/usr/include/llvm-3.9/llvm/CodeGen/LiveRangeEdit.h is in llvm-3.9-dev 1:3.9.1-19ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | //===---- LiveRangeEdit.h - Basic tools for split and spill -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The LiveRangeEdit class represents changes done to a virtual register when it
// is spilled or split.
//
// The parent register is never changed. Instead, a number of new virtual
// registers are created and added to the newRegs vector.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_LIVERANGEEDIT_H
#define LLVM_CODEGEN_LIVERANGEEDIT_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetSubtargetInfo.h"
namespace llvm {
class LiveIntervals;
class MachineBlockFrequencyInfo;
class MachineLoopInfo;
class VirtRegMap;
class LiveRangeEdit : private MachineRegisterInfo::Delegate {
public:
/// Callback methods for LiveRangeEdit owners.
class Delegate {
virtual void anchor();
public:
/// Called immediately before erasing a dead machine instruction.
virtual void LRE_WillEraseInstruction(MachineInstr *MI) {}
/// Called when a virtual register is no longer used. Return false to defer
/// its deletion from LiveIntervals.
virtual bool LRE_CanEraseVirtReg(unsigned) { return true; }
/// Called before shrinking the live range of a virtual register.
virtual void LRE_WillShrinkVirtReg(unsigned) {}
/// Called after cloning a virtual register.
/// This is used for new registers representing connected components of Old.
virtual void LRE_DidCloneVirtReg(unsigned New, unsigned Old) {}
virtual ~Delegate() {}
};
private:
LiveInterval *Parent;
SmallVectorImpl<unsigned> &NewRegs;
MachineRegisterInfo &MRI;
LiveIntervals &LIS;
VirtRegMap *VRM;
const TargetInstrInfo &TII;
Delegate *const TheDelegate;
/// FirstNew - Index of the first register added to NewRegs.
const unsigned FirstNew;
/// ScannedRemattable - true when remattable values have been identified.
bool ScannedRemattable;
/// DeadRemats - The saved instructions which have already been dead after
/// rematerialization but not deleted yet -- to be done in postOptimization.
SmallPtrSet<MachineInstr *, 32> *DeadRemats;
/// Remattable - Values defined by remattable instructions as identified by
/// tii.isTriviallyReMaterializable().
SmallPtrSet<const VNInfo*,4> Remattable;
/// Rematted - Values that were actually rematted, and so need to have their
/// live range trimmed or entirely removed.
SmallPtrSet<const VNInfo*,4> Rematted;
/// scanRemattable - Identify the Parent values that may rematerialize.
void scanRemattable(AliasAnalysis *aa);
/// allUsesAvailableAt - Return true if all registers used by OrigMI at
/// OrigIdx are also available with the same value at UseIdx.
bool allUsesAvailableAt(const MachineInstr *OrigMI, SlotIndex OrigIdx,
SlotIndex UseIdx) const;
/// foldAsLoad - If LI has a single use and a single def that can be folded as
/// a load, eliminate the register by folding the def into the use.
bool foldAsLoad(LiveInterval *LI, SmallVectorImpl<MachineInstr*> &Dead);
typedef SetVector<LiveInterval*,
SmallVector<LiveInterval*, 8>,
SmallPtrSet<LiveInterval*, 8> > ToShrinkSet;
/// Helper for eliminateDeadDefs.
void eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink,
AliasAnalysis *AA);
/// MachineRegisterInfo callback to notify when new virtual
/// registers are created.
void MRI_NoteNewVirtualRegister(unsigned VReg) override;
/// \brief Check if MachineOperand \p MO is a last use/kill either in the
/// main live range of \p LI or in one of the matching subregister ranges.
bool useIsKill(const LiveInterval &LI, const MachineOperand &MO) const;
public:
/// Create a LiveRangeEdit for breaking down parent into smaller pieces.
/// @param parent The register being spilled or split.
/// @param newRegs List to receive any new registers created. This needn't be
/// empty initially, any existing registers are ignored.
/// @param MF The MachineFunction the live range edit is taking place in.
/// @param lis The collection of all live intervals in this function.
/// @param vrm Map of virtual registers to physical registers for this
/// function. If NULL, no virtual register map updates will
/// be done. This could be the case if called before Regalloc.
/// @param deadRemats The collection of all the instructions defining an
/// original reg and are dead after remat.
