This file is indexed.

/usr/include/llvm-3.9/llvm/CodeGen/MachineScheduler.h is in llvm-3.9-dev 1:3.9.1-19ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
//==- MachineScheduler.h - MachineInstr Scheduling Pass ----------*- C++ -*-==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides an interface for customizing the standard MachineScheduler
// pass. Note that the entire pass may be replaced as follows:
//
// <Target>TargetMachine::createPassConfig(PassManagerBase &PM) {
//   PM.substitutePass(&MachineSchedulerID, &CustomSchedulerPassID);
//   ...}
//
// The MachineScheduler pass is only responsible for choosing the regions to be
// scheduled. Targets can override the DAG builder and scheduler without
// replacing the pass as follows:
//
// ScheduleDAGInstrs *<Target>PassConfig::
// createMachineScheduler(MachineSchedContext *C) {
//   return new CustomMachineScheduler(C);
// }
//
// The default scheduler, ScheduleDAGMILive, builds the DAG and drives list
// scheduling while updating the instruction stream, register pressure, and live
// intervals. Most targets don't need to override the DAG builder and list
// schedulier, but subtargets that require custom scheduling heuristics may
// plugin an alternate MachineSchedStrategy. The strategy is responsible for
// selecting the highest priority node from the list:
//
// ScheduleDAGInstrs *<Target>PassConfig::
// createMachineScheduler(MachineSchedContext *C) {
//   return new ScheduleDAGMI(C, CustomStrategy(C));
// }
//
// The DAG builder can also be customized in a sense by adding DAG mutations
// that will run after DAG building and before list scheduling. DAG mutations
// can adjust dependencies based on target-specific knowledge or add weak edges
// to aid heuristics:
//
// ScheduleDAGInstrs *<Target>PassConfig::
// createMachineScheduler(MachineSchedContext *C) {
//   ScheduleDAGMI *DAG = new ScheduleDAGMI(C, CustomStrategy(C));
//   DAG->addMutation(new CustomDependencies(DAG->TII, DAG->TRI));
//   return DAG;
// }
//
// A target that supports alternative schedulers can use the
// MachineSchedRegistry to allow command line selection. This can be done by
// implementing the following boilerplate:
//
// static ScheduleDAGInstrs *createCustomMachineSched(MachineSchedContext *C) {
//  return new CustomMachineScheduler(C);
// }
// static MachineSchedRegistry
// SchedCustomRegistry("custom", "Run my target's custom scheduler",
//                     createCustomMachineSched);
//
//
// Finally, subtargets that don't need to implement custom heuristics but would
// like to configure the GenericScheduler's policy for a given scheduler region,
// including scheduling direction and register pressure tracking policy, can do
// this:
//
// void <SubTarget>Subtarget::
// overrideSchedPolicy(MachineSchedPolicy &Policy,
//                     unsigned NumRegionInstrs) const {
//   Policy.<Flag> = true;
// }
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_MACHINESCHEDULER_H
#define LLVM_CODEGEN_MACHINESCHEDULER_H

#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/MachinePassRegistry.h"
#include "llvm/CodeGen/RegisterPressure.h"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/CodeGen/ScheduleDAGMutation.h"
#include <memory>

namespace llvm {

extern cl::opt<bool> ForceTopDown;
extern cl::opt<bool> ForceBottomUp;

class LiveIntervals;
class MachineDominatorTree;
class MachineLoopInfo;
class RegisterClassInfo;
class ScheduleDAGInstrs;
class SchedDFSResult;
class ScheduleHazardRecognizer;

/// MachineSchedContext provides enough context from the MachineScheduler pass
/// for the target to instantiate a scheduler.
struct MachineSchedContext {
  MachineFunction *MF;
  const MachineLoopInfo *MLI;
  const MachineDominatorTree *MDT;
  const TargetPassConfig *PassConfig;
  AliasAnalysis *AA;
  LiveIntervals *LIS;

  RegisterClassInfo *RegClassInfo;

  MachineSchedContext();
  virtual ~MachineSchedContext();
};

/// MachineSchedRegistry provides a selection of available machine instruction
/// schedulers.
class MachineSchedRegistry : public MachinePassRegistryNode {
public:
  typedef ScheduleDAGInstrs *(*ScheduleDAGCtor)(MachineSchedContext *);

