitNotTakenExtras structure
/// pointed to by the first ExitNotTakenInfo struct (associated with the
/// first loop exit) will populate this vector to prevent having
/// redundant information.
SmallVector<ExitNotTakenInfo, 4> Exits;
};
/// A struct containing the information attached to a backedge.
struct EdgeInfo {
EdgeInfo(BasicBlock *Block, const SCEV *Taken, SCEVUnionPredicate &P) :
ExitBlock(Block), Taken(Taken), Pred(std::move(P)) {}
/// The exit basic block.
BasicBlock *ExitBlock;
/// The (exact) number of time we take the edge back.
const SCEV *Taken;
/// The SCEV predicated associated with Taken. If Pred doesn't evaluate
/// to true, the information in Taken is not valid (or equivalent with
/// a CouldNotCompute.
SCEVUnionPredicate Pred;
};
/// Information about the backedge-taken count of a loop. This currently
/// includes an exact count and a maximum count.
///
class BackedgeTakenInfo {
/// A list of computable exits and their not-taken counts. Loops almost
/// never have more than one computable exit.
ExitNotTakenInfo ExitNotTaken;
/// An expression indicating the least maximum backedge-taken count of the
/// loop that is known, or a SCEVCouldNotCompute. This expression is only
/// valid if the predicates associated with all loop exits are true.
const SCEV *Max;
public:
BackedgeTakenInfo() : Max(nullptr) {}
/// Initialize BackedgeTakenInfo from a list of exact exit counts.
BackedgeTakenInfo(SmallVectorImpl<EdgeInfo> &ExitCounts, bool Complete,
const SCEV *MaxCount);
/// Test whether this BackedgeTakenInfo contains any computed information,
/// or whether it's all SCEVCouldNotCompute values.
bool hasAnyInfo() const {
return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max);
}
/// Test whether this BackedgeTakenInfo contains complete information.
bool hasFullInfo() const { return ExitNotTaken.isCompleteList(); }
/// Return an expression indicating the exact backedge-taken count of the
/// loop if it is known or SCEVCouldNotCompute otherwise. This is the
/// number of times the loop header can be guaranteed to execute, minus
/// one.
///
/// If the SCEV predicate associated with the answer can be different
/// from AlwaysTrue, we must add a (non null) Predicates argument.
/// The SCEV predicate associated with the answer will be added to
/// Predicates. A run-time check needs to be emitted for the SCEV
/// predicate in order for the answer to be valid.
///
/// Note that we should always know if we need to pass a predicate
/// argument or not from the way the ExitCounts vector was computed.
/// If we allowed SCEV predicates to be generated when populating this
/// vector, this information can contain them and therefore a
/// SCEVPredicate argument should be added to getExact.
const SCEV *getExact(ScalarEvolution *SE,
SCEVUnionPredicate *Predicates = nullptr) const;
/// Return the number of times this loop exit may fall through to the back
/// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
/// this block before this number of iterations, but may exit via another
/// block.
const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
/// Get the max backedge taken count for the loop.
const SCEV *getMax(ScalarEvolution *SE) const;
/// Return true if any backedge taken count expressions refer to the given
/// subexpression.
bool hasOperand(const SCEV *S, ScalarEvolution *SE) const;
/// Invalidate this result and free associated memory.
void clear();
};
/// Cache the backedge-taken count of the loops for this function as they
/// are computed.
DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
/// Cache the predicated backedge-taken count of the loops for this
/// function as they are computed.
DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
/// This map contains entries for all of the PHI instructions that we
/// attempt to compute constant evolutions for. This allows us to avoid
/// potentially expensive recomputation of these properties. An instruction
/// maps to null if we are unable to compute its exit value.
DenseMap<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
/// This map contains entries for all the expressions that we attempt to
/// compute getSCEVAtScope information for, which can be expensive in
/// extreme cases.
DenseMap<const SCEV *,
SmallVector<std::pair<const Loop *, const SCEV *>, 2> > ValuesAtScopes;
/// Memoized computeLoopDisposition results.
DenseMap<const SCEV *,
SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
LoopDispositions;
/// Cache for \c loopHasNoAbnormalExits.
DenseMap<const Loop *, bool> LoopHasNoAbnormalExits;
/// Returns true if \p L contains no instruction that can abnormally exit
/// the loop (i.e. via throwing an exception, by terminating the thread
/// cleanly or by infinite looping in a called function). Strictly
/// speaking, the last one is not leaving the loop, but is identical to
/// leaving the loop for reasoning about undefined behavior.
bool loopHasNoAbnormalExits(const Loop *L);
/// Compute a LoopDisposition value.
LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
/// Memoized computeBlockDisposition results.
DenseMap<
const SCEV *,
SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
BlockDispositions;
/// Compute a BlockDisposition value.
BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
/// Memoized results from getRange
DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
/// Memoized results from getRange
DenseMap<const SCEV *, ConstantRange> SignedRanges;
/// Used to parameterize getRange
enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
/// Set the memoized range for the given SCEV.
const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
const ConstantRange &CR) {
DenseMap<const SCEV *, ConstantRange> &Cache =
Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
auto Pair = Cache.insert({S, CR});
if (!Pair.second)
Pair.first->second = CR;
return Pair.first->second;
}
/// Determine the range for a particular SCEV.
ConstantRange getRange(const SCEV *S, RangeSignHint Hint);
/// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Stop}.
/// Helper for \c getRange.
ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Stop,
const SCEV *MaxBECount,
unsigned BitWidth);
/// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p
/// Stop} by "factoring out" a ternary expression from the add recurrence.
/// Helper called by \c getRange.
ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Stop,
const SCEV *MaxBECount,
unsigned BitWidth);
/// We know that there is no SCEV for the specified value. Analyze the
/// expression.
const SCEV *createSCEV(Value *V);
/// Provide the special handling we need to analyze PHI SCEVs.
const SCEV *createNodeForPHI(PHINode *PN);
/// Helper function called from createNodeForPHI.
const SCEV *createAddRecFromPHI(PHINode *PN);
/// Helper function called from createNodeForPHI.
const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
/// Provide special handling for a select-like instruction (currently this
/// is either a select instruction or a phi node). \p I is the instruction
/// being processed, and it is assumed equivalent to "Cond ? TrueVal :
/// FalseVal".
const SCEV *createNodeForSelectOrPHI(Instruction *I, Value *Cond,
Value *TrueVal, Value *FalseVal);
/// Provide the special handling we need to analyze GEP SCEVs.
const SCEV *createNodeForGEP(GEPOperator *GEP);
/// Implementation code for getSCEVAtScope; called at most once for each
/// SCEV+Loop pair.
///
const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
/// This looks up computed SCEV values for all instructions that depend on
/// the given instruction and removes them from the ValueExprMap map if they
/// reference SymName. This is used during PHI resolution.
void forgetSymbolicName(Instruction *I, const SCEV *SymName);
/// Return the BackedgeTakenInfo for the given loop, lazily computing new
/// values if the loop hasn't been analyzed yet. The returned result is
/// guaranteed not to be predicated.
const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
/// Similar to getBackedgeTakenInfo, but will add predicates as required
/// with the purpose of returning complete information.
const BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L);
/// Compute the number of times the specified loop will iterate.
/// If AllowPredicates is set, we will create new SCEV predicates as
/// necessary in order to return an exact answer.
BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L,
bool AllowPredicates = false);
/// Compute the number of times the backedge of the specified loop will
/// execute if it exits via the specified block. If AllowPredicates is set,
/// this call will try to use a minimal set of SCEV predicates in order to
/// return an exact answer.
ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
bool AllowPredicates = false);
/// Compute the number of times the backedge of the specified loop will
/// execute if its exit condition were a conditional branch of ExitCond,
/// TBB, and FBB.
///
/// \p ControlsExit is true if ExitCond directly controls the exit
/// branch. In this case, we can assume that the loop exits only if the
/// condition is true and can infer that failing to meet the condition prior
/// to integer wraparound results in undefined behavior.
///
/// If \p AllowPredicates is set, this call will try to use a minimal set of
/// SCEV predicates in order to return an exact answer.
ExitLimit computeExitLimitFromCond(const Loop *L,
Value *ExitCond,
BasicBlock *TBB,
BasicBlock *FBB,
bool ControlsExit,
bool AllowPredicates = false);
/// Compute the number of times the backedge of the specified loop will
/// execute if its exit condition were a conditional branch of the ICmpInst
/// ExitCond, TBB, and FBB. If AllowPredicates is set, this call will try
/// to use a minimal set of SCEV predicates in order to return an exact
/// answer.
ExitLimit computeExitLimitFromICmp(const Loop *L,
ICmpInst *ExitCond,
BasicBlock *TBB,
BasicBlock *FBB,
bool IsSubExpr,
bool AllowPredicates = false);
/// Compute the number of times the backedge of the specified loop will
/// execute if its exit condition were a switch with a single exiting case
/// to ExitingBB.
ExitLimit
computeExitLimitFromSingleExitSwitch(const Loop *L, SwitchInst *Switch,
BasicBlock *ExitingBB, bool IsSubExpr);
/// Given an exit condition of 'icmp op load X, cst', try to see if we can
/// compute the backedge-taken count.
