This file is indexed.

/usr/include/llvm-3.9/llvm/CodeGen/SelectionDAGNodes.h is in llvm-3.9-dev 1:3.9.1-19ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the SDNode class and derived classes, which are used to
// represent the nodes and operations present in a SelectionDAG.  These nodes
// and operations are machine code level operations, with some similarities to
// the GCC RTL representation.
//
// Clients should include the SelectionDAG.h file instead of this file directly.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
#define LLVM_CODEGEN_SELECTIONDAGNODES_H

#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>

namespace llvm {

class SelectionDAG;
class GlobalValue;
class MachineBasicBlock;
class MachineConstantPoolValue;
class SDNode;
class HandleSDNode;
class Value;
class MCSymbol;
template <typename T> struct DenseMapInfo;
template <typename T> struct simplify_type;
template <typename T> struct ilist_traits;

void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
                    bool force = false);

/// This represents a list of ValueType's that has been intern'd by
/// a SelectionDAG.  Instances of this simple value class are returned by
/// SelectionDAG::getVTList(...).
///
struct SDVTList {
  const EVT *VTs;
  unsigned int NumVTs;
};

namespace ISD {
  /// Node predicates

  /// If N is a BUILD_VECTOR node whose elements are all the same constant or
  /// undefined, return true and return the constant value in \p SplatValue.
  bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);

  /// Return true if the specified node is a BUILD_VECTOR where all of the
  /// elements are ~0 or undef.
  bool isBuildVectorAllOnes(const SDNode *N);

  /// Return true if the specified node is a BUILD_VECTOR where all of the
  /// elements are 0 or undef.
  bool isBuildVectorAllZeros(const SDNode *N);

  /// Return true if the specified node is a BUILD_VECTOR node of all
  /// ConstantSDNode or undef.
  bool isBuildVectorOfConstantSDNodes(const SDNode *N);

  /// Return true if the specified node is a BUILD_VECTOR node of all
  /// ConstantFPSDNode or undef.
  bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);

  /// Return true if the node has at least one operand and all operands of the
  /// specified node are ISD::UNDEF.
  bool allOperandsUndef(const SDNode *N);
}  // end llvm:ISD namespace

//===----------------------------------------------------------------------===//
/// Unlike LLVM values, Selection DAG nodes may return multiple
/// values as the result of a computation.  Many nodes return multiple values,
/// from loads (which define a token and a return value) to ADDC (which returns
/// a result and a carry value), to calls (which may return an arbitrary number
/// of values).
///
/// As such, each use of a SelectionDAG computation must indicate the node that
/// computes it as well as which return value to use from that node.  This pair
/// of information is represented with the SDValue value type.
///
class SDValue {
  friend struct DenseMapInfo<SDValue>;

  SDNode *Node;       // The node defining the value we are using.
  unsigned ResNo;     // Which return value of the node we are using.
public:
  SDValue() : Node(nullptr), ResNo(0) {}
  SDValue(SDNode *node, unsigned resno);

  /// get the index which selects a specific result in the SDNode
  unsigned getResNo() const { return ResNo; }

  /// get the SDNode which holds the desired result
  SDNode *getNode() const { return Node; }

  /// set the SDNode
  void setNode(SDNode *N) { Node = N; }

  inline SDNode *operator->() const { return Node; }

  bool operator==(const SDValue &O) const {
    return Node == O.Node && ResNo == O.ResNo;
  }
  bool operator!=(const SDValue &O) const {
    return !operator==(O);
  }
  bool operator<(const SDValue &O) const {
    return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
  }
  explicit operator bool() const {
    return Node != nullptr;
  }

  SDValue getValue(unsigned R) const {
    return SDValue(Node, R);
  }

  /// Return true if this node is an operand of N.
  bool isOperandOf(const SDNode *N) const;

  /// Return the ValueType of the referenced return value.
  inline EVT getValueType() const;

  /// Return the simple ValueType of the referenced return value.
  MVT getSimpleValueType() const {
    return getValueType().getSimpleVT();
  }

  /// Returns the size of the value in bits.
  unsigned getValueSizeInBits() const {
    return getValueType().getSizeInBits();
  }

  unsigned getScalarValueSizeInBits() const {
    return getValueType().getScalarType().getSizeInBits();
  }

  // Forwarding methods - These forward to the corresponding methods in SDNode.
  inline unsigned getOpcode() const;
  inline unsigned getNumOperands() const;
  inline const SDValue &getOperand(unsigned i) const;
  inline uint64_t getConstantOperandVal(unsigned i) const;
  inline bool isTargetMemoryOpcode() const;
  inline bool isTargetOpcode() const;
  inline bool isMachineOpcode() const;
  inline bool isUndef() const;
  inline unsigned getMachineOpcode() const;
  inline const DebugLoc &getDebugLoc() const;
  inline void dump() const;
  inline void dumpr() const;

  /// Return true if this operand (which must be a chain) reaches the
  /// specified operand without crossing any side-effecting instructions.
  /// In practice, this looks through token factors and non-volatile loads.
  /// In order to remain efficient, this only
  /// looks a couple of nodes in, it does not do an exhaustive search.
  bool reachesChainWithoutSideEffects(SDValue Dest,
                                      unsigned Depth = 2) const;

  /// Return true if there are no nodes using value ResNo of Node.
  inline bool use_empty() const;

  /// Return true if there is exactly one node using value ResNo of Node.
  inline bool hasOneUse() const;
};


template<> struct DenseMapInfo<SDValue> {
  static inline SDValue getEmptyKey() {
    SDValue V;
    V.ResNo = -1U;
    return V;
  }
  static inline SDValue getTombstoneKey() {
    SDValue V;
    V.ResNo = -2U;
    return V;
  }
  static unsigned getHashValue(const SDValue &Val) {
    return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
            (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
  }
  static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
    return LHS == RHS;
  }
};
template <> struct isPodLike<SDValue> { static const bool value = true; };


/// Allow casting operators to work directly on
/// SDValues as if they were SDNode*'s.
template<> struct simplify_type<SDValue> {
  typedef SDNode* SimpleType;
  static SimpleType getSimplifiedValue(SDValue &Val) {
    return Val.getNode();
  }
};
template<> struct simplify_type<const SDValue> {
  typedef /*const*/ SDNode* SimpleType;
  static SimpleType getSimplifiedValue(const SDValue &Val) {
    return Val.getNode();
  }
};

/// Represents a use of a SDNode. This class holds an SDValue,
/// which records the SDNode being used and the result number, a
/// pointer to the SDNode using the value, and Next and Prev pointers,
/// which link together all the uses of an SDNode.
///
class SDUse {
  /// Val - The value being used.
  SDValue Val;
  /// User - The user of this value.
  SDNode *User;
  /// Prev, Next - Pointers to the uses list of the SDNode referred by
  /// this operand.
  SDUse **Prev, *Next;

  SDUse(const SDUse &U) = delete;
  void operator=(const SDUse &U) = delete;

public:
  SDUse() : Val(), User(nullptr), Prev(nullptr), Next(nullptr) {}

  /// Normally SDUse will just implicitly convert to an SDValue that it holds.
  operator const SDValue&() const { return Val; }

  /// If implicit conversion to SDValue doesn't work, the get() method returns
  /// the SDValue.
  const SDValue &get() const { return Val; }

  /// This returns the SDNode that contains this Use.
  SDNode *getUser() { return User; }

  /// Get the next SDUse in the use list.
  SDUse *getNext() const { return Next; }

  /// Convenience function for get().getNode().
  SDNode *getNode() const { return Val.getNode(); }
  /// Convenience function for get().getResNo().
  unsigned getResNo() const { return Val.getResNo(); }
  /// Convenience function for get().getValueType().
  EVT getValueType() const { return Val.getValueType(); }

  /// Convenience function for get().operator==
  bool operator==(const SDValue &V) const {
    return Val == V;
  }

  /// Convenience function for get().operator!=
  bool operator!=(const SDValue &V) const {
    return Val != V;
  }