  // RegisterPassParser requires a (misnamed) FunctionPassCtor type.
  typedef ScheduleDAGCtor FunctionPassCtor;

  static MachinePassRegistry Registry;

  MachineSchedRegistry(const char *N, const char *D, ScheduleDAGCtor C)
    : MachinePassRegistryNode(N, D, (MachinePassCtor)C) {
    Registry.Add(this);
  }
  ~MachineSchedRegistry() { Registry.Remove(this); }

  // Accessors.
  //
  MachineSchedRegistry *getNext() const {
    return (MachineSchedRegistry *)MachinePassRegistryNode::getNext();
  }
  static MachineSchedRegistry *getList() {
    return (MachineSchedRegistry *)Registry.getList();
  }
  static void setListener(MachinePassRegistryListener *L) {
    Registry.setListener(L);
  }
};

class ScheduleDAGMI;

/// Define a generic scheduling policy for targets that don't provide their own
/// MachineSchedStrategy. This can be overriden for each scheduling region
/// before building the DAG.
struct MachineSchedPolicy {
  // Allow the scheduler to disable register pressure tracking.
  bool ShouldTrackPressure;
  /// Track LaneMasks to allow reordering of independent subregister writes
  /// of the same vreg. \sa MachineSchedStrategy::shouldTrackLaneMasks()
  bool ShouldTrackLaneMasks;

  // Allow the scheduler to force top-down or bottom-up scheduling. If neither
  // is true, the scheduler runs in both directions and converges.
  bool OnlyTopDown;
  bool OnlyBottomUp;

  // Disable heuristic that tries to fetch nodes from long dependency chains
  // first.
  bool DisableLatencyHeuristic;

  MachineSchedPolicy(): ShouldTrackPressure(false), ShouldTrackLaneMasks(false),
    OnlyTopDown(false), OnlyBottomUp(false), DisableLatencyHeuristic(false) {}
};

/// MachineSchedStrategy - Interface to the scheduling algorithm used by
/// ScheduleDAGMI.
///
/// Initialization sequence:
///   initPolicy -> shouldTrackPressure -> initialize(DAG) -> registerRoots
class MachineSchedStrategy {
  virtual void anchor();
public:
  virtual ~MachineSchedStrategy() {}

  /// Optionally override the per-region scheduling policy.
  virtual void initPolicy(MachineBasicBlock::iterator Begin,
                          MachineBasicBlock::iterator End,
                          unsigned NumRegionInstrs) {}

  virtual void dumpPolicy() {}

  /// Check if pressure tracking is needed before building the DAG and
  /// initializing this strategy. Called after initPolicy.
  virtual bool shouldTrackPressure() const { return true; }

  /// Returns true if lanemasks should be tracked. LaneMask tracking is
  /// necessary to reorder independent subregister defs for the same vreg.
  /// This has to be enabled in combination with shouldTrackPressure().
  virtual bool shouldTrackLaneMasks() const { return false; }

  /// Initialize the strategy after building the DAG for a new region.
  virtual void initialize(ScheduleDAGMI *DAG) = 0;

  /// Notify this strategy that all roots have been released (including those
  /// that depend on EntrySU or ExitSU).
  virtual void registerRoots() {}

  /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to
  /// schedule the node at the top of the unscheduled region. Otherwise it will
  /// be scheduled at the bottom.
  virtual SUnit *pickNode(bool &IsTopNode) = 0;

  /// \brief Scheduler callback to notify that a new subtree is scheduled.
  virtual void scheduleTree(unsigned SubtreeID) {}

  /// Notify MachineSchedStrategy that ScheduleDAGMI has scheduled an
  /// instruction and updated scheduled/remaining flags in the DAG nodes.
  virtual void schedNode(SUnit *SU, bool IsTopNode) = 0;

  /// When all predecessor dependencies have been resolved, free this node for
  /// top-down scheduling.
  virtual void releaseTopNode(SUnit *SU) = 0;
  /// When all successor dependencies have been resolved, free this node for
  /// bottom-up scheduling.
  virtual void releaseBottomNode(SUnit *SU) = 0;
};

/// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply
/// schedules machine instructions according to the given MachineSchedStrategy
/// without much extra book-keeping. This is the common functionality between
/// PreRA and PostRA MachineScheduler.
class ScheduleDAGMI : public ScheduleDAGInstrs {
protected:
  AliasAnalysis *AA;
  LiveIntervals *LIS;
  std::unique_ptr<MachineSchedStrategy> SchedImpl;