ExitLimit computeLoadConstantCompareExitLimit(LoadInst *LI,
Constant *RHS,
const Loop *L,
ICmpInst::Predicate p);
/// Compute the exit limit of a loop that is controlled by a
/// "(IV >> 1) != 0" type comparison. We cannot compute the exact trip
/// count in these cases (since SCEV has no way of expressing them), but we
/// can still sometimes compute an upper bound.
///
/// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
/// RHS`.
ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS,
const Loop *L,
ICmpInst::Predicate Pred);
/// If the loop is known to execute a constant number of times (the
/// condition evolves only from constants), try to evaluate a few iterations
/// of the loop until we get the exit condition gets a value of ExitWhen
/// (true or false). If we cannot evaluate the exit count of the loop,
/// return CouldNotCompute.
const SCEV *computeExitCountExhaustively(const Loop *L,
Value *Cond,
bool ExitWhen);
/// Return the number of times an exit condition comparing the specified
/// value to zero will execute. If not computable, return CouldNotCompute.
/// If AllowPredicates is set, this call will try to use a minimal set of
/// SCEV predicates in order to return an exact answer.
ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr,
bool AllowPredicates = false);
/// Return the number of times an exit condition checking the specified
/// value for nonzero will execute. If not computable, return
/// CouldNotCompute.
ExitLimit howFarToNonZero(const SCEV *V, const Loop *L);
/// Return the number of times an exit condition containing the specified
/// less-than comparison will execute. If not computable, return
/// CouldNotCompute.
///
/// \p isSigned specifies whether the less-than is signed.
///
/// \p ControlsExit is true when the LHS < RHS condition directly controls
/// the branch (loops exits only if condition is true). In this case, we can
/// use NoWrapFlags to skip overflow checks.
///
/// If \p AllowPredicates is set, this call will try to use a minimal set of
/// SCEV predicates in order to return an exact answer.
ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
bool isSigned, bool ControlsExit,
bool AllowPredicates = false);
ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
const Loop *L, bool isSigned, bool IsSubExpr,
bool AllowPredicates = false);
/// Return a predecessor of BB (which may not be an immediate predecessor)
/// which has exactly one successor from which BB is reachable, or null if
/// no such block is found.
std::pair<BasicBlock *, BasicBlock *>
getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
/// Test whether the condition described by Pred, LHS, and RHS is true
/// whenever the given FoundCondValue value evaluates to true.
bool isImpliedCond(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS,
Value *FoundCondValue,
bool Inverse);
/// Test whether the condition described by Pred, LHS, and RHS is true
/// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
/// true.
bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
const SCEV *RHS, ICmpInst::Predicate FoundPred,
const SCEV *FoundLHS, const SCEV *FoundRHS);
/// Test whether the condition described by Pred, LHS, and RHS is true
/// whenever the condition described by Pred, FoundLHS, and FoundRHS is
/// true.
bool isImpliedCondOperands(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS,
const SCEV *FoundLHS, const SCEV *FoundRHS);
/// Test whether the condition described by Pred, LHS, and RHS is true
/// whenever the condition described by Pred, FoundLHS, and FoundRHS is
/// true.
bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS,
const SCEV *FoundLHS,
const SCEV *FoundRHS);
/// Test whether the condition described by Pred, LHS, and RHS is true
/// whenever the condition described by Pred, FoundLHS, and FoundRHS is
/// true. Utility function used by isImpliedCondOperands. Tries to get
/// cases like "X `sgt` 0 => X - 1 `sgt` -1".
bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS,
const SCEV *FoundLHS,
const SCEV *FoundRHS);
/// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied
/// by a call to \c @llvm.experimental.guard in \p BB.
bool isImpliedViaGuard(BasicBlock *BB, ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS);
/// Test whether the condition described by Pred, LHS, and RHS is true
/// whenever the condition described by Pred, FoundLHS, and FoundRHS is
/// true.
///
/// This routine tries to rule out certain kinds of integer overflow, and
/// then tries to reason about arithmetic properties of the predicates.
bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS,
const SCEV *FoundLHS,
const SCEV *FoundRHS);
/// If we know that the specified Phi is in the header of its containing
/// loop, we know the loop executes a constant number of times, and the PHI
/// node is just a recurrence involving constants, fold it.
Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
const Loop *L);
/// Test if the given expression is known to satisfy the condition described
/// by Pred and the known constant ranges of LHS and RHS.
///
bool isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS);
/// Try to prove the condition described by "LHS Pred RHS" by ruling out
/// integer overflow.