  /// Convenience function for get().operator<
  bool operator<(const SDValue &V) const {
    return Val < V;
  }

private:
  friend class SelectionDAG;
  friend class SDNode;
  // TODO: unfriend HandleSDNode once we fix its operand handling.
  friend class HandleSDNode;

  void setUser(SDNode *p) { User = p; }

  /// Remove this use from its existing use list, assign it the
  /// given value, and add it to the new value's node's use list.
  inline void set(const SDValue &V);
  /// Like set, but only supports initializing a newly-allocated
  /// SDUse with a non-null value.
  inline void setInitial(const SDValue &V);
  /// Like set, but only sets the Node portion of the value,
  /// leaving the ResNo portion unmodified.
  inline void setNode(SDNode *N);

  void addToList(SDUse **List) {
    Next = *List;
    if (Next) Next->Prev = &Next;
    Prev = List;
    *List = this;
  }

  void removeFromList() {
    *Prev = Next;
    if (Next) Next->Prev = Prev;
  }
};

/// simplify_type specializations - Allow casting operators to work directly on
/// SDValues as if they were SDNode*'s.
template<> struct simplify_type<SDUse> {
  typedef SDNode* SimpleType;
  static SimpleType getSimplifiedValue(SDUse &Val) {
    return Val.getNode();
  }
};

/// These are IR-level optimization flags that may be propagated to SDNodes.
/// TODO: This data structure should be shared by the IR optimizer and the
/// the backend.
struct SDNodeFlags {
private:
  bool NoUnsignedWrap : 1;
  bool NoSignedWrap : 1;
  bool Exact : 1;
  bool UnsafeAlgebra : 1;
  bool NoNaNs : 1;
  bool NoInfs : 1;
  bool NoSignedZeros : 1;
  bool AllowReciprocal : 1;
  bool VectorReduction : 1;

public:
  /// Default constructor turns off all optimization flags.
  SDNodeFlags() {
    NoUnsignedWrap = false;
    NoSignedWrap = false;
    Exact = false;
    UnsafeAlgebra = false;
    NoNaNs = false;
    NoInfs = false;
    NoSignedZeros = false;
    AllowReciprocal = false;
    VectorReduction = false;
  }

  // These are mutators for each flag.
  void setNoUnsignedWrap(bool b) { NoUnsignedWrap = b; }
  void setNoSignedWrap(bool b) { NoSignedWrap = b; }
  void setExact(bool b) { Exact = b; }
  void setUnsafeAlgebra(bool b) { UnsafeAlgebra = b; }
  void setNoNaNs(bool b) { NoNaNs = b; }
  void setNoInfs(bool b) { NoInfs = b; }
  void setNoSignedZeros(bool b) { NoSignedZeros = b; }
  void setAllowReciprocal(bool b) { AllowReciprocal = b; }
  void setVectorReduction(bool b) { VectorReduction = b; }

  // These are accessors for each flag.
  bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
  bool hasNoSignedWrap() const { return NoSignedWrap; }
  bool hasExact() const { return Exact; }
  bool hasUnsafeAlgebra() const { return UnsafeAlgebra; }
  bool hasNoNaNs() const { return NoNaNs; }
  bool hasNoInfs() const { return NoInfs; }
  bool hasNoSignedZeros() const { return NoSignedZeros; }
  bool hasAllowReciprocal() const { return AllowReciprocal; }
  bool hasVectorReduction() const { return VectorReduction; }

  /// Return a raw encoding of the flags.
  /// This function should only be used to add data to the NodeID value.
  unsigned getRawFlags() const {
    return (NoUnsignedWrap << 0) | (NoSignedWrap << 1) | (Exact << 2) |
    (UnsafeAlgebra << 3) | (NoNaNs << 4) | (NoInfs << 5) |
    (NoSignedZeros << 6) | (AllowReciprocal << 7);
  }

  /// Clear any flags in this flag set that aren't also set in Flags.
  void intersectWith(const SDNodeFlags *Flags) {
    NoUnsignedWrap &= Flags->NoUnsignedWrap;
    NoSignedWrap &= Flags->NoSignedWrap;
    Exact &= Flags->Exact;
    UnsafeAlgebra &= Flags->UnsafeAlgebra;
    NoNaNs &= Flags->NoNaNs;
    NoInfs &= Flags->NoInfs;
    NoSignedZeros &= Flags->NoSignedZeros;
    AllowReciprocal &= Flags->AllowReciprocal;
  }
};

/// Represents one node in the SelectionDAG.
///
class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
private:
  /// The operation that this node performs.
  int16_t NodeType;

  /// This tracks whether this node has one or more dbg_value
  /// nodes corresponding to it.
  uint16_t HasDebugValue : 1;

protected:
  /// This member is defined by this class, but is not used for
  /// anything.  Subclasses can use it to hold whatever state they find useful.
  /// This field is initialized to zero by the ctor.
  uint16_t SubclassData : 15;

private:
  /// Unique id per SDNode in the DAG.
  int NodeId;

  /// The values that are used by this operation.
  SDUse *OperandList;

  /// The types of the values this node defines.  SDNode's may
  /// define multiple values simultaneously.
  const EVT *ValueList;

  /// List of uses for this SDNode.
  SDUse *UseList;

  /// The number of entries in the Operand/Value list.
  unsigned short NumOperands, NumValues;

  // The ordering of the SDNodes. It roughly corresponds to the ordering of the
  // original LLVM instructions.
  // This is used for turning off scheduling, because we'll forgo
  // the normal scheduling algorithms and output the instructions according to
  // this ordering.
  unsigned IROrder;

  /// Source line information.
  DebugLoc debugLoc;

  /// Return a pointer to the specified value type.
  static const EVT *getValueTypeList(EVT VT);

  friend class SelectionDAG;
  friend struct ilist_traits<SDNode>;
  // TODO: unfriend HandleSDNode once we fix its operand handling.
  friend class HandleSDNode;

public:
  /// Unique and persistent id per SDNode in the DAG.
  /// Used for debug printing.
  uint16_t PersistentId;

  //===--------------------------------------------------------------------===//
  //  Accessors
  //

  /// Return the SelectionDAG opcode value for this node. For
  /// pre-isel nodes (those for which isMachineOpcode returns false), these
  /// are the opcode values in the ISD and <target>ISD namespaces. For
  /// post-isel opcodes, see getMachineOpcode.
  unsigned getOpcode()  const { return (unsigned short)NodeType; }

  /// Test if this node has a target-specific opcode (in the
  /// \<target\>ISD namespace).
  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }

  /// Test if this node has a target-specific
  /// memory-referencing opcode (in the \<target\>ISD namespace and
  /// greater than FIRST_TARGET_MEMORY_OPCODE).
  bool isTargetMemoryOpcode() const {
    return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
  }

  /// Return true if the type of the node type undefined.
  bool isUndef() const { return NodeType == ISD::UNDEF; }

  /// Test if this node is a memory intrinsic (with valid pointer information).
  /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
  /// non-memory intrinsics (with chains) that are not really instances of
  /// MemSDNode. For such nodes, we need some extra state to determine the
  /// proper classof relationship.
  bool isMemIntrinsic() const {
    return (NodeType == ISD::INTRINSIC_W_CHAIN ||
            NodeType == ISD::INTRINSIC_VOID) && ((SubclassData >> 13) & 1);
  }

  /// Test if this node has a post-isel opcode, directly
  /// corresponding to a MachineInstr opcode.
  bool isMachineOpcode() const { return NodeType < 0; }

  /// This may only be called if isMachineOpcode returns
  /// true. It returns the MachineInstr opcode value that the node's opcode
  /// corresponds to.
  unsigned getMachineOpcode() const {
    assert(isMachineOpcode() && "Not a MachineInstr opcode!");
    return ~NodeType;
  }

  /// Get this bit.
  bool getHasDebugValue() const { return HasDebugValue; }

  /// Set this bit.
  void setHasDebugValue(bool b) { HasDebugValue = b; }

  /// Return true if there are no uses of this node.
  bool use_empty() const { return UseList == nullptr; }

  /// Return true if there is exactly one use of this node.
  bool hasOneUse() const {
    return !use_empty() && std::next(use_begin()) == use_end();
  }