  /// Topo - A topological ordering for SUnits which permits fast IsReachable
  /// and similar queries.
  ScheduleDAGTopologicalSort Topo;

  /// Ordered list of DAG postprocessing steps.
  std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;

  /// The top of the unscheduled zone.
  MachineBasicBlock::iterator CurrentTop;

  /// The bottom of the unscheduled zone.
  MachineBasicBlock::iterator CurrentBottom;

  /// Record the next node in a scheduled cluster.
  const SUnit *NextClusterPred;
  const SUnit *NextClusterSucc;

#ifndef NDEBUG
  /// The number of instructions scheduled so far. Used to cut off the
  /// scheduler at the point determined by misched-cutoff.
  unsigned NumInstrsScheduled;
#endif
public:
  ScheduleDAGMI(MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S,
                bool RemoveKillFlags)
      : ScheduleDAGInstrs(*C->MF, C->MLI, RemoveKillFlags), AA(C->AA),
        LIS(C->LIS), SchedImpl(std::move(S)), Topo(SUnits, &ExitSU),
        CurrentTop(), CurrentBottom(), NextClusterPred(nullptr),
        NextClusterSucc(nullptr) {
#ifndef NDEBUG
    NumInstrsScheduled = 0;
#endif
  }

  // Provide a vtable anchor
  ~ScheduleDAGMI() override;

  // Returns LiveIntervals instance for use in DAG mutators and such.
  LiveIntervals *getLIS() const { return LIS; }

  /// Return true if this DAG supports VReg liveness and RegPressure.
  virtual bool hasVRegLiveness() const { return false; }

  /// Add a postprocessing step to the DAG builder.
  /// Mutations are applied in the order that they are added after normal DAG
  /// building and before MachineSchedStrategy initialization.
  ///
  /// ScheduleDAGMI takes ownership of the Mutation object.
  void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
    Mutations.push_back(std::move(Mutation));
  }

  /// \brief True if an edge can be added from PredSU to SuccSU without creating
  /// a cycle.
  bool canAddEdge(SUnit *SuccSU, SUnit *PredSU);

  /// \brief Add a DAG edge to the given SU with the given predecessor
  /// dependence data.
  ///
  /// \returns true if the edge may be added without creating a cycle OR if an
  /// equivalent edge already existed (false indicates failure).
  bool addEdge(SUnit *SuccSU, const SDep &PredDep);

  MachineBasicBlock::iterator top() const { return CurrentTop; }
  MachineBasicBlock::iterator bottom() const { return CurrentBottom; }

  /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
  /// region. This covers all instructions in a block, while schedule() may only
  /// cover a subset.
  void enterRegion(MachineBasicBlock *bb,
                   MachineBasicBlock::iterator begin,
                   MachineBasicBlock::iterator end,
                   unsigned regioninstrs) override;

  /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
  /// reorderable instructions.
  void schedule() override;

  /// Change the position of an instruction within the basic block and update
  /// live ranges and region boundary iterators.
  void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos);

  const SUnit *getNextClusterPred() const { return NextClusterPred; }

  const SUnit *getNextClusterSucc() const { return NextClusterSucc; }

  void viewGraph(const Twine &Name, const Twine &Title) override;
  void viewGraph() override;

protected:
  // Top-Level entry points for the schedule() driver...

  /// Apply each ScheduleDAGMutation step in order. This allows different
  /// instances of ScheduleDAGMI to perform custom DAG postprocessing.
  void postprocessDAG();

  /// Release ExitSU predecessors and setup scheduler queues.
  void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);

  /// Update scheduler DAG and queues after scheduling an instruction.
  void updateQueues(SUnit *SU, bool IsTopNode);

  /// Reinsert debug_values recorded in ScheduleDAGInstrs::DbgValues.
  void placeDebugValues();

  /// \brief dump the scheduled Sequence.
  void dumpSchedule() const;

  // Lesser helpers...
  bool checkSchedLimit();

  void findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
                             SmallVectorImpl<SUnit*> &BotRoots);

  void releaseSucc(SUnit *SU, SDep *SuccEdge);
  void releaseSuccessors(SUnit *SU);
  void releasePred(SUnit *SU, SDep *PredEdge);
  void releasePredecessors(SUnit *SU);
};

