This file is indexed.

/usr/include/llvm-3.9/llvm/CodeGen/SelectionDAG.h is in llvm-3.9-dev 1:3.9.1-19ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
//===-- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ---------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the SelectionDAG class, and transitively defines the
// SDNode class and subclasses.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_SELECTIONDAG_H
#define LLVM_CODEGEN_SELECTIONDAG_H

#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/ilist.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/DAGCombine.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/Support/ArrayRecycler.h"
#include "llvm/Support/RecyclingAllocator.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
#include <map>
#include <string>
#include <vector>

namespace llvm {

class MachineConstantPoolValue;
class MachineFunction;
class MDNode;
class SDDbgValue;
class TargetLowering;
class SelectionDAGTargetInfo;

class SDVTListNode : public FoldingSetNode {
  friend struct FoldingSetTrait<SDVTListNode>;
  /// A reference to an Interned FoldingSetNodeID for this node.
  /// The Allocator in SelectionDAG holds the data.
  /// SDVTList contains all types which are frequently accessed in SelectionDAG.
  /// The size of this list is not expected to be big so it won't introduce
  /// a memory penalty.
  FoldingSetNodeIDRef FastID;
  const EVT *VTs;
  unsigned int NumVTs;
  /// The hash value for SDVTList is fixed, so cache it to avoid
  /// hash calculation.
  unsigned HashValue;
public:
  SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) :
      FastID(ID), VTs(VT), NumVTs(Num) {
    HashValue = ID.ComputeHash();
  }
  SDVTList getSDVTList() {
    SDVTList result = {VTs, NumVTs};
    return result;
  }
};

/// Specialize FoldingSetTrait for SDVTListNode
/// to avoid computing temp FoldingSetNodeID and hash value.
template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> {
  static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) {
    ID = X.FastID;
  }
  static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID,
                     unsigned IDHash, FoldingSetNodeID &TempID) {
    if (X.HashValue != IDHash)
      return false;
    return ID == X.FastID;
  }
  static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) {
    return X.HashValue;
  }
};

template<> struct ilist_traits<SDNode> : public ilist_default_traits<SDNode> {
private:
  mutable ilist_half_node<SDNode> Sentinel;
public:
  SDNode *createSentinel() const {
    return static_cast<SDNode*>(&Sentinel);
  }
  static void destroySentinel(SDNode *) {}

  SDNode *provideInitialHead() const { return createSentinel(); }
  SDNode *ensureHead(SDNode*) const { return createSentinel(); }
  static void noteHead(SDNode*, SDNode*) {}

  static void deleteNode(SDNode *) {
    llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
  }
private:
  static void createNode(const SDNode &);
};

/// Keeps track of dbg_value information through SDISel.  We do
/// not build SDNodes for these so as not to perturb the generated code;
/// instead the info is kept off to the side in this structure. Each SDNode may
/// have one or more associated dbg_value entries. This information is kept in
/// DbgValMap.
/// Byval parameters are handled separately because they don't use alloca's,
/// which busts the normal mechanism.  There is good reason for handling all
/// parameters separately:  they may not have code generated for them, they
/// should always go at the beginning of the function regardless of other code
/// motion, and debug info for them is potentially useful even if the parameter
/// is unused.  Right now only byval parameters are handled separately.
class SDDbgInfo {
  BumpPtrAllocator Alloc;
  SmallVector<SDDbgValue*, 32> DbgValues;
  SmallVector<SDDbgValue*, 32> ByvalParmDbgValues;
  typedef DenseMap<const SDNode*, SmallVector<SDDbgValue*, 2> > DbgValMapType;
  DbgValMapType DbgValMap;

  void operator=(const SDDbgInfo&) = delete;
  SDDbgInfo(const SDDbgInfo&) = delete;
public:
  SDDbgInfo() {}

  void add(SDDbgValue *V, const SDNode *Node, bool isParameter) {
    if (isParameter) {
      ByvalParmDbgValues.push_back(V);
    } else     DbgValues.push_back(V);
    if (Node)
      DbgValMap[Node].push_back(V);
  }

  /// \brief Invalidate all DbgValues attached to the node and remove
  /// it from the Node-to-DbgValues map.
  void erase(const SDNode *Node);

  void clear() {
    DbgValMap.clear();
    DbgValues.clear();
    ByvalParmDbgValues.clear();
    Alloc.Reset();
  }

  BumpPtrAllocator &getAlloc() { return Alloc; }

  bool empty() const {
    return DbgValues.empty() && ByvalParmDbgValues.empty();
  }

  ArrayRef<SDDbgValue*> getSDDbgValues(const SDNode *Node) {
    DbgValMapType::iterator I = DbgValMap.find(Node);
    if (I != DbgValMap.end())
      return I->second;
    return ArrayRef<SDDbgValue*>();
  }

  typedef SmallVectorImpl<SDDbgValue*>::iterator DbgIterator;
  DbgIterator DbgBegin() { return DbgValues.begin(); }
  DbgIterator DbgEnd()   { return DbgValues.end(); }
  DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); }
  DbgIterator ByvalParmDbgEnd()   { return ByvalParmDbgValues.end(); }
};

class SelectionDAG;
void checkForCycles(const SelectionDAG *DAG, bool force = false);

/// This is used to represent a portion of an LLVM function in a low-level
/// Data Dependence DAG representation suitable for instruction selection.
/// This DAG is constructed as the first step of instruction selection in order
/// to allow implementation of machine specific optimizations
/// and code simplifications.
///
/// The representation used by the SelectionDAG is a target-independent
/// representation, which has some similarities to the GCC RTL representation,
/// but is significantly more simple, powerful, and is a graph form instead of a
/// linear form.
///
class SelectionDAG {
  const TargetMachine &TM;
  const SelectionDAGTargetInfo *TSI;
  const TargetLowering *TLI;
  MachineFunction *MF;
  LLVMContext *Context;
  CodeGenOpt::Level OptLevel;

  /// The starting token.
  SDNode EntryNode;

  /// The root of the entire DAG.
  SDValue Root;

  /// A linked list of nodes in the current DAG.
  ilist<SDNode> AllNodes;

  /// The AllocatorType for allocating SDNodes. We use
  /// pool allocation with recycling.
  typedef RecyclingAllocator<BumpPtrAllocator, SDNode, sizeof(LargestSDNode),
                             AlignOf<MostAlignedSDNode>::Alignment>
    NodeAllocatorType;