  /// Return the number of uses of this node. This method takes
  /// time proportional to the number of uses.
  size_t use_size() const { return std::distance(use_begin(), use_end()); }

  /// Return the unique node id.
  int getNodeId() const { return NodeId; }

  /// Set unique node id.
  void setNodeId(int Id) { NodeId = Id; }

  /// Return the node ordering.
  unsigned getIROrder() const { return IROrder; }

  /// Set the node ordering.
  void setIROrder(unsigned Order) { IROrder = Order; }

  /// Return the source location info.
  const DebugLoc &getDebugLoc() const { return debugLoc; }

  /// Set source location info.  Try to avoid this, putting
  /// it in the constructor is preferable.
  void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }

  /// This class provides iterator support for SDUse
  /// operands that use a specific SDNode.
  class use_iterator
    : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
    SDUse *Op;
    explicit use_iterator(SDUse *op) : Op(op) {
    }
    friend class SDNode;
  public:
    typedef std::iterator<std::forward_iterator_tag,
                          SDUse, ptrdiff_t>::reference reference;
    typedef std::iterator<std::forward_iterator_tag,
                          SDUse, ptrdiff_t>::pointer pointer;

    use_iterator(const use_iterator &I) : Op(I.Op) {}
    use_iterator() : Op(nullptr) {}

    bool operator==(const use_iterator &x) const {
      return Op == x.Op;
    }
    bool operator!=(const use_iterator &x) const {
      return !operator==(x);
    }

    /// Return true if this iterator is at the end of uses list.
    bool atEnd() const { return Op == nullptr; }

    // Iterator traversal: forward iteration only.
    use_iterator &operator++() {          // Preincrement
      assert(Op && "Cannot increment end iterator!");
      Op = Op->getNext();
      return *this;
    }

    use_iterator operator++(int) {        // Postincrement
      use_iterator tmp = *this; ++*this; return tmp;
    }

    /// Retrieve a pointer to the current user node.
    SDNode *operator*() const {
      assert(Op && "Cannot dereference end iterator!");
      return Op->getUser();
    }

    SDNode *operator->() const { return operator*(); }

    SDUse &getUse() const { return *Op; }

    /// Retrieve the operand # of this use in its user.
    unsigned getOperandNo() const {
      assert(Op && "Cannot dereference end iterator!");
      return (unsigned)(Op - Op->getUser()->OperandList);
    }
  };

  /// Provide iteration support to walk over all uses of an SDNode.
  use_iterator use_begin() const {
    return use_iterator(UseList);
  }

  static use_iterator use_end() { return use_iterator(nullptr); }

  inline iterator_range<use_iterator> uses() {
    return make_range(use_begin(), use_end());
  }
  inline iterator_range<use_iterator> uses() const {
    return make_range(use_begin(), use_end());
  }

  /// Return true if there are exactly NUSES uses of the indicated value.
  /// This method ignores uses of other values defined by this operation.
  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;

  /// Return true if there are any use of the indicated value.
  /// This method ignores uses of other values defined by this operation.
  bool hasAnyUseOfValue(unsigned Value) const;

  /// Return true if this node is the only use of N.
  bool isOnlyUserOf(const SDNode *N) const;

  /// Return true if this node is an operand of N.
  bool isOperandOf(const SDNode *N) const;

  /// Return true if this node is a predecessor of N.
  /// NOTE: Implemented on top of hasPredecessor and every bit as
  /// expensive. Use carefully.
  bool isPredecessorOf(const SDNode *N) const {
    return N->hasPredecessor(this);
  }

  /// Return true if N is a predecessor of this node.
  /// N is either an operand of this node, or can be reached by recursively
  /// traversing up the operands.
  /// NOTE: This is an expensive method. Use it carefully.
  bool hasPredecessor(const SDNode *N) const;

  /// Returns true if N is a predecessor of any node in Worklist. This
  /// helper keeps Visited and Worklist sets externally to allow unions
  /// searches to be performed in parallel, caching of results across
  /// queries and incremental addition to Worklist. Stops early if N is
  /// found but will resume. Remember to clear Visited and Worklists
  /// if DAG changes.
  static bool hasPredecessorHelper(const SDNode *N,
                                   SmallPtrSetImpl<const SDNode *> &Visited,
                                   SmallVectorImpl<const SDNode *> &Worklist) {
    if (Visited.count(N))
      return true;
    while (!Worklist.empty()) {
      const SDNode *M = Worklist.pop_back_val();
      bool Found = false;
      for (const SDValue &OpV : M->op_values()) {
        SDNode *Op = OpV.getNode();
        if (Visited.insert(Op).second)
          Worklist.push_back(Op);
        if (Op == N)
          Found = true;
      }
      if (Found)
        return true;
    }
    return false;
  }

  /// Return the number of values used by this operation.
  unsigned getNumOperands() const { return NumOperands; }

  /// Helper method returns the integer value of a ConstantSDNode operand.
  uint64_t getConstantOperandVal(unsigned Num) const;

  const SDValue &getOperand(unsigned Num) const {
    assert(Num < NumOperands && "Invalid child # of SDNode!");
    return OperandList[Num];
  }

  typedef SDUse* op_iterator;
  op_iterator op_begin() const { return OperandList; }
  op_iterator op_end() const { return OperandList+NumOperands; }
  ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }

  /// Iterator for directly iterating over the operand SDValue's.
  struct value_op_iterator
      : iterator_adaptor_base<value_op_iterator, op_iterator,
                              std::random_access_iterator_tag, SDValue,
                              ptrdiff_t, value_op_iterator *,
                              value_op_iterator *> {
    explicit value_op_iterator(SDUse *U = nullptr)
      : iterator_adaptor_base(U) {}

    const SDValue &operator*() const { return I->get(); }
  };

  iterator_range<value_op_iterator> op_values() const {
    return make_range(value_op_iterator(op_begin()),
                      value_op_iterator(op_end()));
  }

  SDVTList getVTList() const {
    SDVTList X = { ValueList, NumValues };
    return X;
  }

  /// If this node has a glue operand, return the node
  /// to which the glue operand points. Otherwise return NULL.
  SDNode *getGluedNode() const {
    if (getNumOperands() != 0 &&
        getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
      return getOperand(getNumOperands()-1).getNode();
    return nullptr;
  }

  /// If this node has a glue value with a user, return
  /// the user (there is at most one). Otherwise return NULL.
  SDNode *getGluedUser() const {
    for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
      if (UI.getUse().get().getValueType() == MVT::Glue)
        return *UI;
    return nullptr;
  }

  /// This could be defined as a virtual function and implemented more simply
  /// and directly, but it is not to avoid creating a vtable for this class.
  const SDNodeFlags *getFlags() const;

  /// Clear any flags in this node that aren't also set in Flags.
  void intersectFlagsWith(const SDNodeFlags *Flags);

  /// Return the number of values defined/returned by this operator.
  unsigned getNumValues() const { return NumValues; }

  /// Return the type of a specified result.
  EVT getValueType(unsigned ResNo) const {
    assert(ResNo < NumValues && "Illegal result number!");
    return ValueList[ResNo];
  }

  /// Return the type of a specified result as a simple type.
  MVT getSimpleValueType(unsigned ResNo) const {
    return getValueType(ResNo).getSimpleVT();
  }

  /// Returns MVT::getSizeInBits(getValueType(ResNo)).
  unsigned getValueSizeInBits(unsigned ResNo) const {
    return getValueType(ResNo).getSizeInBits();
  }

  typedef const EVT* value_iterator;
  value_iterator value_begin() const { return ValueList; }
  value_iterator value_end() const { return ValueList+NumValues; }

  /// Return the opcode of this operation for printing.
  std::string getOperationName(const SelectionDAG *G = nullptr) const;
  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
  void print_types(raw_ostream &OS, const SelectionDAG *G) const;
  void print_details(raw_ostream &OS, const SelectionDAG *G) const;
  void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
  void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;

  /// Print a SelectionDAG node and all children down to
  /// the leaves.  The given SelectionDAG allows target-specific nodes
  /// to be printed in human-readable form.  Unlike printr, this will
  /// print the whole DAG, including children that appear multiple
  /// times.
  ///
  void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;