/// ScheduleDAGMILive is an implementation of ScheduleDAGInstrs that schedules
/// machine instructions while updating LiveIntervals and tracking regpressure.
class ScheduleDAGMILive : public ScheduleDAGMI {
protected:
  RegisterClassInfo *RegClassInfo;

  /// Information about DAG subtrees. If DFSResult is NULL, then SchedulerTrees
  /// will be empty.
  SchedDFSResult *DFSResult;
  BitVector ScheduledTrees;

  MachineBasicBlock::iterator LiveRegionEnd;

  // Map each SU to its summary of pressure changes. This array is updated for
  // liveness during bottom-up scheduling. Top-down scheduling may proceed but
  // has no affect on the pressure diffs.
  PressureDiffs SUPressureDiffs;

  /// Register pressure in this region computed by initRegPressure.
  bool ShouldTrackPressure;
  bool ShouldTrackLaneMasks;
  IntervalPressure RegPressure;
  RegPressureTracker RPTracker;

  /// List of pressure sets that exceed the target's pressure limit before
  /// scheduling, listed in increasing set ID order. Each pressure set is paired
  /// with its max pressure in the currently scheduled regions.
  std::vector<PressureChange> RegionCriticalPSets;

  /// The top of the unscheduled zone.
  IntervalPressure TopPressure;
  RegPressureTracker TopRPTracker;

  /// The bottom of the unscheduled zone.
  IntervalPressure BotPressure;
  RegPressureTracker BotRPTracker;

  /// True if disconnected subregister components are already renamed.
  /// The renaming is only done on demand if lane masks are tracked.
  bool DisconnectedComponentsRenamed;

public:
  ScheduleDAGMILive(MachineSchedContext *C,
                    std::unique_ptr<MachineSchedStrategy> S)
      : ScheduleDAGMI(C, std::move(S), /*RemoveKillFlags=*/false),
        RegClassInfo(C->RegClassInfo), DFSResult(nullptr),
        ShouldTrackPressure(false), ShouldTrackLaneMasks(false),
        RPTracker(RegPressure), TopRPTracker(TopPressure),
        BotRPTracker(BotPressure), DisconnectedComponentsRenamed(false) {}

  ~ScheduleDAGMILive() override;

  /// Return true if this DAG supports VReg liveness and RegPressure.
  bool hasVRegLiveness() const override { return true; }

  /// \brief Return true if register pressure tracking is enabled.
  bool isTrackingPressure() const { return ShouldTrackPressure; }

  /// Get current register pressure for the top scheduled instructions.
  const IntervalPressure &getTopPressure() const { return TopPressure; }
  const RegPressureTracker &getTopRPTracker() const { return TopRPTracker; }

  /// Get current register pressure for the bottom scheduled instructions.
  const IntervalPressure &getBotPressure() const { return BotPressure; }
  const RegPressureTracker &getBotRPTracker() const { return BotRPTracker; }

  /// Get register pressure for the entire scheduling region before scheduling.
  const IntervalPressure &getRegPressure() const { return RegPressure; }

  const std::vector<PressureChange> &getRegionCriticalPSets() const {
    return RegionCriticalPSets;
  }

  PressureDiff &getPressureDiff(const SUnit *SU) {
    return SUPressureDiffs[SU->NodeNum];
  }

  /// Compute a DFSResult after DAG building is complete, and before any
  /// queue comparisons.
  void computeDFSResult();

  /// Return a non-null DFS result if the scheduling strategy initialized it.
  const SchedDFSResult *getDFSResult() const { return DFSResult; }

  BitVector &getScheduledTrees() { return ScheduledTrees; }

  /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
  /// region. This covers all instructions in a block, while schedule() may only
  /// cover a subset.
  void enterRegion(MachineBasicBlock *bb,
                   MachineBasicBlock::iterator begin,
                   MachineBasicBlock::iterator end,
                   unsigned regioninstrs) override;

  /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
  /// reorderable instructions.
  void schedule() override;

  /// Compute the cyclic critical path through the DAG.
  unsigned computeCyclicCriticalPath();

protected:
  // Top-Level entry points for the schedule() driver...