LiveRangeEdit(LiveInterval *parent, SmallVectorImpl<unsigned> &newRegs,
MachineFunction &MF, LiveIntervals &lis, VirtRegMap *vrm,
Delegate *delegate = nullptr,
SmallPtrSet<MachineInstr *, 32> *deadRemats = nullptr)
: Parent(parent), NewRegs(newRegs), MRI(MF.getRegInfo()), LIS(lis),
VRM(vrm), TII(*MF.getSubtarget().getInstrInfo()), TheDelegate(delegate),
FirstNew(newRegs.size()), ScannedRemattable(false),
DeadRemats(deadRemats) {
MRI.setDelegate(this);
}
~LiveRangeEdit() override { MRI.resetDelegate(this); }
LiveInterval &getParent() const {
assert(Parent && "No parent LiveInterval");
return *Parent;
}
unsigned getReg() const { return getParent().reg; }
/// Iterator for accessing the new registers added by this edit.
typedef SmallVectorImpl<unsigned>::const_iterator iterator;
iterator begin() const { return NewRegs.begin()+FirstNew; }
iterator end() const { return NewRegs.end(); }
unsigned size() const { return NewRegs.size()-FirstNew; }
bool empty() const { return size() == 0; }
unsigned get(unsigned idx) const { return NewRegs[idx+FirstNew]; }
/// pop_back - It allows LiveRangeEdit users to drop new registers.
/// The context is when an original def instruction of a register is
/// dead after rematerialization, we still want to keep it for following
/// rematerializations. We save the def instruction in DeadRemats,
/// and replace the original dst register with a new dummy register so
/// the live range of original dst register can be shrinked normally.
/// We don't want to allocate phys register for the dummy register, so
/// we want to drop it from the NewRegs set.
void pop_back() { NewRegs.pop_back(); }
ArrayRef<unsigned> regs() const {
return makeArrayRef(NewRegs).slice(FirstNew);
}
/// createEmptyIntervalFrom - Create a new empty interval based on OldReg.
LiveInterval &createEmptyIntervalFrom(unsigned OldReg);
/// createFrom - Create a new virtual register based on OldReg.
unsigned createFrom(unsigned OldReg);
/// create - Create a new register with the same class and original slot as
/// parent.
LiveInterval &createEmptyInterval() {
return createEmptyIntervalFrom(getReg());
}
unsigned create() {
return createFrom(getReg());
}
/// anyRematerializable - Return true if any parent values may be
/// rematerializable.
/// This function must be called before any rematerialization is attempted.
bool anyRematerializable(AliasAnalysis*);
/// checkRematerializable - Manually add VNI to the list of rematerializable
/// values if DefMI may be rematerializable.
bool checkRematerializable(VNInfo *VNI, const MachineInstr *DefMI,
AliasAnalysis*);
/// Remat - Information needed to rematerialize at a specific location.
struct Remat {
VNInfo *ParentVNI; // parent_'s value at the remat location.
MachineInstr *OrigMI; // Instruction defining OrigVNI. It contains the
// real expr for remat.
explicit Remat(VNInfo *ParentVNI) : ParentVNI(ParentVNI), OrigMI(nullptr) {}
};
/// canRematerializeAt - Determine if ParentVNI can be rematerialized at
/// UseIdx. It is assumed that parent_.getVNINfoAt(UseIdx) == ParentVNI.
/// When cheapAsAMove is set, only cheap remats are allowed.
bool canRematerializeAt(Remat &RM, VNInfo *OrigVNI, SlotIndex UseIdx,
bool cheapAsAMove);
/// rematerializeAt - Rematerialize RM.ParentVNI into DestReg by inserting an
/// instruction into MBB before MI. The new instruction is mapped, but
/// liveness is not updated.
/// Return the SlotIndex of the new instruction.
SlotIndex rematerializeAt(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg,
const Remat &RM,
const TargetRegisterInfo&,
bool Late = false);
/// markRematerialized - explicitly mark a value as rematerialized after doing
/// it manually.
void markRematerialized(const VNInfo *ParentVNI) {
Rematted.insert(ParentVNI);
}
/// didRematerialize - Return true if ParentVNI was rematerialized anywhere.
bool didRematerialize(const VNInfo *ParentVNI) const {
return Rematted.count(ParentVNI);
}
void markDeadRemat(MachineInstr *inst) {
// DeadRemats is an optional field.
if (DeadRemats)
DeadRemats->insert(inst);
}
/// eraseVirtReg - Notify the delegate that Reg is no longer in use, and try
/// to erase it from LIS.
void eraseVirtReg(unsigned Reg);
/// eliminateDeadDefs - Try to delete machine instructions that are now dead
/// (allDefsAreDead returns true). This may cause live intervals to be trimmed
/// and further dead efs to be eliminated.
/// RegsBeingSpilled lists registers currently being spilled by the register
/// allocator. These registers should not be split into new intervals
/// as currently those new intervals are not guaranteed to spill.
void eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead,
ArrayRef<unsigned> RegsBeingSpilled = None,
AliasAnalysis *AA = nullptr);
/// calculateRegClassAndHint - Recompute register class and hint for each new
/// register.
void calculateRegClassAndHint(MachineFunction&,
const MachineLoopInfo&,
const MachineBlockFrequencyInfo&);
};
}
#endif
|