  /// Print a SelectionDAG node and children up to
  /// depth "depth."  The given SelectionDAG allows target-specific
  /// nodes to be printed in human-readable form.  Unlike printr, this
  /// will print children that appear multiple times wherever they are
  /// used.
  ///
  void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
                       unsigned depth = 100) const;


  /// Dump this node, for debugging.
  void dump() const;

  /// Dump (recursively) this node and its use-def subgraph.
  void dumpr() const;

  /// Dump this node, for debugging.
  /// The given SelectionDAG allows target-specific nodes to be printed
  /// in human-readable form.
  void dump(const SelectionDAG *G) const;

  /// Dump (recursively) this node and its use-def subgraph.
  /// The given SelectionDAG allows target-specific nodes to be printed
  /// in human-readable form.
  void dumpr(const SelectionDAG *G) const;

  /// printrFull to dbgs().  The given SelectionDAG allows
  /// target-specific nodes to be printed in human-readable form.
  /// Unlike dumpr, this will print the whole DAG, including children
  /// that appear multiple times.
  void dumprFull(const SelectionDAG *G = nullptr) const;

  /// printrWithDepth to dbgs().  The given
  /// SelectionDAG allows target-specific nodes to be printed in
  /// human-readable form.  Unlike dumpr, this will print children
  /// that appear multiple times wherever they are used.
  ///
  void dumprWithDepth(const SelectionDAG *G = nullptr,
                      unsigned depth = 100) const;

  /// Gather unique data for the node.
  void Profile(FoldingSetNodeID &ID) const;

  /// This method should only be used by the SDUse class.
  void addUse(SDUse &U) { U.addToList(&UseList); }

protected:
  static SDVTList getSDVTList(EVT VT) {
    SDVTList Ret = { getValueTypeList(VT), 1 };
    return Ret;
  }

  /// Create an SDNode.
  ///
  /// SDNodes are created without any operands, and never own the operand
  /// storage. To add operands, see SelectionDAG::createOperands.
  SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
      : NodeType(Opc), HasDebugValue(false), SubclassData(0), NodeId(-1),
        OperandList(nullptr), ValueList(VTs.VTs), UseList(nullptr),
        NumOperands(0), NumValues(VTs.NumVTs), IROrder(Order),
        debugLoc(std::move(dl)) {
    assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
    assert(NumValues == VTs.NumVTs &&
           "NumValues wasn't wide enough for its operands!");
  }

  /// Release the operands and set this node to have zero operands.
  void DropOperands();
};

/// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
/// into SDNode creation functions.
/// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
/// from the original Instruction, and IROrder is the ordinal position of
/// the instruction.
/// When an SDNode is created after the DAG is being built, both DebugLoc and
/// the IROrder are propagated from the original SDNode.
/// So SDLoc class provides two constructors besides the default one, one to
/// be used by the DAGBuilder, the other to be used by others.
class SDLoc {
private:
  DebugLoc DL;
  int IROrder = 0;

public:
  SDLoc() = default;
  SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
  SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
  SDLoc(const Instruction *I, int Order) : IROrder(Order) {
    assert(Order >= 0 && "bad IROrder");
    if (I)
      DL = I->getDebugLoc();
  }
  unsigned getIROrder() const { return IROrder; }
  const DebugLoc &getDebugLoc() const { return DL; }
};


// Define inline functions from the SDValue class.

inline SDValue::SDValue(SDNode *node, unsigned resno)
    : Node(node), ResNo(resno) {
  assert((!Node || ResNo < Node->getNumValues()) &&
         "Invalid result number for the given node!");
  assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
}

inline unsigned SDValue::getOpcode() const {
  return Node->getOpcode();
}
inline EVT SDValue::getValueType() const {
  return Node->getValueType(ResNo);
}
inline unsigned SDValue::getNumOperands() const {
  return Node->getNumOperands();
}
inline const SDValue &SDValue::getOperand(unsigned i) const {
  return Node->getOperand(i);
}
inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
  return Node->getConstantOperandVal(i);
}
inline bool SDValue::isTargetOpcode() const {
  return Node->isTargetOpcode();
}
inline bool SDValue::isTargetMemoryOpcode() const {
  return Node->isTargetMemoryOpcode();
}
inline bool SDValue::isMachineOpcode() const {
  return Node->isMachineOpcode();
}
inline unsigned SDValue::getMachineOpcode() const {
  return Node->getMachineOpcode();
}
inline bool SDValue::isUndef() const {
  return Node->isUndef();
}
inline bool SDValue::use_empty() const {
  return !Node->hasAnyUseOfValue(ResNo);
}
inline bool SDValue::hasOneUse() const {
  return Node->hasNUsesOfValue(1, ResNo);
}
inline const DebugLoc &SDValue::getDebugLoc() const {
  return Node->getDebugLoc();
}
inline void SDValue::dump() const {
  return Node->dump();
}
inline void SDValue::dumpr() const {
  return Node->dumpr();
}
// Define inline functions from the SDUse class.

inline void SDUse::set(const SDValue &V) {
  if (Val.getNode()) removeFromList();
  Val = V;
  if (V.getNode()) V.getNode()->addUse(*this);
}

inline void SDUse::setInitial(const SDValue &V) {
  Val = V;
  V.getNode()->addUse(*this);
}

inline void SDUse::setNode(SDNode *N) {
  if (Val.getNode()) removeFromList();
  Val.setNode(N);
  if (N) N->addUse(*this);
}

/// Returns true if the opcode is a binary operation with flags.
static bool isBinOpWithFlags(unsigned Opcode) {
  switch (Opcode) {
  case ISD::SDIV:
  case ISD::UDIV:
  case ISD::SRA:
  case ISD::SRL:
  case ISD::MUL:
  case ISD::ADD:
  case ISD::SUB:
  case ISD::SHL:
  case ISD::FADD:
  case ISD::FDIV:
  case ISD::FMUL:
  case ISD::FREM:
  case ISD::FSUB:
    return true;
  default:
    return false;
  }
}

/// This class is an extension of BinarySDNode
/// used from those opcodes that have associated extra flags.
class BinaryWithFlagsSDNode : public SDNode {
public:
  SDNodeFlags Flags;
  BinaryWithFlagsSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
                        SDVTList VTs, const SDNodeFlags &NodeFlags)
      : SDNode(Opc, Order, dl, VTs), Flags(NodeFlags) {}
  static bool classof(const SDNode *N) {
    return isBinOpWithFlags(N->getOpcode());
  }
};

/// This class is used to form a handle around another node that
/// is persistent and is updated across invocations of replaceAllUsesWith on its
/// operand.  This node should be directly created by end-users and not added to
/// the AllNodes list.
class HandleSDNode : public SDNode {
  SDUse Op;
public:
  explicit HandleSDNode(SDValue X)
    : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
    // HandleSDNodes are never inserted into the DAG, so they won't be
    // auto-numbered. Use ID 65535 as a sentinel.
    PersistentId = 0xffff;

    // Manually set up the operand list. This node type is special in that it's
    // always stack allocated and SelectionDAG does not manage its operands.
    // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
    // be so special.
    Op.setUser(this);
    Op.setInitial(X);
    NumOperands = 1;
    OperandList = &Op;
  }
  ~HandleSDNode();
  const SDValue &getValue() const { return Op; }
};

class AddrSpaceCastSDNode : public SDNode {
private:
  unsigned SrcAddrSpace;
  unsigned DestAddrSpace;

public:
  AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT,
                      unsigned SrcAS, unsigned DestAS);

  unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
  unsigned getDestAddressSpace() const { return DestAddrSpace; }

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::ADDRSPACECAST;
  }
};

/// This is an abstract virtual class for memory operations.
class MemSDNode : public SDNode {
private:
  // VT of in-memory value.
  EVT MemoryVT;

protected:
  /// Memory reference information.
  MachineMemOperand *MMO;

public:
  MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
            EVT MemoryVT, MachineMemOperand *MMO);

  bool readMem() const { return MMO->isLoad(); }
  bool writeMem() const { return MMO->isStore(); }