  /// Pool allocation for nodes.
  NodeAllocatorType NodeAllocator;

  /// This structure is used to memoize nodes, automatically performing
  /// CSE with existing nodes when a duplicate is requested.
  FoldingSet<SDNode> CSEMap;

  /// Pool allocation for machine-opcode SDNode operands.
  BumpPtrAllocator OperandAllocator;
  ArrayRecycler<SDUse> OperandRecycler;

  /// Pool allocation for misc. objects that are created once per SelectionDAG.
  BumpPtrAllocator Allocator;

  /// Tracks dbg_value information through SDISel.
  SDDbgInfo *DbgInfo;

  uint16_t NextPersistentId = 0;

public:
  /// Clients of various APIs that cause global effects on
  /// the DAG can optionally implement this interface.  This allows the clients
  /// to handle the various sorts of updates that happen.
  ///
  /// A DAGUpdateListener automatically registers itself with DAG when it is
  /// constructed, and removes itself when destroyed in RAII fashion.
  struct DAGUpdateListener {
    DAGUpdateListener *const Next;
    SelectionDAG &DAG;

    explicit DAGUpdateListener(SelectionDAG &D)
      : Next(D.UpdateListeners), DAG(D) {
      DAG.UpdateListeners = this;
    }

    virtual ~DAGUpdateListener() {
      assert(DAG.UpdateListeners == this &&
             "DAGUpdateListeners must be destroyed in LIFO order");
      DAG.UpdateListeners = Next;
    }

    /// The node N that was deleted and, if E is not null, an
    /// equivalent node E that replaced it.
    virtual void NodeDeleted(SDNode *N, SDNode *E);

    /// The node N that was updated.
    virtual void NodeUpdated(SDNode *N);
  };

  struct DAGNodeDeletedListener : public DAGUpdateListener {
    std::function<void(SDNode *, SDNode *)> Callback;
    DAGNodeDeletedListener(SelectionDAG &DAG,
                           std::function<void(SDNode *, SDNode *)> Callback)
        : DAGUpdateListener(DAG), Callback(Callback) {}
    void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); }
  };

  /// When true, additional steps are taken to
  /// ensure that getConstant() and similar functions return DAG nodes that
  /// have legal types. This is important after type legalization since
  /// any illegally typed nodes generated after this point will not experience
  /// type legalization.
  bool NewNodesMustHaveLegalTypes;

private:
  /// DAGUpdateListener is a friend so it can manipulate the listener stack.
  friend struct DAGUpdateListener;

  /// Linked list of registered DAGUpdateListener instances.
  /// This stack is maintained by DAGUpdateListener RAII.
  DAGUpdateListener *UpdateListeners;

  /// Implementation of setSubgraphColor.
  /// Return whether we had to truncate the search.
  bool setSubgraphColorHelper(SDNode *N, const char *Color,
                              DenseSet<SDNode *> &visited,
                              int level, bool &printed);

  template <typename SDNodeT, typename... ArgTypes>
  SDNodeT *newSDNode(ArgTypes &&... Args) {
    return new (NodeAllocator.template Allocate<SDNodeT>())
        SDNodeT(std::forward<ArgTypes>(Args)...);
  }

  void createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
    assert(!Node->OperandList && "Node already has operands");
    SDUse *Ops = OperandRecycler.allocate(
        ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);

    for (unsigned I = 0; I != Vals.size(); ++I) {
      Ops[I].setUser(Node);
      Ops[I].setInitial(Vals[I]);
    }
    Node->NumOperands = Vals.size();
    Node->OperandList = Ops;
    checkForCycles(Node);
  }

  void removeOperands(SDNode *Node) {
    if (!Node->OperandList)
      return;
    OperandRecycler.deallocate(
        ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands),
        Node->OperandList);
    Node->NumOperands = 0;
    Node->OperandList = nullptr;
  }

  void operator=(const SelectionDAG&) = delete;
  SelectionDAG(const SelectionDAG&) = delete;

public:
  explicit SelectionDAG(const TargetMachine &TM, llvm::CodeGenOpt::Level);
  ~SelectionDAG();

  /// Prepare this SelectionDAG to process code in the given MachineFunction.
  void init(MachineFunction &mf);

  /// Clear state and free memory necessary to make this
  /// SelectionDAG ready to process a new block.
  void clear();

  MachineFunction &getMachineFunction() const { return *MF; }
  const DataLayout &getDataLayout() const { return MF->getDataLayout(); }
  const TargetMachine &getTarget() const { return TM; }
  const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); }
  const TargetLowering &getTargetLoweringInfo() const { return *TLI; }
  const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; }
  LLVMContext *getContext() const {return Context; }

  /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
  void viewGraph(const std::string &Title);
  void viewGraph();

#ifndef NDEBUG
  std::map<const SDNode *, std::string> NodeGraphAttrs;
#endif

  /// Clear all previously defined node graph attributes.
  /// Intended to be used from a debugging tool (eg. gdb).
  void clearGraphAttrs();

  /// Set graph attributes for a node. (eg. "color=red".)
  void setGraphAttrs(const SDNode *N, const char *Attrs);

  /// Get graph attributes for a node. (eg. "color=red".)
  /// Used from getNodeAttributes.
  const std::string getGraphAttrs(const SDNode *N) const;

  /// Convenience for setting node color attribute.
  void setGraphColor(const SDNode *N, const char *Color);

  /// Convenience for setting subgraph color attribute.
  void setSubgraphColor(SDNode *N, const char *Color);

  typedef ilist<SDNode>::const_iterator allnodes_const_iterator;
  allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
  allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
  typedef ilist<SDNode>::iterator allnodes_iterator;
  allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
  allnodes_iterator allnodes_end() { return AllNodes.end(); }
  ilist<SDNode>::size_type allnodes_size() const {
    return AllNodes.size();
  }

  iterator_range<allnodes_iterator> allnodes() {
    return make_range(allnodes_begin(), allnodes_end());
  }
  iterator_range<allnodes_const_iterator> allnodes() const {
    return make_range(allnodes_begin(), allnodes_end());
  }

  /// Return the root tag of the SelectionDAG.
  const SDValue &getRoot() const { return Root; }