  /// Call ScheduleDAGInstrs::buildSchedGraph with register pressure tracking
  /// enabled. This sets up three trackers. RPTracker will cover the entire DAG
  /// region, TopTracker and BottomTracker will be initialized to the top and
  /// bottom of the DAG region without covereing any unscheduled instruction.
  void buildDAGWithRegPressure();

  /// Release ExitSU predecessors and setup scheduler queues. Re-position
  /// the Top RP tracker in case the region beginning has changed.
  void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);

  /// Move an instruction and update register pressure.
  void scheduleMI(SUnit *SU, bool IsTopNode);

  // Lesser helpers...

  void initRegPressure();

  void updatePressureDiffs(ArrayRef<RegisterMaskPair> LiveUses);

  void updateScheduledPressure(const SUnit *SU,
                               const std::vector<unsigned> &NewMaxPressure);
};

//===----------------------------------------------------------------------===//
///
/// Helpers for implementing custom MachineSchedStrategy classes. These take
/// care of the book-keeping associated with list scheduling heuristics.
///
//===----------------------------------------------------------------------===//

/// ReadyQueue encapsulates vector of "ready" SUnits with basic convenience
/// methods for pushing and removing nodes. ReadyQueue's are uniquely identified
/// by an ID. SUnit::NodeQueueId is a mask of the ReadyQueues the SUnit is in.
///
/// This is a convenience class that may be used by implementations of
/// MachineSchedStrategy.
class ReadyQueue {
  unsigned ID;
  std::string Name;
  std::vector<SUnit*> Queue;

public:
  ReadyQueue(unsigned id, const Twine &name): ID(id), Name(name.str()) {}

  unsigned getID() const { return ID; }

  StringRef getName() const { return Name; }

  // SU is in this queue if it's NodeQueueID is a superset of this ID.
  bool isInQueue(SUnit *SU) const { return (SU->NodeQueueId & ID); }

  bool empty() const { return Queue.empty(); }

  void clear() { Queue.clear(); }

  unsigned size() const { return Queue.size(); }

  typedef std::vector<SUnit*>::iterator iterator;

  iterator begin() { return Queue.begin(); }

  iterator end() { return Queue.end(); }

  ArrayRef<SUnit*> elements() { return Queue; }

  iterator find(SUnit *SU) {
    return std::find(Queue.begin(), Queue.end(), SU);
  }

  void push(SUnit *SU) {
    Queue.push_back(SU);
    SU->NodeQueueId |= ID;
  }

  iterator remove(iterator I) {
    (*I)->NodeQueueId &= ~ID;
    *I = Queue.back();
    unsigned idx = I - Queue.begin();
    Queue.pop_back();
    return Queue.begin() + idx;
  }

  void dump();
};

/// Summarize the unscheduled region.
struct SchedRemainder {
  // Critical path through the DAG in expected latency.
  unsigned CriticalPath;
  unsigned CyclicCritPath;

  // Scaled count of micro-ops left to schedule.
  unsigned RemIssueCount;

  bool IsAcyclicLatencyLimited;

  // Unscheduled resources
  SmallVector<unsigned, 16> RemainingCounts;

  void reset() {
    CriticalPath = 0;
    CyclicCritPath = 0;
    RemIssueCount = 0;
    IsAcyclicLatencyLimited = false;
    RemainingCounts.clear();
  }

  SchedRemainder() { reset(); }

  void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
};

/// Each Scheduling boundary is associated with ready queues. It tracks the
/// current cycle in the direction of movement, and maintains the state
/// of "hazards" and other interlocks at the current cycle.
class SchedBoundary {
public:
  /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
  enum {
    TopQID = 1,
    BotQID = 2,
    LogMaxQID = 2
  };

  ScheduleDAGMI *DAG;
  const TargetSchedModel *SchedModel;
  SchedRemainder *Rem;

  ReadyQueue Available;
  ReadyQueue Pending;

  ScheduleHazardRecognizer *HazardRec;

private:
  /// True if the pending Q should be checked/updated before scheduling another
  /// instruction.
  bool CheckPending;

  // For heuristics, keep a list of the nodes that immediately depend on the
  // most recently scheduled node.
  SmallPtrSet<const SUnit*, 8> NextSUs;

  /// Number of cycles it takes to issue the instructions scheduled in this
  /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls.
  /// See getStalls().
  unsigned CurrCycle;