  /// Returns alignment and volatility of the memory access
  unsigned getOriginalAlignment() const {
    return MMO->getBaseAlignment();
  }
  unsigned getAlignment() const {
    return MMO->getAlignment();
  }

  /// Return the SubclassData value, which contains an
  /// encoding of the volatile flag, as well as bits used by subclasses. This
  /// function should only be used to compute a FoldingSetNodeID value.
  unsigned getRawSubclassData() const {
    return SubclassData;
  }

  // We access subclass data here so that we can check consistency
  // with MachineMemOperand information.
  bool isVolatile() const { return (SubclassData >> 5) & 1; }
  bool isNonTemporal() const { return (SubclassData >> 6) & 1; }
  bool isInvariant() const { return (SubclassData >> 7) & 1; }

  AtomicOrdering getOrdering() const {
    return AtomicOrdering((SubclassData >> 8) & 15);
  }
  SynchronizationScope getSynchScope() const {
    return SynchronizationScope((SubclassData >> 12) & 1);
  }

  // Returns the offset from the location of the access.
  int64_t getSrcValueOffset() const { return MMO->getOffset(); }

  /// Returns the AA info that describes the dereference.
  AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }

  /// Returns the Ranges that describes the dereference.
  const MDNode *getRanges() const { return MMO->getRanges(); }

  /// Return the type of the in-memory value.
  EVT getMemoryVT() const { return MemoryVT; }

  /// Return a MachineMemOperand object describing the memory
  /// reference performed by operation.
  MachineMemOperand *getMemOperand() const { return MMO; }

  const MachinePointerInfo &getPointerInfo() const {
    return MMO->getPointerInfo();
  }

  /// Return the address space for the associated pointer
  unsigned getAddressSpace() const {
    return getPointerInfo().getAddrSpace();
  }

  /// Update this MemSDNode's MachineMemOperand information
  /// to reflect the alignment of NewMMO, if it has a greater alignment.
  /// This must only be used when the new alignment applies to all users of
  /// this MachineMemOperand.
  void refineAlignment(const MachineMemOperand *NewMMO) {
    MMO->refineAlignment(NewMMO);
  }

  const SDValue &getChain() const { return getOperand(0); }
  const SDValue &getBasePtr() const {
    return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
  }

  // Methods to support isa and dyn_cast
  static bool classof(const SDNode *N) {
    // For some targets, we lower some target intrinsics to a MemIntrinsicNode
    // with either an intrinsic or a target opcode.
    return N->getOpcode() == ISD::LOAD                ||
           N->getOpcode() == ISD::STORE               ||
           N->getOpcode() == ISD::PREFETCH            ||
           N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
           N->getOpcode() == ISD::ATOMIC_SWAP         ||
           N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
           N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
           N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
           N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
           N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
           N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
           N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
           N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
           N->getOpcode() == ISD::ATOMIC_LOAD         ||
           N->getOpcode() == ISD::ATOMIC_STORE        ||
           N->getOpcode() == ISD::MLOAD               ||
           N->getOpcode() == ISD::MSTORE              ||
           N->getOpcode() == ISD::MGATHER             ||
           N->getOpcode() == ISD::MSCATTER            ||
           N->isMemIntrinsic()                        ||
           N->isTargetMemoryOpcode();
  }
};

/// This is an SDNode representing atomic operations.
class AtomicSDNode : public MemSDNode {
  /// For cmpxchg instructions, the ordering requirements when a store does not
  /// occur.
  AtomicOrdering FailureOrdering;

  void InitAtomic(AtomicOrdering SuccessOrdering,
                  AtomicOrdering FailureOrdering,
                  SynchronizationScope SynchScope) {
    // This must match encodeMemSDNodeFlags() in SelectionDAG.cpp.
    assert((AtomicOrdering)((unsigned)SuccessOrdering & 15) ==
               SuccessOrdering &&
           "Ordering may not require more than 4 bits!");
    assert((AtomicOrdering)((unsigned)FailureOrdering & 15) ==
               FailureOrdering &&
           "Ordering may not require more than 4 bits!");
    assert((SynchScope & 1) == SynchScope &&
           "SynchScope may not require more than 1 bit!");
    SubclassData |= (unsigned)SuccessOrdering << 8;
    SubclassData |= SynchScope << 12;
    this->FailureOrdering = FailureOrdering;
    assert(getSuccessOrdering() == SuccessOrdering &&
           "Ordering encoding error!");
    assert(getFailureOrdering() == FailureOrdering &&
           "Ordering encoding error!");
    assert(getSynchScope() == SynchScope && "Synch-scope encoding error!");
  }

public:
  AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
               EVT MemVT, MachineMemOperand *MMO,
               AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
               SynchronizationScope SynchScope)
      : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
    InitAtomic(SuccessOrdering, FailureOrdering, SynchScope);
  }

  const SDValue &getBasePtr() const { return getOperand(1); }
  const SDValue &getVal() const { return getOperand(2); }

  AtomicOrdering getSuccessOrdering() const {
    return getOrdering();
  }

  // Not quite enough room in SubclassData for everything, so failure gets its
  // own field.
  AtomicOrdering getFailureOrdering() const {
    return FailureOrdering;
  }

  bool isCompareAndSwap() const {
    unsigned Op = getOpcode();
    return Op == ISD::ATOMIC_CMP_SWAP || Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
  }

  // Methods to support isa and dyn_cast
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
           N->getOpcode() == ISD::ATOMIC_SWAP         ||
           N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
           N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
           N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
           N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
           N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
           N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
           N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
           N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
           N->getOpcode() == ISD::ATOMIC_LOAD         ||
           N->getOpcode() == ISD::ATOMIC_STORE;
  }
};

/// This SDNode is used for target intrinsics that touch
/// memory and need an associated MachineMemOperand. Its opcode may be
/// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
/// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
class MemIntrinsicSDNode : public MemSDNode {
public:
  MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
                     SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
      : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
    SubclassData |= 1u << 13;
  }

  // Methods to support isa and dyn_cast
  static bool classof(const SDNode *N) {
    // We lower some target intrinsics to their target opcode
    // early a node with a target opcode can be of this class
    return N->isMemIntrinsic()             ||
           N->getOpcode() == ISD::PREFETCH ||
           N->isTargetMemoryOpcode();
  }
};

/// This SDNode is used to implement the code generator
/// support for the llvm IR shufflevector instruction.  It combines elements
/// from two input vectors into a new input vector, with the selection and
/// ordering of elements determined by an array of integers, referred to as
/// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
/// An index of -1 is treated as undef, such that the code generator may put
/// any value in the corresponding element of the result.
class ShuffleVectorSDNode : public SDNode {
  // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
  // is freed when the SelectionDAG object is destroyed.
  const int *Mask;
protected:
  friend class SelectionDAG;
  ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M)
      : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {}

public:
  ArrayRef<int> getMask() const {
    EVT VT = getValueType(0);
    return makeArrayRef(Mask, VT.getVectorNumElements());
  }
  int getMaskElt(unsigned Idx) const {
    assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
    return Mask[Idx];
  }

  bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
  int  getSplatIndex() const {
    assert(isSplat() && "Cannot get splat index for non-splat!");
    EVT VT = getValueType(0);
    for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
      if (Mask[i] >= 0)
        return Mask[i];
    }
    llvm_unreachable("Splat with all undef indices?");
  }
  static bool isSplatMask(const int *Mask, EVT VT);

  /// Change values in a shuffle permute mask assuming
  /// the two vector operands have swapped position.
  static void commuteMask(MutableArrayRef<int> Mask) {
    unsigned NumElems = Mask.size();
    for (unsigned i = 0; i != NumElems; ++i) {
      int idx = Mask[i];
      if (idx < 0)
        continue;
      else if (idx < (int)NumElems)
        Mask[i] = idx + NumElems;
      else
        Mask[i] = idx - NumElems;
    }
  }