  /// Return the token chain corresponding to the entry of the function.
  SDValue getEntryNode() const {
    return SDValue(const_cast<SDNode *>(&EntryNode), 0);
  }

  /// Set the current root tag of the SelectionDAG.
  ///
  const SDValue &setRoot(SDValue N) {
    assert((!N.getNode() || N.getValueType() == MVT::Other) &&
           "DAG root value is not a chain!");
    if (N.getNode())
      checkForCycles(N.getNode(), this);
    Root = N;
    if (N.getNode())
      checkForCycles(this);
    return Root;
  }

  /// This iterates over the nodes in the SelectionDAG, folding
  /// certain types of nodes together, or eliminating superfluous nodes.  The
  /// Level argument controls whether Combine is allowed to produce nodes and
  /// types that are illegal on the target.
  void Combine(CombineLevel Level, AliasAnalysis &AA,
               CodeGenOpt::Level OptLevel);

  /// This transforms the SelectionDAG into a SelectionDAG that
  /// only uses types natively supported by the target.
  /// Returns "true" if it made any changes.
  ///
  /// Note that this is an involved process that may invalidate pointers into
  /// the graph.
  bool LegalizeTypes();

  /// This transforms the SelectionDAG into a SelectionDAG that is
  /// compatible with the target instruction selector, as indicated by the
  /// TargetLowering object.
  ///
  /// Note that this is an involved process that may invalidate pointers into
  /// the graph.
  void Legalize();

  /// \brief Transforms a SelectionDAG node and any operands to it into a node
  /// that is compatible with the target instruction selector, as indicated by
  /// the TargetLowering object.
  ///
  /// \returns true if \c N is a valid, legal node after calling this.
  ///
  /// This essentially runs a single recursive walk of the \c Legalize process
  /// over the given node (and its operands). This can be used to incrementally
  /// legalize the DAG. All of the nodes which are directly replaced,
  /// potentially including N, are added to the output parameter \c
  /// UpdatedNodes so that the delta to the DAG can be understood by the
  /// caller.
  ///
  /// When this returns false, N has been legalized in a way that make the
  /// pointer passed in no longer valid. It may have even been deleted from the
  /// DAG, and so it shouldn't be used further. When this returns true, the
  /// N passed in is a legal node, and can be immediately processed as such.
  /// This may still have done some work on the DAG, and will still populate
  /// UpdatedNodes with any new nodes replacing those originally in the DAG.
  bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes);

  /// This transforms the SelectionDAG into a SelectionDAG
  /// that only uses vector math operations supported by the target.  This is
  /// necessary as a separate step from Legalize because unrolling a vector
  /// operation can introduce illegal types, which requires running
  /// LegalizeTypes again.
  ///
  /// This returns true if it made any changes; in that case, LegalizeTypes
  /// is called again before Legalize.
  ///
  /// Note that this is an involved process that may invalidate pointers into
  /// the graph.
  bool LegalizeVectors();

  /// This method deletes all unreachable nodes in the SelectionDAG.
  void RemoveDeadNodes();

  /// Remove the specified node from the system.  This node must
  /// have no referrers.
  void DeleteNode(SDNode *N);

  /// Return an SDVTList that represents the list of values specified.
  SDVTList getVTList(EVT VT);
  SDVTList getVTList(EVT VT1, EVT VT2);
  SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3);
  SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4);
  SDVTList getVTList(ArrayRef<EVT> VTs);

  //===--------------------------------------------------------------------===//
  // Node creation methods.
  //

  /// \brief Create a ConstantSDNode wrapping a constant value.
  /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
  ///
  /// If only legal types can be produced, this does the necessary
  /// transformations (e.g., if the vector element type is illegal).
  /// @{
  SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
                      bool isTarget = false, bool isOpaque = false);
  SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
                      bool isTarget = false, bool isOpaque = false);
  SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
                      bool isTarget = false, bool isOpaque = false);
  SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL,
                            bool isTarget = false);
  SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT,
                            bool isOpaque = false) {
    return getConstant(Val, DL, VT, true, isOpaque);
  }
  SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT,
                            bool isOpaque = false) {
    return getConstant(Val, DL, VT, true, isOpaque);
  }
  SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
                            bool isOpaque = false) {
    return getConstant(Val, DL, VT, true, isOpaque);
  }
  /// @}

  /// \brief Create a ConstantFPSDNode wrapping a constant value.
  /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
  ///
  /// If only legal types can be produced, this does the necessary
  /// transformations (e.g., if the vector element type is illegal).
  /// The forms that take a double should only be used for simple constants
  /// that can be exactly represented in VT.  No checks are made.
  /// @{
  SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT,
                        bool isTarget = false);
  SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT,
                        bool isTarget = false);
  SDValue getConstantFP(const ConstantFP &CF, const SDLoc &DL, EVT VT,
                        bool isTarget = false);
  SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) {
    return getConstantFP(Val, DL, VT, true);
  }
  SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) {
    return getConstantFP(Val, DL, VT, true);
  }
  SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) {
    return getConstantFP(Val, DL, VT, true);
  }
  /// @}

  SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
                           int64_t offset = 0, bool isTargetGA = false,
                           unsigned char TargetFlags = 0);
  SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
                                 int64_t offset = 0,
                                 unsigned char TargetFlags = 0) {
    return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags);
  }
  SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);
  SDValue getTargetFrameIndex(int FI, EVT VT) {
    return getFrameIndex(FI, VT, true);
  }
  SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false,
                       unsigned char TargetFlags = 0);
  SDValue getTargetJumpTable(int JTI, EVT VT, unsigned char TargetFlags = 0) {
    return getJumpTable(JTI, VT, true, TargetFlags);
  }
  SDValue getConstantPool(const Constant *C, EVT VT,
                          unsigned Align = 0, int Offs = 0, bool isT=false,
                          unsigned char TargetFlags = 0);
  SDValue getTargetConstantPool(const Constant *C, EVT VT,
                                unsigned Align = 0, int Offset = 0,
                                unsigned char TargetFlags = 0) {
    return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
  }
  SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT,
                          unsigned Align = 0, int Offs = 0, bool isT=false,
                          unsigned char TargetFlags = 0);
  SDValue getTargetConstantPool(MachineConstantPoolValue *C,
                                  EVT VT, unsigned Align = 0,
                                  int Offset = 0, unsigned char TargetFlags=0) {
    return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
  }
  SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0,
                         unsigned char TargetFlags = 0);
  // When generating a branch to a BB, we don't in general know enough
  // to provide debug info for the BB at that time, so keep this one around.
  SDValue getBasicBlock(MachineBasicBlock *MBB);
  SDValue getBasicBlock(MachineBasicBlock *MBB, SDLoc dl);
  SDValue getExternalSymbol(const char *Sym, EVT VT);
  SDValue getExternalSymbol(const char *Sym, const SDLoc &dl, EVT VT);
  SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
                                  unsigned char TargetFlags = 0);
  SDValue getMCSymbol(MCSymbol *Sym, EVT VT);

