This file is indexed.

/usr/include/llvm-3.9/llvm/CodeGen/FastISel.h is in llvm-3.9-dev 1:3.9.1-19ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
//===-- FastISel.h - Definition of the FastISel class ---*- C++ -*---------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file defines the FastISel class.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_FASTISEL_H
#define LLVM_CODEGEN_FASTISEL_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Target/TargetLowering.h"

namespace llvm {

class MachineConstantPool;

/// \brief This is a fast-path instruction selection class that generates poor
/// code and doesn't support illegal types or non-trivial lowering, but runs
/// quickly.
class FastISel {
public:
  struct ArgListEntry {
    Value *Val;
    Type *Ty;
    bool IsSExt : 1;
    bool IsZExt : 1;
    bool IsInReg : 1;
    bool IsSRet : 1;
    bool IsNest : 1;
    bool IsByVal : 1;
    bool IsInAlloca : 1;
    bool IsReturned : 1;
    bool IsSwiftSelf : 1;
    bool IsSwiftError : 1;
    uint16_t Alignment;

    ArgListEntry()
        : Val(nullptr), Ty(nullptr), IsSExt(false), IsZExt(false),
          IsInReg(false), IsSRet(false), IsNest(false), IsByVal(false),
          IsInAlloca(false), IsReturned(false), IsSwiftSelf(false),
          IsSwiftError(false), Alignment(0) {}

    /// \brief Set CallLoweringInfo attribute flags based on a call instruction
    /// and called function attributes.
    void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx);
  };
  typedef std::vector<ArgListEntry> ArgListTy;

  struct CallLoweringInfo {
    Type *RetTy;
    bool RetSExt : 1;
    bool RetZExt : 1;
    bool IsVarArg : 1;
    bool IsInReg : 1;
    bool DoesNotReturn : 1;
    bool IsReturnValueUsed : 1;

    // \brief IsTailCall Should be modified by implementations of FastLowerCall
    // that perform tail call conversions.
    bool IsTailCall;

    unsigned NumFixedArgs;
    CallingConv::ID CallConv;
    const Value *Callee;
    MCSymbol *Symbol;
    ArgListTy Args;
    ImmutableCallSite *CS;
    MachineInstr *Call;
    unsigned ResultReg;
    unsigned NumResultRegs;

    bool IsPatchPoint;

    SmallVector<Value *, 16> OutVals;
    SmallVector<ISD::ArgFlagsTy, 16> OutFlags;
    SmallVector<unsigned, 16> OutRegs;
    SmallVector<ISD::InputArg, 4> Ins;
    SmallVector<unsigned, 4> InRegs;

    CallLoweringInfo()
        : RetTy(nullptr), RetSExt(false), RetZExt(false), IsVarArg(false),
          IsInReg(false), DoesNotReturn(false), IsReturnValueUsed(true),
          IsTailCall(false), NumFixedArgs(-1), CallConv(CallingConv::C),
          Callee(nullptr), Symbol(nullptr), CS(nullptr), Call(nullptr),
          ResultReg(0), NumResultRegs(0), IsPatchPoint(false) {}

    CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
                                const Value *Target, ArgListTy &&ArgsList,
                                ImmutableCallSite &Call) {
      RetTy = ResultTy;
      Callee = Target;

      IsInReg = Call.paramHasAttr(0, Attribute::InReg);
      DoesNotReturn = Call.doesNotReturn();
      IsVarArg = FuncTy->isVarArg();
      IsReturnValueUsed = !Call.getInstruction()->use_empty();
      RetSExt = Call.paramHasAttr(0, Attribute::SExt);
      RetZExt = Call.paramHasAttr(0, Attribute::ZExt);

      CallConv = Call.getCallingConv();
      Args = std::move(ArgsList);
      NumFixedArgs = FuncTy->getNumParams();

      CS = &Call;

      return *this;
    }

    CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
                                MCSymbol *Target, ArgListTy &&ArgsList,
                                ImmutableCallSite &Call,
                                unsigned FixedArgs = ~0U) {
      RetTy = ResultTy;
      Callee = Call.getCalledValue();
      Symbol = Target;

      IsInReg = Call.paramHasAttr(0, Attribute::InReg);
      DoesNotReturn = Call.doesNotReturn();
      IsVarArg = FuncTy->isVarArg();
      IsReturnValueUsed = !Call.getInstruction()->use_empty();
      RetSExt = Call.paramHasAttr(0, Attribute::SExt);
      RetZExt = Call.paramHasAttr(0, Attribute::ZExt);