  /// Micro-ops issued in the current cycle
  unsigned CurrMOps;

  /// MinReadyCycle - Cycle of the soonest available instruction.
  unsigned MinReadyCycle;

  // The expected latency of the critical path in this scheduled zone.
  unsigned ExpectedLatency;

  // The latency of dependence chains leading into this zone.
  // For each node scheduled bottom-up: DLat = max DLat, N.Depth.
  // For each cycle scheduled: DLat -= 1.
  unsigned DependentLatency;

  /// Count the scheduled (issued) micro-ops that can be retired by
  /// time=CurrCycle assuming the first scheduled instr is retired at time=0.
  unsigned RetiredMOps;

  // Count scheduled resources that have been executed. Resources are
  // considered executed if they become ready in the time that it takes to
  // saturate any resource including the one in question. Counts are scaled
  // for direct comparison with other resources. Counts can be compared with
  // MOps * getMicroOpFactor and Latency * getLatencyFactor.
  SmallVector<unsigned, 16> ExecutedResCounts;

  /// Cache the max count for a single resource.
  unsigned MaxExecutedResCount;

  // Cache the critical resources ID in this scheduled zone.
  unsigned ZoneCritResIdx;

  // Is the scheduled region resource limited vs. latency limited.
  bool IsResourceLimited;

  // Record the highest cycle at which each resource has been reserved by a
  // scheduled instruction.
  SmallVector<unsigned, 16> ReservedCycles;

#ifndef NDEBUG
  // Remember the greatest possible stall as an upper bound on the number of
  // times we should retry the pending queue because of a hazard.
  unsigned MaxObservedStall;
#endif

public:
  /// Pending queues extend the ready queues with the same ID and the
  /// PendingFlag set.
  SchedBoundary(unsigned ID, const Twine &Name):
    DAG(nullptr), SchedModel(nullptr), Rem(nullptr), Available(ID, Name+".A"),
    Pending(ID << LogMaxQID, Name+".P"),
    HazardRec(nullptr) {
    reset();
  }

  ~SchedBoundary();

  void reset();

  void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
            SchedRemainder *rem);

  bool isTop() const {
    return Available.getID() == TopQID;
  }

  /// Number of cycles to issue the instructions scheduled in this zone.
  unsigned getCurrCycle() const { return CurrCycle; }

  /// Micro-ops issued in the current cycle
  unsigned getCurrMOps() const { return CurrMOps; }

  /// Return true if the given SU is used by the most recently scheduled
  /// instruction.
  bool isNextSU(const SUnit *SU) const { return NextSUs.count(SU); }

  // The latency of dependence chains leading into this zone.
  unsigned getDependentLatency() const { return DependentLatency; }

  /// Get the number of latency cycles "covered" by the scheduled
  /// instructions. This is the larger of the critical path within the zone
  /// and the number of cycles required to issue the instructions.
  unsigned getScheduledLatency() const {
    return std::max(ExpectedLatency, CurrCycle);
  }

  unsigned getUnscheduledLatency(SUnit *SU) const {
    return isTop() ? SU->getHeight() : SU->getDepth();
  }

  unsigned getResourceCount(unsigned ResIdx) const {
    return ExecutedResCounts[ResIdx];
  }

  /// Get the scaled count of scheduled micro-ops and resources, including
  /// executed resources.
  unsigned getCriticalCount() const {
    if (!ZoneCritResIdx)
      return RetiredMOps * SchedModel->getMicroOpFactor();
    return getResourceCount(ZoneCritResIdx);
  }

  /// Get a scaled count for the minimum execution time of the scheduled
  /// micro-ops that are ready to execute by getExecutedCount. Notice the
  /// feedback loop.
  unsigned getExecutedCount() const {
    return std::max(CurrCycle * SchedModel->getLatencyFactor(),
                    MaxExecutedResCount);
  }

  unsigned getZoneCritResIdx() const { return ZoneCritResIdx; }

  // Is the scheduled region resource limited vs. latency limited.
  bool isResourceLimited() const { return IsResourceLimited; }