  SDValue getValueType(EVT);
  SDValue getRegister(unsigned Reg, EVT VT);
  SDValue getRegisterMask(const uint32_t *RegMask);
  SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label);
  SDValue getBlockAddress(const BlockAddress *BA, EVT VT,
                          int64_t Offset = 0, bool isTarget = false,
                          unsigned char TargetFlags = 0);
  SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT,
                                int64_t Offset = 0,
                                unsigned char TargetFlags = 0) {
    return getBlockAddress(BA, VT, Offset, true, TargetFlags);
  }

  SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg,
                       SDValue N) {
    return getNode(ISD::CopyToReg, dl, MVT::Other, Chain,
                   getRegister(Reg, N.getValueType()), N);
  }

  // This version of the getCopyToReg method takes an extra operand, which
  // indicates that there is potentially an incoming glue value (if Glue is not
  // null) and that there should be a glue result.
  SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N,
                       SDValue Glue) {
    SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
    SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue };
    return getNode(ISD::CopyToReg, dl, VTs,
                   makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
  }

  // Similar to last getCopyToReg() except parameter Reg is a SDValue
  SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N,
                       SDValue Glue) {
    SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
    SDValue Ops[] = { Chain, Reg, N, Glue };
    return getNode(ISD::CopyToReg, dl, VTs,
                   makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
  }

  SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) {
    SDVTList VTs = getVTList(VT, MVT::Other);
    SDValue Ops[] = { Chain, getRegister(Reg, VT) };
    return getNode(ISD::CopyFromReg, dl, VTs, Ops);
  }

  // This version of the getCopyFromReg method takes an extra operand, which
  // indicates that there is potentially an incoming glue value (if Glue is not
  // null) and that there should be a glue result.
  SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT,
                         SDValue Glue) {
    SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue);
    SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue };
    return getNode(ISD::CopyFromReg, dl, VTs,
                   makeArrayRef(Ops, Glue.getNode() ? 3 : 2));
  }

  SDValue getCondCode(ISD::CondCode Cond);

  /// Returns the ConvertRndSat Note: Avoid using this node because it may
  /// disappear in the future and most targets don't support it.
  SDValue getConvertRndSat(EVT VT, const SDLoc &dl, SDValue Val, SDValue DTy,
                           SDValue STy, SDValue Rnd, SDValue Sat,
                           ISD::CvtCode Code);

  /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
  /// which must be a vector type, must match the number of mask elements
  /// NumElts. An integer mask element equal to -1 is treated as undefined.
  SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
                           ArrayRef<int> Mask);

  /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
  /// which must be a vector type, must match the number of operands in Ops.
  /// The operands must have the same type as (or, for integers, a type wider
  /// than) VT's element type.
  SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDValue> Ops) {
    // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
    return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
  }

  /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
  /// elements. VT must be a vector type. Op's type must be the same as (or,
  /// for integers, a type wider than) VT's element type.
  SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op) {
    // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
    if (Op.getOpcode() == ISD::UNDEF) {
      assert((VT.getVectorElementType() == Op.getValueType() ||
              (VT.isInteger() &&
               VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
             "A splatted value must have a width equal or (for integers) "
             "greater than the vector element type!");
      return getNode(ISD::UNDEF, SDLoc(), VT);
    }

    SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Op);
    return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
  }

  /// Return a splat ISD::BUILD_VECTOR node, but with Op's SDLoc.
  SDValue getSplatBuildVector(EVT VT, SDValue Op) {
    return getSplatBuildVector(VT, SDLoc(Op), Op);
  }

  /// \brief Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
  /// the shuffle node in input but with swapped operands.
  ///
  /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
  SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV);

  /// Convert Op, which must be of integer type, to the
  /// integer type VT, by either any-extending or truncating it.
  SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);

  /// Convert Op, which must be of integer type, to the
  /// integer type VT, by either sign-extending or truncating it.
  SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);

  /// Convert Op, which must be of integer type, to the
  /// integer type VT, by either zero-extending or truncating it.
  SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);

  /// Return the expression required to zero extend the Op
  /// value assuming it was the smaller SrcTy value.
  SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT SrcTy);

  /// Return an operation which will any-extend the low lanes of the operand
  /// into the specified vector type. For example,
  /// this can convert a v16i8 into a v4i32 by any-extending the low four
  /// lanes of the operand from i8 to i32.
  SDValue getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);

  /// Return an operation which will sign extend the low lanes of the operand
  /// into the specified vector type. For example,
  /// this can convert a v16i8 into a v4i32 by sign extending the low four
  /// lanes of the operand from i8 to i32.
  SDValue getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);

  /// Return an operation which will zero extend the low lanes of the operand
  /// into the specified vector type. For example,
  /// this can convert a v16i8 into a v4i32 by zero extending the low four
  /// lanes of the operand from i8 to i32.
  SDValue getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);

  /// Convert Op, which must be of integer type, to the integer type VT,
  /// by using an extension appropriate for the target's
  /// BooleanContent for type OpVT or truncating it.
  SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT);

  /// Create a bitwise NOT operation as (XOR Val, -1).
  SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT);

  /// \brief Create a logical NOT operation as (XOR Val, BooleanOne).
  SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT);

  /// Return a new CALLSEQ_START node, which always must have a glue result
  /// (to ensure it's not CSE'd).  CALLSEQ_START does not have a useful SDLoc.
  SDValue getCALLSEQ_START(SDValue Chain, SDValue Op, const SDLoc &DL) {
    SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
    SDValue Ops[] = { Chain,  Op };
    return getNode(ISD::CALLSEQ_START, DL, VTs, Ops);
  }