      CallConv = Call.getCallingConv();
      Args = std::move(ArgsList);
      NumFixedArgs = (FixedArgs == ~0U) ? FuncTy->getNumParams() : FixedArgs;

      CS = &Call;

      return *this;
    }

    CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
                                const Value *Target, ArgListTy &&ArgsList,
                                unsigned FixedArgs = ~0U) {
      RetTy = ResultTy;
      Callee = Target;
      CallConv = CC;
      Args = std::move(ArgsList);
      NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs;
      return *this;
    }

    CallLoweringInfo &setCallee(const DataLayout &DL, MCContext &Ctx,
                                CallingConv::ID CC, Type *ResultTy,
                                const char *Target, ArgListTy &&ArgsList,
                                unsigned FixedArgs = ~0U);

    CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
                                MCSymbol *Target, ArgListTy &&ArgsList,
                                unsigned FixedArgs = ~0U) {
      RetTy = ResultTy;
      Symbol = Target;
      CallConv = CC;
      Args = std::move(ArgsList);
      NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs;
      return *this;
    }

    CallLoweringInfo &setTailCall(bool Value = true) {
      IsTailCall = Value;
      return *this;
    }

    CallLoweringInfo &setIsPatchPoint(bool Value = true) {
      IsPatchPoint = Value;
      return *this;
    }

    ArgListTy &getArgs() { return Args; }

    void clearOuts() {
      OutVals.clear();
      OutFlags.clear();
      OutRegs.clear();
    }

    void clearIns() {
      Ins.clear();
      InRegs.clear();
    }
  };

protected:
  DenseMap<const Value *, unsigned> LocalValueMap;
  FunctionLoweringInfo &FuncInfo;
  MachineFunction *MF;
  MachineRegisterInfo &MRI;
  MachineFrameInfo &MFI;
  MachineConstantPool &MCP;
  DebugLoc DbgLoc;
  const TargetMachine &TM;
  const DataLayout &DL;
  const TargetInstrInfo &TII;
  const TargetLowering &TLI;
  const TargetRegisterInfo &TRI;
  const TargetLibraryInfo *LibInfo;
  bool SkipTargetIndependentISel;

  /// \brief The position of the last instruction for materializing constants
  /// for use in the current block. It resets to EmitStartPt when it makes sense
  /// (for example, it's usually profitable to avoid function calls between the
  /// definition and the use)
  MachineInstr *LastLocalValue;

  /// \brief The top most instruction in the current block that is allowed for
  /// emitting local variables. LastLocalValue resets to EmitStartPt when it
  /// makes sense (for example, on function calls)
  MachineInstr *EmitStartPt;

public:
  /// \brief Return the position of the last instruction emitted for
  /// materializing constants for use in the current block.
  MachineInstr *getLastLocalValue() { return LastLocalValue; }

  /// \brief Update the position of the last instruction emitted for
  /// materializing constants for use in the current block.
  void setLastLocalValue(MachineInstr *I) {
    EmitStartPt = I;
    LastLocalValue = I;
  }

  /// \brief Set the current block to which generated machine instructions will
  /// be appended, and clear the local CSE map.
  void startNewBlock();

  /// \brief Return current debug location information.
  DebugLoc getCurDebugLoc() const { return DbgLoc; }

  /// \brief Do "fast" instruction selection for function arguments and append
  /// the machine instructions to the current block. Returns true when
  /// successful.
  bool lowerArguments();

  /// \brief Do "fast" instruction selection for the given LLVM IR instruction
  /// and append the generated machine instructions to the current block.
  /// Returns true if selection was successful.
  bool selectInstruction(const Instruction *I);

  /// \brief Do "fast" instruction selection for the given LLVM IR operator
  /// (Instruction or ConstantExpr), and append generated machine instructions
  /// to the current block. Return true if selection was successful.
  bool selectOperator(const User *I, unsigned Opcode);

  /// \brief Create a virtual register and arrange for it to be assigned the
  /// value for the given LLVM value.
  unsigned getRegForValue(const Value *V);

  /// \brief Look up the value to see if its value is already cached in a
  /// register. It may be defined by instructions across blocks or defined
  /// locally.
  unsigned lookUpRegForValue(const Value *V);

  /// \brief This is a wrapper around getRegForValue that also takes care of
  /// truncating or sign-extending the given getelementptr index value.
  std::pair<unsigned, bool> getRegForGEPIndex(const Value *V);