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::VECTOR_SHUFFLE;
  }
};

class ConstantSDNode : public SDNode {
  const ConstantInt *Value;
  friend class SelectionDAG;
  ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val,
                 const DebugLoc &DL, EVT VT)
      : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DL,
               getSDVTList(VT)),
        Value(val) {
    SubclassData |= (uint16_t)isOpaque;
  }
public:

  const ConstantInt *getConstantIntValue() const { return Value; }
  const APInt &getAPIntValue() const { return Value->getValue(); }
  uint64_t getZExtValue() const { return Value->getZExtValue(); }
  int64_t getSExtValue() const { return Value->getSExtValue(); }

  bool isOne() const { return Value->isOne(); }
  bool isNullValue() const { return Value->isNullValue(); }
  bool isAllOnesValue() const { return Value->isAllOnesValue(); }

  bool isOpaque() const { return SubclassData & 1; }

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::Constant ||
           N->getOpcode() == ISD::TargetConstant;
  }
};

class ConstantFPSDNode : public SDNode {
  const ConstantFP *Value;
  friend class SelectionDAG;
  ConstantFPSDNode(bool isTarget, const ConstantFP *val, const DebugLoc &DL,
                   EVT VT)
      : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0, DL,
               getSDVTList(VT)),
        Value(val) {}

public:

  const APFloat& getValueAPF() const { return Value->getValueAPF(); }
  const ConstantFP *getConstantFPValue() const { return Value; }

  /// Return true if the value is positive or negative zero.
  bool isZero() const { return Value->isZero(); }

  /// Return true if the value is a NaN.
  bool isNaN() const { return Value->isNaN(); }

  /// Return true if the value is an infinity
  bool isInfinity() const { return Value->isInfinity(); }

  /// Return true if the value is negative.
  bool isNegative() const { return Value->isNegative(); }

  /// We don't rely on operator== working on double values, as
  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
  /// As such, this method can be used to do an exact bit-for-bit comparison of
  /// two floating point values.

  /// We leave the version with the double argument here because it's just so
  /// convenient to write "2.0" and the like.  Without this function we'd
  /// have to duplicate its logic everywhere it's called.
  bool isExactlyValue(double V) const {
    bool ignored;
    APFloat Tmp(V);
    Tmp.convert(Value->getValueAPF().getSemantics(),
                APFloat::rmNearestTiesToEven, &ignored);
    return isExactlyValue(Tmp);
  }
  bool isExactlyValue(const APFloat& V) const;

  static bool isValueValidForType(EVT VT, const APFloat& Val);

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::ConstantFP ||
           N->getOpcode() == ISD::TargetConstantFP;
  }
};

/// Returns true if \p V is a constant integer zero.
bool isNullConstant(SDValue V);
/// Returns true if \p V is an FP constant with a value of positive zero.
bool isNullFPConstant(SDValue V);
/// Returns true if \p V is an integer constant with all bits set.
bool isAllOnesConstant(SDValue V);
/// Returns true if \p V is a constant integer one.
bool isOneConstant(SDValue V);
/// Returns true if \p V is a bitwise not operation. Assumes that an all ones
/// constant is canonicalized to be operand 1.
bool isBitwiseNot(SDValue V);

class GlobalAddressSDNode : public SDNode {
  const GlobalValue *TheGlobal;
  int64_t Offset;
  unsigned char TargetFlags;
  friend class SelectionDAG;
  GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
                      const GlobalValue *GA, EVT VT, int64_t o,
                      unsigned char TargetFlags);

public:

  const GlobalValue *getGlobal() const { return TheGlobal; }
  int64_t getOffset() const { return Offset; }
  unsigned char getTargetFlags() const { return TargetFlags; }
  // Return the address space this GlobalAddress belongs to.
  unsigned getAddressSpace() const;

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::GlobalAddress ||
           N->getOpcode() == ISD::TargetGlobalAddress ||
           N->getOpcode() == ISD::GlobalTLSAddress ||
           N->getOpcode() == ISD::TargetGlobalTLSAddress;
  }
};

class FrameIndexSDNode : public SDNode {
  int FI;
  friend class SelectionDAG;
  FrameIndexSDNode(int fi, EVT VT, bool isTarg)
    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
      0, DebugLoc(), getSDVTList(VT)), FI(fi) {
  }
public:

  int getIndex() const { return FI; }

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::FrameIndex ||
           N->getOpcode() == ISD::TargetFrameIndex;
  }
};

class JumpTableSDNode : public SDNode {
  int JTI;
  unsigned char TargetFlags;
  friend class SelectionDAG;
  JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF)
    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
      0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
  }
public:

  int getIndex() const { return JTI; }
  unsigned char getTargetFlags() const { return TargetFlags; }

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::JumpTable ||
           N->getOpcode() == ISD::TargetJumpTable;
  }
};

class ConstantPoolSDNode : public SDNode {
  union {
    const Constant *ConstVal;
    MachineConstantPoolValue *MachineCPVal;
  } Val;
  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
  unsigned Alignment;  // Minimum alignment requirement of CP (not log2 value).
  unsigned char TargetFlags;
  friend class SelectionDAG;
  ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
                     unsigned Align, unsigned char TF)
    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
             DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
             TargetFlags(TF) {
    assert(Offset >= 0 && "Offset is too large");
    Val.ConstVal = c;
  }
  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
                     EVT VT, int o, unsigned Align, unsigned char TF)
    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
             DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
             TargetFlags(TF) {
    assert(Offset >= 0 && "Offset is too large");
    Val.MachineCPVal = v;
    Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
  }
public:

  bool isMachineConstantPoolEntry() const {
    return Offset < 0;
  }

  const Constant *getConstVal() const {
    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
    return Val.ConstVal;
  }

  MachineConstantPoolValue *getMachineCPVal() const {
    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
    return Val.MachineCPVal;
  }

  int getOffset() const {
    return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
  }

  // Return the alignment of this constant pool object, which is either 0 (for
  // default alignment) or the desired value.
  unsigned getAlignment() const { return Alignment; }
  unsigned char getTargetFlags() const { return TargetFlags; }

  Type *getType() const;

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::ConstantPool ||
           N->getOpcode() == ISD::TargetConstantPool;
  }
};

/// Completely target-dependent object reference.
class TargetIndexSDNode : public SDNode {
  unsigned char TargetFlags;
  int Index;
  int64_t Offset;
  friend class SelectionDAG;
public:

  TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned char TF)
    : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
      TargetFlags(TF), Index(Idx), Offset(Ofs) {}
public:

  unsigned char getTargetFlags() const { return TargetFlags; }
  int getIndex() const { return Index; }
  int64_t getOffset() const { return Offset; }

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::TargetIndex;
  }
};

class BasicBlockSDNode : public SDNode {
  MachineBasicBlock *MBB;
  friend class SelectionDAG;
  /// Debug info is meaningful and potentially useful here, but we create
  /// blocks out of order when they're jumped to, which makes it a bit
  /// harder.  Let's see if we need it first.
  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
    : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
  {}
public:

  MachineBasicBlock *getBasicBlock() const { return MBB; }

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::BasicBlock;
  }
};

/// A "pseudo-class" with methods for operating on BUILD_VECTORs.
class BuildVectorSDNode : public SDNode {
  // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
  explicit BuildVectorSDNode() = delete;
public:
  /// Check if this is a constant splat, and if so, find the
  /// smallest element size that splats the vector.  If MinSplatBits is
  /// nonzero, the element size must be at least that large.  Note that the
  /// splat element may be the entire vector (i.e., a one element vector).
  /// Returns the splat element value in SplatValue.  Any undefined bits in
  /// that value are zero, and the corresponding bits in the SplatUndef mask
  /// are set.  The SplatBitSize value is set to the splat element size in
  /// bits.  HasAnyUndefs is set to true if any bits in the vector are
  /// undefined.  isBigEndian describes the endianness of the target.
  bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
                       unsigned &SplatBitSize, bool &HasAnyUndefs,
                       unsigned MinSplatBits = 0,
                       bool isBigEndian = false) const;

  /// \brief Returns the splatted value or a null value if this is not a splat.
  ///
  /// If passed a non-null UndefElements bitvector, it will resize it to match
  /// the vector width and set the bits where elements are undef.
  SDValue getSplatValue(BitVector *UndefElements = nullptr) const;