  /// Return a new CALLSEQ_END node, which always must have a
  /// glue result (to ensure it's not CSE'd).
  /// CALLSEQ_END does not have a useful SDLoc.
  SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2,
                         SDValue InGlue, const SDLoc &DL) {
    SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue);
    SmallVector<SDValue, 4> Ops;
    Ops.push_back(Chain);
    Ops.push_back(Op1);
    Ops.push_back(Op2);
    if (InGlue.getNode())
      Ops.push_back(InGlue);
    return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops);
  }

  /// Return an UNDEF node. UNDEF does not have a useful SDLoc.
  SDValue getUNDEF(EVT VT) {
    return getNode(ISD::UNDEF, SDLoc(), VT);
  }

  /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
  SDValue getGLOBAL_OFFSET_TABLE(EVT VT) {
    return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT);
  }

  /// Gets or creates the specified node.
  ///
  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
                  ArrayRef<SDUse> Ops);
  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
                  ArrayRef<SDValue> Ops, const SDNodeFlags *Flags = nullptr);
  SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys,
                  ArrayRef<SDValue> Ops);
  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs,
                  ArrayRef<SDValue> Ops);

  // Specialize based on number of operands.
  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT);
  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N);
  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
                  SDValue N2, const SDNodeFlags *Flags = nullptr);
  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
                  SDValue N2, SDValue N3);
  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
                  SDValue N2, SDValue N3, SDValue N4);
  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
                  SDValue N2, SDValue N3, SDValue N4, SDValue N5);

  // Specialize again based on number of operands for nodes with a VTList
  // rather than a single VT.
  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs);
  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N);
  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
                  SDValue N2);
  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
                  SDValue N2, SDValue N3);
  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
                  SDValue N2, SDValue N3, SDValue N4);
  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs, SDValue N1,
                  SDValue N2, SDValue N3, SDValue N4, SDValue N5);

  /// Compute a TokenFactor to force all the incoming stack arguments to be
  /// loaded from the stack. This is used in tail call lowering to protect
  /// stack arguments from being clobbered.
  SDValue getStackArgumentTokenFactor(SDValue Chain);

  SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
                    SDValue Size, unsigned Align, bool isVol, bool AlwaysInline,
                    bool isTailCall, MachinePointerInfo DstPtrInfo,
                    MachinePointerInfo SrcPtrInfo);

  SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
                     SDValue Size, unsigned Align, bool isVol, bool isTailCall,
                     MachinePointerInfo DstPtrInfo,
                     MachinePointerInfo SrcPtrInfo);

  SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
                    SDValue Size, unsigned Align, bool isVol, bool isTailCall,
                    MachinePointerInfo DstPtrInfo);

  /// Helper function to make it easier to build SetCC's if you just
  /// have an ISD::CondCode instead of an SDValue.
  ///
  SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS,
                   ISD::CondCode Cond) {
    assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() &&
      "Cannot compare scalars to vectors");
    assert(LHS.getValueType().isVector() == VT.isVector() &&
      "Cannot compare scalars to vectors");
    assert(Cond != ISD::SETCC_INVALID &&
        "Cannot create a setCC of an invalid node.");
    return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond));
  }

  /// Helper function to make it easier to build Select's if you just
  /// have operands and don't want to check for vector.
  SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS,
                    SDValue RHS) {
    assert(LHS.getValueType() == RHS.getValueType() &&
           "Cannot use select on differing types");
    assert(VT.isVector() == LHS.getValueType().isVector() &&
           "Cannot mix vectors and scalars");
    return getNode(Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT,
                   Cond, LHS, RHS);
  }

  /// Helper function to make it easier to build SelectCC's if you
  /// just have an ISD::CondCode instead of an SDValue.
  ///
  SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True,
                      SDValue False, ISD::CondCode Cond) {
    return getNode(ISD::SELECT_CC, DL, True.getValueType(),
                   LHS, RHS, True, False, getCondCode(Cond));
  }

  /// VAArg produces a result and token chain, and takes a pointer
  /// and a source value as input.
  SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
                   SDValue SV, unsigned Align);

  /// Gets a node for an atomic cmpxchg op. There are two
  /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
  /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
  /// a success flag (initially i1), and a chain.
  SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
                           SDVTList VTs, SDValue Chain, SDValue Ptr,
                           SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
                           unsigned Alignment, AtomicOrdering SuccessOrdering,
                           AtomicOrdering FailureOrdering,
                           SynchronizationScope SynchScope);
  SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
                           SDVTList VTs, SDValue Chain, SDValue Ptr,
                           SDValue Cmp, SDValue Swp, MachineMemOperand *MMO,
                           AtomicOrdering SuccessOrdering,
                           AtomicOrdering FailureOrdering,
                           SynchronizationScope SynchScope);

  /// Gets a node for an atomic op, produces result (if relevant)
  /// and chain and takes 2 operands.
  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
                    SDValue Ptr, SDValue Val, const Value *PtrVal,
                    unsigned Alignment, AtomicOrdering Ordering,
                    SynchronizationScope SynchScope);
  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
                    SDValue Ptr, SDValue Val, MachineMemOperand *MMO,
                    AtomicOrdering Ordering, SynchronizationScope SynchScope);

  /// Gets a node for an atomic op, produces result and chain and
  /// takes 1 operand.
  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT,
                    SDValue Chain, SDValue Ptr, MachineMemOperand *MMO,
                    AtomicOrdering Ordering, SynchronizationScope SynchScope);

  /// Gets a node for an atomic op, produces result and chain and takes N
  /// operands.
  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
                    SDVTList VTList, ArrayRef<SDValue> Ops,
                    MachineMemOperand *MMO, AtomicOrdering SuccessOrdering,
                    AtomicOrdering FailureOrdering,
                    SynchronizationScope SynchScope);
  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
                    SDVTList VTList, ArrayRef<SDValue> Ops,
                    MachineMemOperand *MMO, AtomicOrdering Ordering,
                    SynchronizationScope SynchScope);

  /// Creates a MemIntrinsicNode that may produce a
  /// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
  /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
  /// less than FIRST_TARGET_MEMORY_OPCODE.
  SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
                              ArrayRef<SDValue> Ops, EVT MemVT,
                              MachinePointerInfo PtrInfo, unsigned Align = 0,
                              bool Vol = false, bool ReadMem = true,
                              bool WriteMem = true, unsigned Size = 0);

  SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
                              ArrayRef<SDValue> Ops, EVT MemVT,
                              MachineMemOperand *MMO);

  /// Create a MERGE_VALUES node from the given operands.
  SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl);

  /// Loads are not normal binary operators: their result type is not
  /// determined by their operands, and they produce a value AND a token chain.
  ///
  /// This function will set the MOLoad flag on MMOFlags, but you can set it if
  /// you want.  The MOStore flag must not be set.
  SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
                  MachinePointerInfo PtrInfo, unsigned Alignment = 0,
                  MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
                  const AAMDNodes &AAInfo = AAMDNodes(),
                  const MDNode *Ranges = nullptr);
  SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
                  MachineMemOperand *MMO);
  SDValue
  getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain,
             SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT,
             unsigned Alignment = 0,
             MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
             const AAMDNodes &AAInfo = AAMDNodes());
  SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
                     SDValue Chain, SDValue Ptr, EVT MemVT,
                     MachineMemOperand *MMO);
  SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
                         SDValue Offset, ISD::MemIndexedMode AM);
  SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
                  const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
                  MachinePointerInfo PtrInfo, EVT MemVT, unsigned Alignment = 0,
                  MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
                  const AAMDNodes &AAInfo = AAMDNodes(),
                  const MDNode *Ranges = nullptr);
  SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
                  const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
                  EVT MemVT, MachineMemOperand *MMO);

  /// Helper function to build ISD::STORE nodes.
  ///
  /// This function will set the MOStore flag on MMOFlags, but you can set it if
  /// you want.  The MOLoad and MOInvariant flags must not be set.
  SDValue
  getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
           MachinePointerInfo PtrInfo, unsigned Alignment = 0,
           MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
           const AAMDNodes &AAInfo = AAMDNodes());
  SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
                   MachineMemOperand *MMO);
  SDValue
  getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
                MachinePointerInfo PtrInfo, EVT TVT, unsigned Alignment = 0,
                MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
                const AAMDNodes &AAInfo = AAMDNodes());
  SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
                        SDValue Ptr, EVT TVT, MachineMemOperand *MMO);
  SDValue getIndexedStore(SDValue OrigStoe, const SDLoc &dl, SDValue Base,
                          SDValue Offset, ISD::MemIndexedMode AM);

  /// Returns sum of the base pointer and offset.
  SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, const SDLoc &DL);

  SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
                        SDValue Mask, SDValue Src0, EVT MemVT,
                        MachineMemOperand *MMO, ISD::LoadExtType);
  SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val,
                         SDValue Ptr, SDValue Mask, EVT MemVT,
                         MachineMemOperand *MMO, bool IsTrunc);
  SDValue getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
                          ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
  SDValue getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
                           ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
  /// Construct a node to track a Value* through the backend.
  SDValue getSrcValue(const Value *v);

  /// Return an MDNodeSDNode which holds an MDNode.
  SDValue getMDNode(const MDNode *MD);

  /// Return a bitcast using the SDLoc of the value operand, and casting to the
  /// provided type. Use getNode to set a custom SDLoc.
  SDValue getBitcast(EVT VT, SDValue V);

  /// Return an AddrSpaceCastSDNode.
  SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS,
                           unsigned DestAS);

  /// Return the specified value casted to
  /// the target's desired shift amount type.
  SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op);

  /// Expand the specified \c ISD::VAARG node as the Legalize pass would.
  SDValue expandVAArg(SDNode *Node);

  /// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
  SDValue expandVACopy(SDNode *Node);

  /// *Mutate* the specified node in-place to have the
  /// specified operands.  If the resultant node already exists in the DAG,
  /// this does not modify the specified node, instead it returns the node that
  /// already exists.  If the resultant node does not exist in the DAG, the
  /// input node is returned.  As a degenerate case, if you specify the same
  /// input operands as the node already has, the input node is returned.
  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op);
  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2);
  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
                               SDValue Op3);
  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
                               SDValue Op3, SDValue Op4);
  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
                               SDValue Op3, SDValue Op4, SDValue Op5);
  SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops);

  /// These are used for target selectors to *mutate* the
  /// specified node to have the specified return type, Target opcode, and
  /// operands.  Note that target opcodes are stored as
  /// ~TargetOpcode in the node opcode field.  The resultant node is returned.
  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT);
  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT, SDValue Op1);
  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
                       SDValue Op1, SDValue Op2);
  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
                       SDValue Op1, SDValue Op2, SDValue Op3);
  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
                       ArrayRef<SDValue> Ops);
  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1, EVT VT2);
  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
                       EVT VT2, ArrayRef<SDValue> Ops);
  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
                       EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
                       EVT VT2, EVT VT3, EVT VT4, ArrayRef<SDValue> Ops);
  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
                       EVT VT2, SDValue Op1);
  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
                       EVT VT2, SDValue Op1, SDValue Op2);
  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
                       EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
                       EVT VT2, EVT VT3, SDValue Op1, SDValue Op2, SDValue Op3);
  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, SDVTList VTs,
                       ArrayRef<SDValue> Ops);

  /// This *mutates* the specified node to have the specified
  /// return type, opcode, and operands.
  SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
                      ArrayRef<SDValue> Ops);

  /// These are used for target selectors to create a new node
  /// with specified return type(s), MachineInstr opcode, and operands.
  ///
  /// Note that getMachineNode returns the resultant node.  If there is already
  /// a node of the specified opcode and operands, it returns that node instead
  /// of the current one.
  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT);
  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
                                SDValue Op1);
  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
                                SDValue Op1, SDValue Op2);
  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
                                SDValue Op1, SDValue Op2, SDValue Op3);
  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
                                ArrayRef<SDValue> Ops);
  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
                                EVT VT2);
  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
                                EVT VT2, SDValue Op1);
  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
                                EVT VT2, SDValue Op1, SDValue Op2);
  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
                                EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
                                EVT VT2, ArrayRef<SDValue> Ops);
  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
                                EVT VT2, EVT VT3, SDValue Op1, SDValue Op2);
  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
                                EVT VT2, EVT VT3, SDValue Op1, SDValue Op2,
                                SDValue Op3);
  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
                                EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
                                EVT VT2, EVT VT3, EVT VT4,
                                ArrayRef<SDValue> Ops);
  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
                                ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops);
  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs,
                                ArrayRef<SDValue> Ops);