  /// \brief We're checking to see if we can fold \p LI into \p FoldInst. Note
  /// that we could have a sequence where multiple LLVM IR instructions are
  /// folded into the same machineinstr.  For example we could have:
  ///
  ///   A: x = load i32 *P
  ///   B: y = icmp A, 42
  ///   C: br y, ...
  ///
  /// In this scenario, \p LI is "A", and \p FoldInst is "C".  We know about "B"
  /// (and any other folded instructions) because it is between A and C.
  ///
  /// If we succeed folding, return true.
  bool tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst);

  /// \brief The specified machine instr operand is a vreg, and that vreg is
  /// being provided by the specified load instruction.  If possible, try to
  /// fold the load as an operand to the instruction, returning true if
  /// possible.
  ///
  /// This method should be implemented by targets.
  virtual bool tryToFoldLoadIntoMI(MachineInstr * /*MI*/, unsigned /*OpNo*/,
                                   const LoadInst * /*LI*/) {
    return false;
  }

  /// \brief Reset InsertPt to prepare for inserting instructions into the
  /// current block.
  void recomputeInsertPt();

  /// \brief Remove all dead instructions between the I and E.
  void removeDeadCode(MachineBasicBlock::iterator I,
                      MachineBasicBlock::iterator E);

  struct SavePoint {
    MachineBasicBlock::iterator InsertPt;
    DebugLoc DL;
  };

  /// \brief Prepare InsertPt to begin inserting instructions into the local
  /// value area and return the old insert position.
  SavePoint enterLocalValueArea();

  /// \brief Reset InsertPt to the given old insert position.
  void leaveLocalValueArea(SavePoint Old);

  virtual ~FastISel();

protected:
  explicit FastISel(FunctionLoweringInfo &FuncInfo,
                    const TargetLibraryInfo *LibInfo,
                    bool SkipTargetIndependentISel = false);

  /// \brief This method is called by target-independent code when the normal
  /// FastISel process fails to select an instruction. This gives targets a
  /// chance to emit code for anything that doesn't fit into FastISel's
  /// framework. It returns true if it was successful.
  virtual bool fastSelectInstruction(const Instruction *I) = 0;

  /// \brief This method is called by target-independent code to do target-
  /// specific argument lowering. It returns true if it was successful.
  virtual bool fastLowerArguments();

  /// \brief This method is called by target-independent code to do target-
  /// specific call lowering. It returns true if it was successful.
  virtual bool fastLowerCall(CallLoweringInfo &CLI);

  /// \brief This method is called by target-independent code to do target-
  /// specific intrinsic lowering. It returns true if it was successful.
  virtual bool fastLowerIntrinsicCall(const IntrinsicInst *II);

  /// \brief This method is called by target-independent code to request that an
  /// instruction with the given type and opcode be emitted.
  virtual unsigned fastEmit_(MVT VT, MVT RetVT, unsigned Opcode);

  /// \brief This method is called by target-independent code to request that an
  /// instruction with the given type, opcode, and register operand be emitted.
  virtual unsigned fastEmit_r(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
                              bool Op0IsKill);

  /// \brief This method is called by target-independent code to request that an
  /// instruction with the given type, opcode, and register operands be emitted.
  virtual unsigned fastEmit_rr(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
                               bool Op0IsKill, unsigned Op1, bool Op1IsKill);

  /// \brief This method is called by target-independent code to request that an
  /// instruction with the given type, opcode, and register and immediate
  // operands be emitted.
  virtual unsigned fastEmit_ri(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
                               bool Op0IsKill, uint64_t Imm);

  /// \brief This method is called by target-independent code to request that an
  /// instruction with the given type, opcode, and register and floating-point
  /// immediate operands be emitted.
  virtual unsigned fastEmit_rf(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
                               bool Op0IsKill, const ConstantFP *FPImm);

  /// \brief This method is called by target-independent code to request that an
  /// instruction with the given type, opcode, and register and immediate
  /// operands be emitted.
  virtual unsigned fastEmit_rri(MVT VT, MVT RetVT, unsigned Opcode,
                                unsigned Op0, bool Op0IsKill, unsigned Op1,
                                bool Op1IsKill, uint64_t Imm);

  /// \brief This method is a wrapper of fastEmit_ri.
  ///
  /// It first tries to emit an instruction with an immediate operand using
  /// fastEmit_ri.  If that fails, it materializes the immediate into a register
  /// and try fastEmit_rr instead.
  unsigned fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, bool Op0IsKill,
                        uint64_t Imm, MVT ImmType);