  /// Get the difference between the given SUnit's ready time and the current
  /// cycle.
  unsigned getLatencyStallCycles(SUnit *SU);

  unsigned getNextResourceCycle(unsigned PIdx, unsigned Cycles);

  bool checkHazard(SUnit *SU);

  unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs);

  unsigned getOtherResourceCount(unsigned &OtherCritIdx);

  void releaseNode(SUnit *SU, unsigned ReadyCycle);

  void releaseTopNode(SUnit *SU);

  void releaseBottomNode(SUnit *SU);

  void bumpCycle(unsigned NextCycle);

  void incExecutedResources(unsigned PIdx, unsigned Count);

  unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle);

  void bumpNode(SUnit *SU);

  void releasePending();

  void removeReady(SUnit *SU);

  /// Call this before applying any other heuristics to the Available queue.
  /// Updates the Available/Pending Q's if necessary and returns the single
  /// available instruction, or NULL if there are multiple candidates.
  SUnit *pickOnlyChoice();

#ifndef NDEBUG
  void dumpScheduledState();
#endif
};

/// Base class for GenericScheduler. This class maintains information about
/// scheduling candidates based on TargetSchedModel making it easy to implement
/// heuristics for either preRA or postRA scheduling.
class GenericSchedulerBase : public MachineSchedStrategy {
public:
  /// Represent the type of SchedCandidate found within a single queue.
  /// pickNodeBidirectional depends on these listed by decreasing priority.
  enum CandReason : uint8_t {
    NoCand, Only1, PhysRegCopy, RegExcess, RegCritical, Stall, Cluster, Weak,
    RegMax, ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
    TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};

#ifndef NDEBUG
  static const char *getReasonStr(GenericSchedulerBase::CandReason Reason);
#endif

  /// Policy for scheduling the next instruction in the candidate's zone.
  struct CandPolicy {
    bool ReduceLatency;
    unsigned ReduceResIdx;
    unsigned DemandResIdx;

    CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}

    bool operator==(const CandPolicy &RHS) const {
      return ReduceLatency == RHS.ReduceLatency &&
             ReduceResIdx == RHS.ReduceResIdx &&
             DemandResIdx == RHS.DemandResIdx;
    }
    bool operator!=(const CandPolicy &RHS) const {
      return !(*this == RHS);
    }
  };

  /// Status of an instruction's critical resource consumption.
  struct SchedResourceDelta {
    // Count critical resources in the scheduled region required by SU.
    unsigned CritResources;

    // Count critical resources from another region consumed by SU.
    unsigned DemandedResources;

    SchedResourceDelta(): CritResources(0), DemandedResources(0) {}

    bool operator==(const SchedResourceDelta &RHS) const {
      return CritResources == RHS.CritResources
        && DemandedResources == RHS.DemandedResources;
    }
    bool operator!=(const SchedResourceDelta &RHS) const {
      return !operator==(RHS);
    }
  };

  /// Store the state used by GenericScheduler heuristics, required for the
  /// lifetime of one invocation of pickNode().
  struct SchedCandidate {
    CandPolicy Policy;

    // The best SUnit candidate.
    SUnit *SU;

    // The reason for this candidate.
    CandReason Reason;

    // Whether this candidate should be scheduled at top/bottom.
    bool AtTop;

    // Register pressure values for the best candidate.
    RegPressureDelta RPDelta;

    // Critical resource consumption of the best candidate.
    SchedResourceDelta ResDelta;

    SchedCandidate() { reset(CandPolicy()); }
    SchedCandidate(const CandPolicy &Policy) { reset(Policy); }

    void reset(const CandPolicy &NewPolicy) {
      Policy = NewPolicy;
      SU = nullptr;
      Reason = NoCand;
      AtTop = false;
      RPDelta = RegPressureDelta();
      ResDelta = SchedResourceDelta();
    }

    bool isValid() const { return SU; }

    // Copy the status of another candidate without changing policy.
    void setBest(SchedCandidate &Best) {
      assert(Best.Reason != NoCand && "uninitialized Sched candidate");
      SU = Best.SU;
      Reason = Best.Reason;
      AtTop = Best.AtTop;
      RPDelta = Best.RPDelta;
      ResDelta = Best.ResDelta;
    }

    void initResourceDelta(const ScheduleDAGMI *DAG,
                           const TargetSchedModel *SchedModel);
  };

protected:
  const MachineSchedContext *Context;
  const TargetSchedModel *SchedModel;
  const TargetRegisterInfo *TRI;