  /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
  SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
                                 SDValue Operand);

  /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
  SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
                                SDValue Operand, SDValue Subreg);

  /// Get the specified node if it's already available, or else return NULL.
  SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTs, ArrayRef<SDValue> Ops,
                          const SDNodeFlags *Flags = nullptr);

  /// Creates a SDDbgValue node.
  SDDbgValue *getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N, unsigned R,
                          bool IsIndirect, uint64_t Off, const DebugLoc &DL,
                          unsigned O);

  /// Constant
  SDDbgValue *getConstantDbgValue(MDNode *Var, MDNode *Expr, const Value *C,
                                  uint64_t Off, const DebugLoc &DL, unsigned O);

  /// FrameIndex
  SDDbgValue *getFrameIndexDbgValue(MDNode *Var, MDNode *Expr, unsigned FI,
                                    uint64_t Off, const DebugLoc &DL,
                                    unsigned O);

  /// Remove the specified node from the system. If any of its
  /// operands then becomes dead, remove them as well. Inform UpdateListener
  /// for each node deleted.
  void RemoveDeadNode(SDNode *N);

  /// This method deletes the unreachable nodes in the
  /// given list, and any nodes that become unreachable as a result.
  void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes);

  /// Modify anything using 'From' to use 'To' instead.
  /// This can cause recursive merging of nodes in the DAG.  Use the first
  /// version if 'From' is known to have a single result, use the second
  /// if you have two nodes with identical results (or if 'To' has a superset
  /// of the results of 'From'), use the third otherwise.
  ///
  /// These methods all take an optional UpdateListener, which (if not null) is
  /// informed about nodes that are deleted and modified due to recursive
  /// changes in the dag.
  ///
  /// These functions only replace all existing uses. It's possible that as
  /// these replacements are being performed, CSE may cause the From node
  /// to be given new uses. These new uses of From are left in place, and
  /// not automatically transferred to To.
  ///
  void ReplaceAllUsesWith(SDValue From, SDValue Op);
  void ReplaceAllUsesWith(SDNode *From, SDNode *To);
  void ReplaceAllUsesWith(SDNode *From, const SDValue *To);

  /// Replace any uses of From with To, leaving
  /// uses of other values produced by From.Val alone.
  void ReplaceAllUsesOfValueWith(SDValue From, SDValue To);

  /// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
  /// This correctly handles the case where
  /// there is an overlap between the From values and the To values.
  void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
                                  unsigned Num);

  /// Topological-sort the AllNodes list and a
  /// assign a unique node id for each node in the DAG based on their
  /// topological order. Returns the number of nodes.
  unsigned AssignTopologicalOrder();

  /// Move node N in the AllNodes list to be immediately
  /// before the given iterator Position. This may be used to update the
  /// topological ordering when the list of nodes is modified.
  void RepositionNode(allnodes_iterator Position, SDNode *N) {
    AllNodes.insert(Position, AllNodes.remove(N));
  }

  /// Returns true if the opcode is a commutative binary operation.
  static bool isCommutativeBinOp(unsigned Opcode) {
    // FIXME: This should get its info from the td file, so that we can include
    // target info.
    switch (Opcode) {
    case ISD::ADD:
    case ISD::SMIN:
    case ISD::SMAX:
    case ISD::UMIN:
    case ISD::UMAX:
    case ISD::MUL:
    case ISD::MULHU:
    case ISD::MULHS:
    case ISD::SMUL_LOHI:
    case ISD::UMUL_LOHI:
    case ISD::FADD:
    case ISD::FMUL:
    case ISD::AND:
    case ISD::OR:
    case ISD::XOR:
    case ISD::SADDO:
    case ISD::UADDO:
    case ISD::ADDC:
    case ISD::ADDE:
    case ISD::FMINNUM:
    case ISD::FMAXNUM:
    case ISD::FMINNAN:
    case ISD::FMAXNAN:
      return true;
    default: return false;
    }
  }

  /// Returns an APFloat semantics tag appropriate for the given type. If VT is
  /// a vector type, the element semantics are returned.
  static const fltSemantics &EVTToAPFloatSemantics(EVT VT) {
    switch (VT.getScalarType().getSimpleVT().SimpleTy) {
    default: llvm_unreachable("Unknown FP format");
    case MVT::f16:     return APFloat::IEEEhalf;
    case MVT::f32:     return APFloat::IEEEsingle;
    case MVT::f64:     return APFloat::IEEEdouble;
    case MVT::f80:     return APFloat::x87DoubleExtended;
    case MVT::f128:    return APFloat::IEEEquad;
    case MVT::ppcf128: return APFloat::PPCDoubleDouble;
    }
  }

  /// Add a dbg_value SDNode. If SD is non-null that means the
  /// value is produced by SD.
  void AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter);

  /// Get the debug values which reference the given SDNode.
  ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) {
    return DbgInfo->getSDDbgValues(SD);
  }

private:
  /// Transfer SDDbgValues. Called via ReplaceAllUses{OfValue}?With
  void TransferDbgValues(SDValue From, SDValue To);

public:
  /// Return true if there are any SDDbgValue nodes associated
  /// with this SelectionDAG.
  bool hasDebugValues() const { return !DbgInfo->empty(); }

  SDDbgInfo::DbgIterator DbgBegin() { return DbgInfo->DbgBegin(); }
  SDDbgInfo::DbgIterator DbgEnd()   { return DbgInfo->DbgEnd(); }
  SDDbgInfo::DbgIterator ByvalParmDbgBegin() {
    return DbgInfo->ByvalParmDbgBegin();
  }
  SDDbgInfo::DbgIterator ByvalParmDbgEnd()   {
    return DbgInfo->ByvalParmDbgEnd();
  }

  void dump() const;

  /// Create a stack temporary, suitable for holding the specified value type.
  /// If minAlign is specified, the slot size will have at least that alignment.
  SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1);

  /// Create a stack temporary suitable for holding either of the specified
  /// value types.
  SDValue CreateStackTemporary(EVT VT1, EVT VT2);

  SDValue FoldSymbolOffset(unsigned Opcode, EVT VT,
                           const GlobalAddressSDNode *GA,
                           const SDNode *N2);

  SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
                                 SDNode *Cst1, SDNode *Cst2);

  SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
                                 const ConstantSDNode *Cst1,
                                 const ConstantSDNode *Cst2);

  SDValue FoldConstantVectorArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
                                       ArrayRef<SDValue> Ops,
                                       const SDNodeFlags *Flags = nullptr);

  /// Constant fold a setcc to true or false.
  SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond,
                    const SDLoc &dl);

  /// Return true if the sign bit of Op is known to be zero.
  /// We use this predicate to simplify operations downstream.
  bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;

  /// Return true if 'Op & Mask' is known to be zero.  We
  /// use this predicate to simplify operations downstream.  Op and Mask are
  /// known to be the same type.
  bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth = 0)
    const;

  /// Determine which bits of Op are known to be either zero or one and return
  /// them in the KnownZero/KnownOne bitsets.  Targets can implement the
  /// computeKnownBitsForTargetNode method in the TargetLowering class to allow
  /// target nodes to be understood.
  void computeKnownBits(SDValue Op, APInt &KnownZero, APInt &KnownOne,
                        unsigned Depth = 0) const;

  /// Test if the given value is known to have exactly one bit set. This differs
  /// from computeKnownBits in that it doesn't necessarily determine which bit
  /// is set.
  bool isKnownToBeAPowerOfTwo(SDValue Val) const;

  /// Return the number of times the sign bit of the register is replicated into
  /// the other bits. We know that at least 1 bit is always equal to the sign
  /// bit (itself), but other cases can give us information. For example,
  /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
  /// to each other, so we return 3. Targets can implement the
  /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
  /// target nodes to be understood.
  unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;

  /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
  /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
  /// is guaranteed to have the same semantics as an ADD. This handles the
  /// equivalence:
  ///     X|Cst == X+Cst iff X&Cst = 0.
  bool isBaseWithConstantOffset(SDValue Op) const;

  /// Test whether the given SDValue is known to never be NaN.
  bool isKnownNeverNaN(SDValue Op) const;

  /// Test whether the given SDValue is known to never be positive or negative
  /// zero.
  bool isKnownNeverZero(SDValue Op) const;

  /// Test whether two SDValues are known to compare equal. This
  /// is true if they are the same value, or if one is negative zero and the
  /// other positive zero.
  bool isEqualTo(SDValue A, SDValue B) const;

  /// Return true if A and B have no common bits set. As an example, this can
  /// allow an 'add' to be transformed into an 'or'.
  bool haveNoCommonBitsSet(SDValue A, SDValue B) const;

  /// Utility function used by legalize and lowering to
  /// "unroll" a vector operation by splitting out the scalars and operating
  /// on each element individually.  If the ResNE is 0, fully unroll the vector
  /// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
  /// If the  ResNE is greater than the width of the vector op, unroll the
  /// vector op and fill the end of the resulting vector with UNDEFS.
  SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);

  /// Return true if loads are next to each other and can be
  /// merged. Check that both are nonvolatile and if LD is loading
  /// 'Bytes' bytes from a location that is 'Dist' units away from the
  /// location that the 'Base' load is loading from.
  bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base,
                                      unsigned Bytes, int Dist) const;

  /// Infer alignment of a load / store address. Return 0 if
  /// it cannot be inferred.
  unsigned InferPtrAlignment(SDValue Ptr) const;

  /// Compute the VTs needed for the low/hi parts of a type
  /// which is split (or expanded) into two not necessarily identical pieces.
  std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const;

  /// Split the vector with EXTRACT_SUBVECTOR using the provides
  /// VTs and return the low/high part.
  std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL,
                                          const EVT &LoVT, const EVT &HiVT);

  /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
  std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) {
    EVT LoVT, HiVT;
    std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType());
    return SplitVector(N, DL, LoVT, HiVT);
  }

  /// Split the node's operand with EXTRACT_SUBVECTOR and
  /// return the low/high part.
  std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo)
  {
    return SplitVector(N->getOperand(OpNo), SDLoc(N));
  }

  /// Append the extracted elements from Start to Count out of the vector Op
  /// in Args. If Count is 0, all of the elements will be extracted.
  void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args,
                             unsigned Start = 0, unsigned Count = 0);

  /// Compute the default alignment value for the given type.
  unsigned getEVTAlignment(EVT MemoryVT) const;

  /// Test whether the given value is a constant int or similar node.
  SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N);

private:
  void InsertNode(SDNode *N);
  bool RemoveNodeFromCSEMaps(SDNode *N);
  void AddModifiedNodeToCSEMaps(SDNode *N);
  SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
  SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
                               void *&InsertPos);
  SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
                               void *&InsertPos);
  SDNode *UpdadeSDLocOnMergedSDNode(SDNode *N, const SDLoc &loc);

  void DeleteNodeNotInCSEMaps(SDNode *N);
  void DeallocateNode(SDNode *N);

  void allnodes_clear();

  SDNode *GetBinarySDNode(unsigned Opcode, const SDLoc &DL, SDVTList VTs,
                          SDValue N1, SDValue N2,
                          const SDNodeFlags *Flags = nullptr);

  /// Look up the node specified by ID in CSEMap.  If it exists, return it.  If
  /// not, return the insertion token that will make insertion faster.  This
  /// overload is for nodes other than Constant or ConstantFP, use the other one
  /// for those.
  SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);

  /// Look up the node specified by ID in CSEMap.  If it exists, return it.  If
  /// not, return the insertion token that will make insertion faster.  Performs
  /// additional processing for constant nodes.
  SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL,
                              void *&InsertPos);

  /// List of non-single value types.
  FoldingSet<SDVTListNode> VTListMap;

  /// Maps to auto-CSE operations.
  std::vector<CondCodeSDNode*> CondCodeNodes;

  std::vector<SDNode*> ValueTypeNodes;
  std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes;
  StringMap<SDNode*> ExternalSymbols;

  std::map<std::pair<std::string, unsigned char>,SDNode*> TargetExternalSymbols;
  DenseMap<MCSymbol *, SDNode *> MCSymbols;
};

template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
  typedef SelectionDAG::allnodes_iterator nodes_iterator;
  static nodes_iterator nodes_begin(SelectionDAG *G) {
    return G->allnodes_begin();
  }
  static nodes_iterator nodes_end(SelectionDAG *G) {
    return G->allnodes_end();
  }
};

}  // end namespace llvm

#endif