  /// \brief This method is called by target-independent code to request that an
  /// instruction with the given type, opcode, and immediate operand be emitted.
  virtual unsigned fastEmit_i(MVT VT, MVT RetVT, unsigned Opcode, uint64_t Imm);

  /// \brief This method is called by target-independent code to request that an
  /// instruction with the given type, opcode, and floating-point immediate
  /// operand be emitted.
  virtual unsigned fastEmit_f(MVT VT, MVT RetVT, unsigned Opcode,
                              const ConstantFP *FPImm);

  /// \brief Emit a MachineInstr with no operands and a result register in the
  /// given register class.
  unsigned fastEmitInst_(unsigned MachineInstOpcode,
                         const TargetRegisterClass *RC);

  /// \brief Emit a MachineInstr with one register operand and a result register
  /// in the given register class.
  unsigned fastEmitInst_r(unsigned MachineInstOpcode,
                          const TargetRegisterClass *RC, unsigned Op0,
                          bool Op0IsKill);

  /// \brief Emit a MachineInstr with two register operands and a result
  /// register in the given register class.
  unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
                           const TargetRegisterClass *RC, unsigned Op0,
                           bool Op0IsKill, unsigned Op1, bool Op1IsKill);

  /// \brief Emit a MachineInstr with three register operands and a result
  /// register in the given register class.
  unsigned fastEmitInst_rrr(unsigned MachineInstOpcode,
                            const TargetRegisterClass *RC, unsigned Op0,
                            bool Op0IsKill, unsigned Op1, bool Op1IsKill,
                            unsigned Op2, bool Op2IsKill);

  /// \brief Emit a MachineInstr with a register operand, an immediate, and a
  /// result register in the given register class.
  unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
                           const TargetRegisterClass *RC, unsigned Op0,
                           bool Op0IsKill, uint64_t Imm);

  /// \brief Emit a MachineInstr with one register operand and two immediate
  /// operands.
  unsigned fastEmitInst_rii(unsigned MachineInstOpcode,
                            const TargetRegisterClass *RC, unsigned Op0,
                            bool Op0IsKill, uint64_t Imm1, uint64_t Imm2);

  /// \brief Emit a MachineInstr with a floating point immediate, and a result
  /// register in the given register class.
  unsigned fastEmitInst_f(unsigned MachineInstOpcode,
                          const TargetRegisterClass *RC,
                          const ConstantFP *FPImm);

  /// \brief Emit a MachineInstr with two register operands, an immediate, and a
  /// result register in the given register class.
  unsigned fastEmitInst_rri(unsigned MachineInstOpcode,
                            const TargetRegisterClass *RC, unsigned Op0,
                            bool Op0IsKill, unsigned Op1, bool Op1IsKill,
                            uint64_t Imm);

  /// \brief Emit a MachineInstr with a single immediate operand, and a result
  /// register in the given register class.
  unsigned fastEmitInst_i(unsigned MachineInstrOpcode,
                          const TargetRegisterClass *RC, uint64_t Imm);

  /// \brief Emit a MachineInstr for an extract_subreg from a specified index of
  /// a superregister to a specified type.
  unsigned fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, bool Op0IsKill,
                                      uint32_t Idx);

  /// \brief Emit MachineInstrs to compute the value of Op with all but the
  /// least significant bit set to zero.
  unsigned fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill);

  /// \brief Emit an unconditional branch to the given block, unless it is the
  /// immediate (fall-through) successor, and update the CFG.
  void fastEmitBranch(MachineBasicBlock *MBB, const DebugLoc &DL);

  /// Emit an unconditional branch to \p FalseMBB, obtains the branch weight
  /// and adds TrueMBB and FalseMBB to the successor list.
  void finishCondBranch(const BasicBlock *BranchBB, MachineBasicBlock *TrueMBB,
                        MachineBasicBlock *FalseMBB);

  /// \brief Update the value map to include the new mapping for this
  /// instruction, or insert an extra copy to get the result in a previous
  /// determined register.
  ///
  /// NOTE: This is only necessary because we might select a block that uses a
  /// value before we select the block that defines the value. It might be
  /// possible to fix this by selecting blocks in reverse postorder.
  void updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs = 1);

  unsigned createResultReg(const TargetRegisterClass *RC);