///
/// For instance, this will return true for "A s< (A + C)<nsw>" if C is
/// positive.
bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS);
/// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
/// prove them individually.
bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS,
const SCEV *RHS);
/// Try to match the Expr as "(L + R)<Flags>".
bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
SCEV::NoWrapFlags &Flags);
/// Return true if More == (Less + C), where C is a constant. This is
/// intended to be used as a cheaper substitute for full SCEV subtraction.
bool computeConstantDifference(const SCEV *Less, const SCEV *More,
APInt &C);
/// Drop memoized information computed for S.
void forgetMemoizedResults(const SCEV *S);
/// Return an existing SCEV for V if there is one, otherwise return nullptr.
const SCEV *getExistingSCEV(Value *V);
/// Return false iff given SCEV contains a SCEVUnknown with NULL value-
/// pointer.
bool checkValidity(const SCEV *S) const;
/// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
/// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}. This is
/// equivalent to proving no signed (resp. unsigned) wrap in
/// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
/// (resp. `SCEVZeroExtendExpr`).
///
template<typename ExtendOpTy>
bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
const Loop *L);
/// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation.
SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR);
bool isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
ICmpInst::Predicate Pred, bool &Increasing);
/// Return true if, for all loop invariant X, the predicate "LHS `Pred` X"
/// is monotonically increasing or decreasing. In the former case set
/// `Increasing` to true and in the latter case set `Increasing` to false.
///
/// A predicate is said to be monotonically increasing if may go from being
/// false to being true as the loop iterates, but never the other way
/// around. A predicate is said to be monotonically decreasing if may go
/// from being true to being false as the loop iterates, but never the other
/// way around.
bool isMonotonicPredicate(const SCEVAddRecExpr *LHS,
ICmpInst::Predicate Pred, bool &Increasing);
/// Return SCEV no-wrap flags that can be proven based on reasoning about
/// how poison produced from no-wrap flags on this value (e.g. a nuw add)
/// would trigger undefined behavior on overflow.
SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
/// Return true if the SCEV corresponding to \p I is never poison. Proving
/// this is more complex than proving that just \p I is never poison, since
/// SCEV commons expressions across control flow, and you can have cases
/// like:
///
/// idx0 = a + b;
/// ptr[idx0] = 100;
/// if (<condition>) {
/// idx1 = a +nsw b;
/// ptr[idx1] = 200;
/// }
///
/// where the SCEV expression (+ a b) is guaranteed to not be poison (and
/// hence not sign-overflow) only if "<condition>" is true. Since both
/// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b),
/// it is not okay to annotate (+ a b) with <nsw> in the above example.
bool isSCEVExprNeverPoison(const Instruction *I);
/// This is like \c isSCEVExprNeverPoison but it specifically works for
/// instructions that will get mapped to SCEV add recurrences. Return true
/// if \p I will never generate poison under the assumption that \p I is an
/// add recurrence on the loop \p L.
bool isAddRecNeverPoison(const Instruction *I, const Loop *L);
public:
ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC,
DominatorTree &DT, LoopInfo &LI);
~ScalarEvolution();
ScalarEvolution(ScalarEvolution &&Arg);
LLVMContext &getContext() const { return F.getContext(); }
/// Test if values of the given type are analyzable within the SCEV
/// framework. This primarily includes integer types, and it can optionally
/// include pointer types if the ScalarEvolution class has access to
/// target-specific information.
bool isSCEVable(Type *Ty) const;
/// Return the size in bits of the specified type, for which isSCEVable must
/// return true.
uint64_t getTypeSizeInBits(Type *Ty) const;
/// Return a type with the same bitwidth as the given type and which
/// represents how SCEV will treat the given type, for which isSCEVable must
/// return true. For pointer types, this is the pointer-sized integer type.
Type *getEffectiveSCEVType(Type *Ty) const;
/// Return true if the SCEV is a scAddRecExpr or it contains
/// scAddRecExpr. The result will be cached in HasRecMap.
///
bool containsAddRecurrence(const SCEV *S);
/// Return the Value set from which the SCEV expr is generated.
SetVector<Value *> *getSCEVValues(const SCEV *S);
/// Erase Value from ValueExprMap and ExprValueMap.
void eraseValueFromMap(Value *V);
/// Return a SCEV expression for the full generality of the specified
/// expression.
const SCEV *getSCEV(Value *V);
const SCEV *getConstant(ConstantInt *V);
const SCEV *getConstant(const APInt& Val);
const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty);
const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty);
const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
return getAddExpr(Ops, Flags);
}
const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
return getAddExpr(Ops, Flags);
}
const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
return getMulExpr(Ops, Flags);
}
const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
return getMulExpr(Ops, Flags);
}
const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
const Loop *L, SCEV::NoWrapFlags Flags);
const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
const Loop *L, SCEV::NoWrapFlags Flags);
const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
const Loop *L, SCEV::NoWrapFlags Flags) {
SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
return getAddRecExpr(NewOp, L, Flags);
}
/// Returns an expression for a GEP
///
/// \p PointeeType The type used as the basis for the pointer arithmetics
/// \p BaseExpr The expression for the pointer operand.
/// \p IndexExprs The expressions for the indices.