  SchedRemainder Rem;
protected:
  GenericSchedulerBase(const MachineSchedContext *C):
    Context(C), SchedModel(nullptr), TRI(nullptr) {}

  void setPolicy(CandPolicy &Policy, bool IsPostRA, SchedBoundary &CurrZone,
                 SchedBoundary *OtherZone);

#ifndef NDEBUG
  void traceCandidate(const SchedCandidate &Cand);
#endif
};

/// GenericScheduler shrinks the unscheduled zone using heuristics to balance
/// the schedule.
class GenericScheduler : public GenericSchedulerBase {
  ScheduleDAGMILive *DAG;

  // State of the top and bottom scheduled instruction boundaries.
  SchedBoundary Top;
  SchedBoundary Bot;

  /// Candidate last picked from Top boundary.
  SchedCandidate TopCand;
  /// Candidate last picked from Bot boundary.
  SchedCandidate BotCand;

  MachineSchedPolicy RegionPolicy;
public:
  GenericScheduler(const MachineSchedContext *C):
    GenericSchedulerBase(C), DAG(nullptr), Top(SchedBoundary::TopQID, "TopQ"),
    Bot(SchedBoundary::BotQID, "BotQ") {}

  void initPolicy(MachineBasicBlock::iterator Begin,
                  MachineBasicBlock::iterator End,
                  unsigned NumRegionInstrs) override;

  void dumpPolicy() override;

  bool shouldTrackPressure() const override {
    return RegionPolicy.ShouldTrackPressure;
  }

  bool shouldTrackLaneMasks() const override {
    return RegionPolicy.ShouldTrackLaneMasks;
  }

  void initialize(ScheduleDAGMI *dag) override;

  SUnit *pickNode(bool &IsTopNode) override;

  void schedNode(SUnit *SU, bool IsTopNode) override;

  void releaseTopNode(SUnit *SU) override {
    Top.releaseTopNode(SU);
    TopCand.SU = nullptr;
  }

  void releaseBottomNode(SUnit *SU) override {
    Bot.releaseBottomNode(SU);
    BotCand.SU = nullptr;
  }

  void registerRoots() override;

protected:
  void checkAcyclicLatency();

  void initCandidate(SchedCandidate &Cand, SUnit *SU, bool AtTop,
                     const RegPressureTracker &RPTracker,
                     RegPressureTracker &TempTracker);

  void tryCandidate(SchedCandidate &Cand,
                    SchedCandidate &TryCand,
                    SchedBoundary *Zone);

  SUnit *pickNodeBidirectional(bool &IsTopNode);

  void pickNodeFromQueue(SchedBoundary &Zone,
                         const CandPolicy &ZonePolicy,
                         const RegPressureTracker &RPTracker,
                         SchedCandidate &Candidate);

  void reschedulePhysRegCopies(SUnit *SU, bool isTop);
};

/// PostGenericScheduler - Interface to the scheduling algorithm used by
/// ScheduleDAGMI.
///
/// Callbacks from ScheduleDAGMI:
///   initPolicy -> initialize(DAG) -> registerRoots -> pickNode ...
class PostGenericScheduler : public GenericSchedulerBase {
  ScheduleDAGMI *DAG;
  SchedBoundary Top;
  SmallVector<SUnit*, 8> BotRoots;
public:
  PostGenericScheduler(const MachineSchedContext *C):
    GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ") {}

  ~PostGenericScheduler() override {}

  void initPolicy(MachineBasicBlock::iterator Begin,
                  MachineBasicBlock::iterator End,
                  unsigned NumRegionInstrs) override {
    /* no configurable policy */
  }

  /// PostRA scheduling does not track pressure.
  bool shouldTrackPressure() const override { return false; }

  void initialize(ScheduleDAGMI *Dag) override;

  void registerRoots() override;

  SUnit *pickNode(bool &IsTopNode) override;

  void scheduleTree(unsigned SubtreeID) override {
    llvm_unreachable("PostRA scheduler does not support subtree analysis.");
  }

  void schedNode(SUnit *SU, bool IsTopNode) override;

  void releaseTopNode(SUnit *SU) override {
    Top.releaseTopNode(SU);
  }

  // Only called for roots.
  void releaseBottomNode(SUnit *SU) override {
    BotRoots.push_back(SU);
  }

protected:
  void tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand);

  void pickNodeFromQueue(SchedCandidate &Cand);
};

} // namespace llvm

#endif