  /// \brief Try to constrain Op so that it is usable by argument OpNum of the
  /// provided MCInstrDesc. If this fails, create a new virtual register in the
  /// correct class and COPY the value there.
  unsigned constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
                                    unsigned OpNum);

  /// \brief Emit a constant in a register using target-specific logic, such as
  /// constant pool loads.
  virtual unsigned fastMaterializeConstant(const Constant *C) { return 0; }

  /// \brief Emit an alloca address in a register using target-specific logic.
  virtual unsigned fastMaterializeAlloca(const AllocaInst *C) { return 0; }

  /// \brief Emit the floating-point constant +0.0 in a register using target-
  /// specific logic.
  virtual unsigned fastMaterializeFloatZero(const ConstantFP *CF) {
    return 0;
  }

  /// \brief Check if \c Add is an add that can be safely folded into \c GEP.
  ///
  /// \c Add can be folded into \c GEP if:
  /// - \c Add is an add,
  /// - \c Add's size matches \c GEP's,
  /// - \c Add is in the same basic block as \c GEP, and
  /// - \c Add has a constant operand.
  bool canFoldAddIntoGEP(const User *GEP, const Value *Add);

  /// \brief Test whether the given value has exactly one use.
  bool hasTrivialKill(const Value *V);

  /// \brief Create a machine mem operand from the given instruction.
  MachineMemOperand *createMachineMemOperandFor(const Instruction *I) const;

  CmpInst::Predicate optimizeCmpPredicate(const CmpInst *CI) const;

  bool lowerCallTo(const CallInst *CI, MCSymbol *Symbol, unsigned NumArgs);
  bool lowerCallTo(const CallInst *CI, const char *SymbolName,
                   unsigned NumArgs);
  bool lowerCallTo(CallLoweringInfo &CLI);

  bool isCommutativeIntrinsic(IntrinsicInst const *II) {
    switch (II->getIntrinsicID()) {
    case Intrinsic::sadd_with_overflow:
    case Intrinsic::uadd_with_overflow:
    case Intrinsic::smul_with_overflow:
    case Intrinsic::umul_with_overflow:
      return true;
    default:
      return false;
    }
  }


  bool lowerCall(const CallInst *I);
  /// \brief Select and emit code for a binary operator instruction, which has
  /// an opcode which directly corresponds to the given ISD opcode.
  bool selectBinaryOp(const User *I, unsigned ISDOpcode);
  bool selectFNeg(const User *I);
  bool selectGetElementPtr(const User *I);
  bool selectStackmap(const CallInst *I);
  bool selectPatchpoint(const CallInst *I);
  bool selectCall(const User *Call);
  bool selectIntrinsicCall(const IntrinsicInst *II);
  bool selectBitCast(const User *I);
  bool selectCast(const User *I, unsigned Opcode);
  bool selectExtractValue(const User *I);
  bool selectInsertValue(const User *I);

private:
  /// \brief Handle PHI nodes in successor blocks.
  ///
  /// Emit code to ensure constants are copied into registers when needed.
  /// Remember the virtual registers that need to be added to the Machine PHI
  /// nodes as input.  We cannot just directly add them, because expansion might
  /// result in multiple MBB's for one BB.  As such, the start of the BB might
  /// correspond to a different MBB than the end.
  bool handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);

  /// \brief Helper for materializeRegForValue to materialize a constant in a
  /// target-independent way.
  unsigned materializeConstant(const Value *V, MVT VT);

  /// \brief Helper for getRegForVale. This function is called when the value
  /// isn't already available in a register and must be materialized with new
  /// instructions.
  unsigned materializeRegForValue(const Value *V, MVT VT);

  /// \brief Clears LocalValueMap and moves the area for the new local variables
  /// to the beginning of the block. It helps to avoid spilling cached variables
  /// across heavy instructions like calls.
  void flushLocalValueMap();

  /// \brief Removes dead local value instructions after SavedLastLocalvalue.
  void removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue);

  /// \brief Insertion point before trying to select the current instruction.
  MachineBasicBlock::iterator SavedInsertPt;

  /// \brief Add a stackmap or patchpoint intrinsic call's live variable
  /// operands to a stackmap or patchpoint machine instruction.
  bool addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
                           const CallInst *CI, unsigned StartIdx);
  bool lowerCallOperands(const CallInst *CI, unsigned ArgIdx, unsigned NumArgs,
                         const Value *Callee, bool ForceRetVoidTy,
                         CallLoweringInfo &CLI);
};

} // end namespace llvm

#endif