/// \p InBounds Whether the GEP is in bounds.
const SCEV *getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
const SmallVectorImpl<const SCEV *> &IndexExprs,
bool InBounds = false);
const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
const SCEV *getUnknown(Value *V);
const SCEV *getCouldNotCompute();
/// Return a SCEV for the constant 0 of a specific type.
const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
/// Return a SCEV for the constant 1 of a specific type.
const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
/// Return an expression for sizeof AllocTy that is type IntTy
///
const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
/// Return an expression for offsetof on the given field with type IntTy
///
const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
/// Return the SCEV object corresponding to -V.
///
const SCEV *getNegativeSCEV(const SCEV *V,
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
/// Return the SCEV object corresponding to ~V.
///
const SCEV *getNotSCEV(const SCEV *V);
/// Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
/// Return a SCEV corresponding to a conversion of the input value to the
/// specified type. If the type must be extended, it is zero extended.
const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);
/// Return a SCEV corresponding to a conversion of the input value to the
/// specified type. If the type must be extended, it is sign extended.
const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);
/// Return a SCEV corresponding to a conversion of the input value to the
/// specified type. If the type must be extended, it is zero extended. The
/// conversion must not be narrowing.
const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
/// Return a SCEV corresponding to a conversion of the input value to the
/// specified type. If the type must be extended, it is sign extended. The
/// conversion must not be narrowing.
const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
/// Return a SCEV corresponding to a conversion of the input value to the
/// specified type. If the type must be extended, it is extended with
/// unspecified bits. The conversion must not be narrowing.
const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
/// Return a SCEV corresponding to a conversion of the input value to the
/// specified type. The conversion must not be widening.
const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
/// Promote the operands to the wider of the types using zero-extension, and
/// then perform a umax operation with them.
const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
const SCEV *RHS);
/// Promote the operands to the wider of the types using zero-extension, and
/// then perform a umin operation with them.
const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
const SCEV *RHS);
/// Transitively follow the chain of pointer-type operands until reaching a
/// SCEV that does not have a single pointer operand. This returns a
/// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
/// cases do exist.
const SCEV *getPointerBase(const SCEV *V);
/// Return a SCEV expression for the specified value at the specified scope
/// in the program. The L value specifies a loop nest to evaluate the
/// expression at, where null is the top-level or a specified loop is
/// immediately inside of the loop.
///
/// This method can be used to compute the exit value for a variable defined
/// in a loop by querying what the value will hold in the parent loop.
///
/// In the case that a relevant loop exit value cannot be computed, the
/// original value V is returned.
const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
/// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
const SCEV *getSCEVAtScope(Value *V, const Loop *L);
/// Test whether entry to the loop is protected by a conditional between LHS
/// and RHS. This is used to help avoid max expressions in loop trip
/// counts, and to eliminate casts.
bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS);
/// Test whether the backedge of the loop is protected by a conditional
/// between LHS and RHS. This is used to to eliminate casts.
bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS);
/// Returns the maximum trip count of the loop if it is a single-exit
/// loop and we can compute a small maximum for that loop.
///
/// Implemented in terms of the \c getSmallConstantTripCount overload with
/// the single exiting block passed to it. See that routine for details.
unsigned getSmallConstantTripCount(Loop *L);
/// Returns the maximum trip count of this loop as a normal unsigned
/// value. Returns 0 if the trip count is unknown or not constant. This
/// "trip count" assumes that control exits via ExitingBlock. More
/// precisely, it is the number of times that control may reach ExitingBlock
/// before taking the branch. For loops with multiple exits, it may not be
/// the number times that the loop header executes if the loop exits
/// prematurely via another branch.
unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock);
/// Returns the largest constant divisor of the trip count of the
/// loop if it is a single-exit loop and we can compute a small maximum for
/// that loop.
///
/// Implemented in terms of the \c getSmallConstantTripMultiple overload with
/// the single exiting block passed to it. See that routine for details.
unsigned getSmallConstantTripMultiple(Loop *L);
/// Returns the largest constant divisor of the trip count of this loop as a
/// normal unsigned value, if possible. This means that the actual trip
/// count is always a multiple of the returned value (don't forget the trip
/// count could very well be zero as well!). As explained in the comments
/// for getSmallConstantTripCount, this assumes that control exits the loop
/// via ExitingBlock.
unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock);
/// Get the expression for the number of loop iterations for which this loop
/// is guaranteed not to exit via ExitingBlock. Otherwise return
/// SCEVCouldNotCompute.
const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock);
/// If the specified loop has a predictable backedge-taken count, return it,
/// otherwise return a SCEVCouldNotCompute object. The backedge-taken count
/// is the number of times the loop header will be branched to from within
/// the loop. This is one less than the trip count of the loop, since it
/// doesn't count the first iteration, when the header is branched to from
/// outside the loop.