  /// \brief Returns the splatted constant or null if this is not a constant
  /// splat.
  ///
  /// If passed a non-null UndefElements bitvector, it will resize it to match
  /// the vector width and set the bits where elements are undef.
  ConstantSDNode *
  getConstantSplatNode(BitVector *UndefElements = nullptr) const;

  /// \brief Returns the splatted constant FP or null if this is not a constant
  /// FP splat.
  ///
  /// If passed a non-null UndefElements bitvector, it will resize it to match
  /// the vector width and set the bits where elements are undef.
  ConstantFPSDNode *
  getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;

  /// \brief If this is a constant FP splat and the splatted constant FP is an
  /// exact power or 2, return the log base 2 integer value.  Otherwise,
  /// return -1.
  ///
  /// The BitWidth specifies the necessary bit precision.
  int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
                                          uint32_t BitWidth) const;

  bool isConstant() const;

  static inline bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::BUILD_VECTOR;
  }
};

/// An SDNode that holds an arbitrary LLVM IR Value. This is
/// used when the SelectionDAG needs to make a simple reference to something
/// in the LLVM IR representation.
///
class SrcValueSDNode : public SDNode {
  const Value *V;
  friend class SelectionDAG;
  /// Create a SrcValue for a general value.
  explicit SrcValueSDNode(const Value *v)
    : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}

public:
  /// Return the contained Value.
  const Value *getValue() const { return V; }

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::SRCVALUE;
  }
};

class MDNodeSDNode : public SDNode {
  const MDNode *MD;
  friend class SelectionDAG;
  explicit MDNodeSDNode(const MDNode *md)
  : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
  {}
public:

  const MDNode *getMD() const { return MD; }

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::MDNODE_SDNODE;
  }
};

class RegisterSDNode : public SDNode {
  unsigned Reg;
  friend class SelectionDAG;
  RegisterSDNode(unsigned reg, EVT VT)
    : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {
  }
public:

  unsigned getReg() const { return Reg; }

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::Register;
  }
};

class RegisterMaskSDNode : public SDNode {
  // The memory for RegMask is not owned by the node.
  const uint32_t *RegMask;
  friend class SelectionDAG;
  RegisterMaskSDNode(const uint32_t *mask)
    : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
      RegMask(mask) {}
public:

  const uint32_t *getRegMask() const { return RegMask; }

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::RegisterMask;
  }
};

class BlockAddressSDNode : public SDNode {
  const BlockAddress *BA;
  int64_t Offset;
  unsigned char TargetFlags;
  friend class SelectionDAG;
  BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
                     int64_t o, unsigned char Flags)
    : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
             BA(ba), Offset(o), TargetFlags(Flags) {
  }
public:
  const BlockAddress *getBlockAddress() const { return BA; }
  int64_t getOffset() const { return Offset; }
  unsigned char getTargetFlags() const { return TargetFlags; }

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::BlockAddress ||
           N->getOpcode() == ISD::TargetBlockAddress;
  }
};

class EHLabelSDNode : public SDNode {
  MCSymbol *Label;
  friend class SelectionDAG;
  EHLabelSDNode(unsigned Order, const DebugLoc &dl, MCSymbol *L)
      : SDNode(ISD::EH_LABEL, Order, dl, getSDVTList(MVT::Other)), Label(L) {}

public:
  MCSymbol *getLabel() const { return Label; }

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::EH_LABEL;
  }
};

class ExternalSymbolSDNode : public SDNode {
  const char *Symbol;
  unsigned char TargetFlags;

  friend class SelectionDAG;
  ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT)
    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
             0, DebugLoc(), getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {
  }
public:

  const char *getSymbol() const { return Symbol; }
  unsigned char getTargetFlags() const { return TargetFlags; }

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::ExternalSymbol ||
           N->getOpcode() == ISD::TargetExternalSymbol;
  }
};

class MCSymbolSDNode : public SDNode {
  MCSymbol *Symbol;

  friend class SelectionDAG;
  MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
      : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}

public:
  MCSymbol *getMCSymbol() const { return Symbol; }

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::MCSymbol;
  }
};

class CondCodeSDNode : public SDNode {
  ISD::CondCode Condition;
  friend class SelectionDAG;
  explicit CondCodeSDNode(ISD::CondCode Cond)
    : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
      Condition(Cond) {
  }
public:

  ISD::CondCode get() const { return Condition; }

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::CONDCODE;
  }
};

/// NOTE: avoid using this node as this may disappear in the
/// future and most targets don't support it.
class CvtRndSatSDNode : public SDNode {
  ISD::CvtCode CvtCode;
  friend class SelectionDAG;
  explicit CvtRndSatSDNode(EVT VT, unsigned Order, const DebugLoc &dl,
                           ISD::CvtCode Code)
      : SDNode(ISD::CONVERT_RNDSAT, Order, dl, getSDVTList(VT)), CvtCode(Code) {
  }

public:
  ISD::CvtCode getCvtCode() const { return CvtCode; }

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::CONVERT_RNDSAT;
  }
};

/// This class is used to represent EVT's, which are used
/// to parameterize some operations.
class VTSDNode : public SDNode {
  EVT ValueType;
  friend class SelectionDAG;
  explicit VTSDNode(EVT VT)
    : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
      ValueType(VT) {
  }
public:

  EVT getVT() const { return ValueType; }

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::VALUETYPE;
  }
};

/// Base class for LoadSDNode and StoreSDNode
class LSBaseSDNode : public MemSDNode {
public:
  LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
               SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
               MachineMemOperand *MMO)
      : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
    SubclassData |= AM << 2;
    assert(getAddressingMode() == AM && "MemIndexedMode encoding error!");
  }

  const SDValue &getOffset() const {
    return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
  }

  /// Return the addressing mode for this load or store:
  /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
  ISD::MemIndexedMode getAddressingMode() const {
    return ISD::MemIndexedMode((SubclassData >> 2) & 7);
  }

  /// Return true if this is a pre/post inc/dec load/store.
  bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }

  /// Return true if this is NOT a pre/post inc/dec load/store.
  bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::LOAD ||
           N->getOpcode() == ISD::STORE;
  }
};

/// This class is used to represent ISD::LOAD nodes.
class LoadSDNode : public LSBaseSDNode {
  friend class SelectionDAG;
  LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
             MachineMemOperand *MMO)
      : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
    SubclassData |= (unsigned short)ETy;
    assert(getExtensionType() == ETy && "LoadExtType encoding error!");
    assert(readMem() && "Load MachineMemOperand is not a load!");
    assert(!writeMem() && "Load MachineMemOperand is a store!");
  }
public:

  /// Return whether this is a plain node,
  /// or one of the varieties of value-extending loads.
  ISD::LoadExtType getExtensionType() const {
    return ISD::LoadExtType(SubclassData & 3);
  }

  const SDValue &getBasePtr() const { return getOperand(1); }
  const SDValue &getOffset() const { return getOperand(2); }

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::LOAD;
  }
};

/// This class is used to represent ISD::STORE nodes.
class StoreSDNode : public LSBaseSDNode {
  friend class SelectionDAG;
  StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
              ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
              MachineMemOperand *MMO)
      : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
    SubclassData |= (unsigned short)isTrunc;
    assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!");
    assert(!readMem() && "Store MachineMemOperand is a load!");
    assert(writeMem() && "Store MachineMemOperand is not a store!");
  }
public:

  /// Return true if the op does a truncation before store.
  /// For integers this is the same as doing a TRUNCATE and storing the result.
  /// For floats, it is the same as doing an FP_ROUND and storing the result.
  bool isTruncatingStore() const { return SubclassData & 1; }

  const SDValue &getValue() const { return getOperand(1); }
  const SDValue &getBasePtr() const { return getOperand(2); }
  const SDValue &getOffset() const { return getOperand(3); }

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::STORE;
  }
};

/// This base class is used to represent MLOAD and MSTORE nodes
class MaskedLoadStoreSDNode : public MemSDNode {
public:
  friend class SelectionDAG;
  MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
                        const DebugLoc &dl, SDVTList VTs, EVT MemVT,
                        MachineMemOperand *MMO)
      : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {}