///
/// Note that it is not valid to call this method on a loop without a
/// loop-invariant backedge-taken count (see
/// hasLoopInvariantBackedgeTakenCount).
///
const SCEV *getBackedgeTakenCount(const Loop *L);
/// Similar to getBackedgeTakenCount, except it will add a set of
/// SCEV predicates to Predicates that are required to be true in order for
/// the answer to be correct. Predicates can be checked with run-time
/// checks and can be used to perform loop versioning.
const SCEV *getPredicatedBackedgeTakenCount(const Loop *L,
SCEVUnionPredicate &Predicates);
/// Similar to getBackedgeTakenCount, except return the least SCEV value
/// that is known never to be less than the actual backedge taken count.
const SCEV *getMaxBackedgeTakenCount(const Loop *L);
/// Return true if the specified loop has an analyzable loop-invariant
/// backedge-taken count.
bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
/// This method should be called by the client when it has changed a loop in
/// a way that may effect ScalarEvolution's ability to compute a trip count,
/// or if the loop is deleted. This call is potentially expensive for large
/// loop bodies.
void forgetLoop(const Loop *L);
/// This method should be called by the client when it has changed a value
/// in a way that may effect its value, or which may disconnect it from a
/// def-use chain linking it to a loop.
void forgetValue(Value *V);
/// Called when the client has changed the disposition of values in
/// this loop.
///
/// We don't have a way to invalidate per-loop dispositions. Clear and
/// recompute is simpler.
void forgetLoopDispositions(const Loop *L) { LoopDispositions.clear(); }
/// Determine the minimum number of zero bits that S is guaranteed to end in
/// (at every loop iteration). It is, at the same time, the minimum number
/// of times S is divisible by 2. For example, given {4,+,8} it returns 2.
/// If S is guaranteed to be 0, it returns the bitwidth of S.
uint32_t GetMinTrailingZeros(const SCEV *S);
/// Determine the unsigned range for a particular SCEV.
///
ConstantRange getUnsignedRange(const SCEV *S) {
return getRange(S, HINT_RANGE_UNSIGNED);
}
/// Determine the signed range for a particular SCEV.
///
ConstantRange getSignedRange(const SCEV *S) {
return getRange(S, HINT_RANGE_SIGNED);
}
/// Test if the given expression is known to be negative.
///
bool isKnownNegative(const SCEV *S);
/// Test if the given expression is known to be positive.
///
bool isKnownPositive(const SCEV *S);
/// Test if the given expression is known to be non-negative.
///
bool isKnownNonNegative(const SCEV *S);
/// Test if the given expression is known to be non-positive.
///
bool isKnownNonPositive(const SCEV *S);
/// Test if the given expression is known to be non-zero.
///
bool isKnownNonZero(const SCEV *S);
/// Test if the given expression is known to satisfy the condition described
/// by Pred, LHS, and RHS.
///
bool isKnownPredicate(ICmpInst::Predicate Pred,
const SCEV *LHS, const SCEV *RHS);
/// Return true if the result of the predicate LHS `Pred` RHS is loop
/// invariant with respect to L. Set InvariantPred, InvariantLHS and
/// InvariantLHS so that InvariantLHS `InvariantPred` InvariantRHS is the
/// loop invariant form of LHS `Pred` RHS.
bool isLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
const SCEV *RHS, const Loop *L,
ICmpInst::Predicate &InvariantPred,
const SCEV *&InvariantLHS,
const SCEV *&InvariantRHS);
/// Simplify LHS and RHS in a comparison with predicate Pred. Return true
/// iff any changes were made. If the operands are provably equal or
/// unequal, LHS and RHS are set to the same value and Pred is set to either
/// ICMP_EQ or ICMP_NE.
///
bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
const SCEV *&LHS,
const SCEV *&RHS,
unsigned Depth = 0);
/// Return the "disposition" of the given SCEV with respect to the given
/// loop.
LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
/// Return true if the value of the given SCEV is unchanging in the
/// specified loop.
bool isLoopInvariant(const SCEV *S, const Loop *L);
/// Return true if the given SCEV changes value in a known way in the
/// specified loop. This property being true implies that the value is
/// variant in the loop AND that we can emit an expression to compute the
/// value of the expression at any particular loop iteration.
bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
/// Return the "disposition" of the given SCEV with respect to the given
/// block.
BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
/// Return true if elements that makes up the given SCEV dominate the
/// specified basic block.
bool dominates(const SCEV *S, const BasicBlock *BB);
/// Return true if elements that makes up the given SCEV properly dominate
/// the specified basic block.
bool properlyDominates(const SCEV *S, const BasicBlock *BB);
/// Test whether the given SCEV has Op as a direct or indirect operand.
bool hasOperand(const SCEV *S, const SCEV *Op) const;
/// Return the size of an element read or written by Inst.
const SCEV *getElementSize(Instruction *Inst);
/// Compute the array dimensions Sizes from the set of Terms extracted from
/// the memory access function of this SCEVAddRecExpr (second step of
/// delinearization).
void findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
SmallVectorImpl<const SCEV *> &Sizes,
const SCEV *ElementSize) const;
void print(raw_ostream &OS) const;
void verify() const;
/// Collect parametric terms occurring in step expressions (first step of
/// delinearization).
void collectParametricTerms(const SCEV *Expr,
SmallVectorImpl<const SCEV *> &Terms);
/// Return in Subscripts the access functions for each dimension in Sizes
/// (third step of delinearization).
void computeAccessFunctions(const SCEV *Expr,
SmallVectorImpl<const SCEV *> &Subscripts,
SmallVectorImpl<const SCEV *> &Sizes);
/// Split this SCEVAddRecExpr into two vectors of SCEVs representing the
/// subscripts and sizes of an array access.
///
/// The delinearization is a 3 step process: the first two steps compute the
/// sizes of each subscript and the third step computes the access functions
/// for the delinearized array:
///
/// 1. Find the terms in the step functions
/// 2. Compute the array size
/// 3. Compute the access function: divide the SCEV by the array size
/// starting with the innermost dimensions found in step 2. The Quotient
/// is the SCEV to be divided in the next step of the recursion. The
/// Remainder is the subscript of the innermost dimension. Loop over all
/// array dimensions computed in step 2.
///
/// To compute a uniform array size for several memory accesses to the same
/// object, one can collect in step 1 all the step terms for all the memory
/// accesses, and compute in step 2 a unique array shape. This guarantees
/// that the array shape will be the same across all memory accesses.
///
/// FIXME: We could derive the result of steps 1 and 2 from a description of
/// the array shape given in metadata.
///
/// Example:
///
/// A[][n][m]
///
/// for i
/// for j
/// for k
/// A[j+k][2i][5i] =
///
/// The initial SCEV:
///
/// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k]
///
/// 1. Find the different terms in the step functions:
/// -> [2*m, 5, n*m, n*m]
///
/// 2. Compute the array size: sort and unique them
/// -> [n*m, 2*m, 5]
/// find the GCD of all the terms = 1
/// divide by the GCD and erase constant terms
/// -> [n*m, 2*m]
/// GCD = m
/// divide by GCD -> [n, 2]
/// remove constant terms
/// -> [n]
/// size of the array is A[unknown][n][m]
///
/// 3. Compute the access function
/// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m
/// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k
/// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k
/// The remainder is the subscript of the innermost array dimension: [5i].
///
/// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n
/// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k
/// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k
/// The Remainder is the subscript of the next array dimension: [2i].
///
/// The subscript of the outermost dimension is the Quotient: [j+k].
///
/// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i].
void delinearize(const SCEV *Expr,
SmallVectorImpl<const SCEV *> &Subscripts,
SmallVectorImpl<const SCEV *> &Sizes,
const SCEV *ElementSize);
/// Return the DataLayout associated with the module this SCEV instance is
/// operating on.
const DataLayout &getDataLayout() const {
return F.getParent()->getDataLayout();
}
const SCEVPredicate *getEqualPredicate(const SCEVUnknown *LHS,
const SCEVConstant *RHS);
const SCEVPredicate *
getWrapPredicate(const SCEVAddRecExpr *AR,
SCEVWrapPredicate::IncrementWrapFlags AddedFlags);
/// Re-writes the SCEV according to the Predicates in \p A.
const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L,
SCEVUnionPredicate &A);
/// Tries to convert the \p S expression to an AddRec expression,
/// adding additional predicates to \p Preds as required.
const SCEVAddRecExpr *
convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L,
SCEVUnionPredicate &Preds);
private:
/// Compute the backedge taken count knowing the interval difference, the
/// stride and presence of the equality in the comparison.
const SCEV *computeBECount(const SCEV *Delta, const SCEV *Stride,
bool Equality);
/// Verify if an linear IV with positive stride can overflow when in a
/// less-than comparison, knowing the invariant term of the comparison,
/// the stride and the knowledge of NSW/NUW flags on the recurrence.
bool doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
bool IsSigned, bool NoWrap);
/// Verify if an linear IV with negative stride can overflow when in a
/// greater-than comparison, knowing the invariant term of the comparison,
/// the stride and the knowledge of NSW/NUW flags on the recurrence.
bool doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
bool IsSigned, bool NoWrap);
private:
FoldingSet<SCEV> UniqueSCEVs;
FoldingSet<SCEVPredicate> UniquePreds;
BumpPtrAllocator SCEVAllocator;
/// The head of a linked list of all SCEVUnknown values that have been
/// allocated. This is used by releaseMemory to locate them all and call
/// their destructors.
SCEVUnknown *FirstUnknown;
};
/// Analysis pass that exposes the \c ScalarEvolution for a function.
class ScalarEvolutionAnalysis
: public AnalysisInfoMixin<ScalarEvolutionAnalysis> {
friend AnalysisInfoMixin<ScalarEvolutionAnalysis>;
static char PassID;
public:
typedef ScalarEvolution Result;
ScalarEvolution run(Function &F, AnalysisManager<Function> &AM);
};
/// Printer pass for the \c ScalarEvolutionAnalysis results.
class ScalarEvolutionPrinterPass
: public PassInfoMixin<ScalarEvolutionPrinterPass> {
raw_ostream &OS;
public:
explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
PreservedAnalyses run(Function &F, AnalysisManager<Function> &AM);
};
class ScalarEvolutionWrapperPass : public FunctionPass {
std::unique_ptr<ScalarEvolution> SE;
public:
static char ID;
ScalarEvolutionWrapperPass();
ScalarEvolution &getSE() { return *SE; }
const ScalarEvolution &getSE() const { return *SE; }
bool runOnFunction(Function &F) override;
void releaseMemory() override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
void print(raw_ostream &OS, const Module * = nullptr) const override;
void verifyAnalysis() const override;
};
/// An interface layer with SCEV used to manage how we see SCEV expressions
/// for values in the context of existing predicates. We can add new
/// predicates, but we cannot remove them.
///
/// This layer has multiple purposes:
/// - provides a simple interface for SCEV versioning.
/// - guarantees that the order of transformations applied on a SCEV
/// expression for a single Value is consistent across two different
/// getSCEV calls. This means that, for example, once we've obtained
/// an AddRec expression for a certain value through expression
/// rewriting, we will continue to get an AddRec expression for that
/// Value.
/// - lowers the number of expression rewrites.
class PredicatedScalarEvolution {
public:
PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L);
const SCEVUnionPredicate &getUnionPredicate() const;
/// Returns the SCEV expression of V, in the context of the current SCEV
/// predicate. The order of transformations applied on the expression of V
/// returned by ScalarEvolution is guaranteed to be preserved, even when
/// adding new predicates.
const SCEV *getSCEV(Value *V);
/// Get the (predicated) backedge count for the analyzed loop.
const SCEV *getBackedgeTakenCount();
/// Adds a new predicate.
void addPredicate(const SCEVPredicate &Pred);
/// Attempts to produce an AddRecExpr for V by adding additional SCEV
/// predicates. If we can't transform the expression into an AddRecExpr we
/// return nullptr and not add additional SCEV predicates to the current
/// context.
const SCEVAddRecExpr *getAsAddRec(Value *V);
/// Proves that V doesn't overflow by adding SCEV predicate.
void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
/// Returns true if we've proved that V doesn't wrap by means of a SCEV
/// predicate.
bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
/// Returns the ScalarEvolution analysis used.
ScalarEvolution *getSE() const { return &SE; }
/// We need to explicitly define the copy constructor because of FlagsMap.
PredicatedScalarEvolution(const PredicatedScalarEvolution&);
/// Print the SCEV mappings done by the Predicated Scalar Evolution.
/// The printed text is indented by \p Depth.
void print(raw_ostream &OS, unsigned Depth) const;
private:
/// Increments the version number of the predicate. This needs to be called
/// every time the SCEV predicate changes.
void updateGeneration();
/// Holds a SCEV and the version number of the SCEV predicate used to
/// perform the rewrite of the expression.
typedef std::pair<unsigned, const SCEV *> RewriteEntry;
/// Maps a SCEV to the rewrite result of that SCEV at a certain version
/// number. If this number doesn't match the current Generation, we will
/// need to do a rewrite. To preserve the transformation order of previous
/// rewrites, we will rewrite the previous result instead of the original
/// SCEV.
DenseMap<const SCEV *, RewriteEntry> RewriteMap;
/// Records what NoWrap flags we've added to a Value *.
ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap;
/// The ScalarEvolution analysis.
ScalarEvolution &SE;
/// The analyzed Loop.
const Loop &L;
/// The SCEVPredicate that forms our context. We will rewrite all
/// expressions assuming that this predicate true.
SCEVUnionPredicate Preds;
/// Marks the version of the SCEV predicate used. When rewriting a SCEV
/// expression we mark it with the version of the predicate. We use this to
/// figure out if the predicate has changed from the last rewrite of the
/// SCEV. If so, we need to perform a new rewrite.
unsigned Generation;
/// The backedge taken count.
const SCEV *BackedgeCount;
};
}
#endif
|