  // In the both nodes address is Op1, mask is Op2:
  // MaskedLoadSDNode (Chain, ptr, mask, src0), src0 is a passthru value
  // MaskedStoreSDNode (Chain, ptr, mask, data)
  // Mask is a vector of i1 elements
  const SDValue &getBasePtr() const { return getOperand(1); }
  const SDValue &getMask() const    { return getOperand(2); }

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::MLOAD ||
           N->getOpcode() == ISD::MSTORE;
  }
};

/// This class is used to represent an MLOAD node
class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
public:
  friend class SelectionDAG;
  MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
                   ISD::LoadExtType ETy, EVT MemVT, MachineMemOperand *MMO)
      : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, MemVT, MMO) {
    SubclassData |= (unsigned short)ETy;
  }

  ISD::LoadExtType getExtensionType() const {
    return ISD::LoadExtType(SubclassData & 3);
  }
  const SDValue &getSrc0() const { return getOperand(3); }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::MLOAD;
  }
};

/// This class is used to represent an MSTORE node
class MaskedStoreSDNode : public MaskedLoadStoreSDNode {

public:
  friend class SelectionDAG;
  MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
                    bool isTrunc, EVT MemVT, MachineMemOperand *MMO)
      : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, MemVT, MMO) {
    SubclassData |= (unsigned short)isTrunc;
  }
  /// Return true if the op does a truncation before store.
  /// For integers this is the same as doing a TRUNCATE and storing the result.
  /// For floats, it is the same as doing an FP_ROUND and storing the result.
  bool isTruncatingStore() const { return SubclassData & 1; }

  const SDValue &getValue() const { return getOperand(3); }

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::MSTORE;
  }
};

/// This is a base class used to represent
/// MGATHER and MSCATTER nodes
///
class MaskedGatherScatterSDNode : public MemSDNode {
public:
  friend class SelectionDAG;
  MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
                            const DebugLoc &dl, SDVTList VTs, EVT MemVT,
                            MachineMemOperand *MMO)
      : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {}

  // In the both nodes address is Op1, mask is Op2:
  // MaskedGatherSDNode  (Chain, src0, mask, base, index), src0 is a passthru value
  // MaskedScatterSDNode (Chain, value, mask, base, index)
  // Mask is a vector of i1 elements
  const SDValue &getBasePtr() const { return getOperand(3); }
  const SDValue &getIndex()   const { return getOperand(4); }
  const SDValue &getMask()    const { return getOperand(2); }
  const SDValue &getValue()   const { return getOperand(1); }

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::MGATHER ||
           N->getOpcode() == ISD::MSCATTER;
  }
};

/// This class is used to represent an MGATHER node
///
class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
public:
  friend class SelectionDAG;
  MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
                     EVT MemVT, MachineMemOperand *MMO)
      : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO) {}

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::MGATHER;
  }
};

/// This class is used to represent an MSCATTER node
///
class MaskedScatterSDNode : public MaskedGatherScatterSDNode {

public:
  friend class SelectionDAG;
  MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
                      EVT MemVT, MachineMemOperand *MMO)
      : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO) {}

  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::MSCATTER;
  }
};

/// An SDNode that represents everything that will be needed
/// to construct a MachineInstr. These nodes are created during the
/// instruction selection proper phase.
class MachineSDNode : public SDNode {
public:
  typedef MachineMemOperand **mmo_iterator;

private:
  friend class SelectionDAG;
  MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
      : SDNode(Opc, Order, DL, VTs), MemRefs(nullptr), MemRefsEnd(nullptr) {}

  /// Memory reference descriptions for this instruction.
  mmo_iterator MemRefs;
  mmo_iterator MemRefsEnd;

public:
  mmo_iterator memoperands_begin() const { return MemRefs; }
  mmo_iterator memoperands_end() const { return MemRefsEnd; }
  bool memoperands_empty() const { return MemRefsEnd == MemRefs; }

  /// Assign this MachineSDNodes's memory reference descriptor
  /// list. This does not transfer ownership.
  void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
    for (mmo_iterator MMI = NewMemRefs, MME = NewMemRefsEnd; MMI != MME; ++MMI)
      assert(*MMI && "Null mem ref detected!");
    MemRefs = NewMemRefs;
    MemRefsEnd = NewMemRefsEnd;
  }

  static bool classof(const SDNode *N) {
    return N->isMachineOpcode();
  }
};

class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
                                            SDNode, ptrdiff_t> {
  const SDNode *Node;
  unsigned Operand;

  SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
public:
  bool operator==(const SDNodeIterator& x) const {
    return Operand == x.Operand;
  }
  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }

  pointer operator*() const {
    return Node->getOperand(Operand).getNode();
  }
  pointer operator->() const { return operator*(); }

  SDNodeIterator& operator++() {                // Preincrement
    ++Operand;
    return *this;
  }
  SDNodeIterator operator++(int) { // Postincrement
    SDNodeIterator tmp = *this; ++*this; return tmp;
  }
  size_t operator-(SDNodeIterator Other) const {
    assert(Node == Other.Node &&
           "Cannot compare iterators of two different nodes!");
    return Operand - Other.Operand;
  }

  static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
  static SDNodeIterator end  (const SDNode *N) {
    return SDNodeIterator(N, N->getNumOperands());
  }

  unsigned getOperand() const { return Operand; }
  const SDNode *getNode() const { return Node; }
};

template <> struct GraphTraits<SDNode*> {
  typedef SDNode NodeType;
  typedef SDNodeIterator ChildIteratorType;
  static inline NodeType *getEntryNode(SDNode *N) { return N; }
  static inline ChildIteratorType child_begin(NodeType *N) {
    return SDNodeIterator::begin(N);
  }
  static inline ChildIteratorType child_end(NodeType *N) {
    return SDNodeIterator::end(N);
  }
};

/// A representation of the largest SDNode, for use in sizeof().
///
/// This needs to be a union because the largest node differs on 32 bit systems
/// with 4 and 8 byte pointer alignment, respectively.
typedef AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode,
                              BlockAddressSDNode, GlobalAddressSDNode>
    LargestSDNode;

/// The SDNode class with the greatest alignment requirement.
typedef GlobalAddressSDNode MostAlignedSDNode;

namespace ISD {
  /// Returns true if the specified node is a non-extending and unindexed load.
  inline bool isNormalLoad(const SDNode *N) {
    const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
    return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
      Ld->getAddressingMode() == ISD::UNINDEXED;
  }

  /// Returns true if the specified node is a non-extending load.
  inline bool isNON_EXTLoad(const SDNode *N) {
    return isa<LoadSDNode>(N) &&
      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
  }

  /// Returns true if the specified node is a EXTLOAD.
  inline bool isEXTLoad(const SDNode *N) {
    return isa<LoadSDNode>(N) &&
      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
  }

  /// Returns true if the specified node is a SEXTLOAD.
  inline bool isSEXTLoad(const SDNode *N) {
    return isa<LoadSDNode>(N) &&
      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
  }

  /// Returns true if the specified node is a ZEXTLOAD.
  inline bool isZEXTLoad(const SDNode *N) {
    return isa<LoadSDNode>(N) &&
      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
  }

  /// Returns true if the specified node is an unindexed load.
  inline bool isUNINDEXEDLoad(const SDNode *N) {
    return isa<LoadSDNode>(N) &&
      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
  }

  /// Returns true if the specified node is a non-truncating
  /// and unindexed store.
  inline bool isNormalStore(const SDNode *N) {
    const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
    return St && !St->isTruncatingStore() &&
      St->getAddressingMode() == ISD::UNINDEXED;
  }

  /// Returns true if the specified node is a non-truncating store.
  inline bool isNON_TRUNCStore(const SDNode *N) {
    return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
  }

  /// Returns true if the specified node is a truncating store.
  inline bool isTRUNCStore(const SDNode *N) {
    return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
  }

  /// Returns true if the specified node is an unindexed store.
  inline bool isUNINDEXEDStore(const SDNode *N) {
    return isa<StoreSDNode>(N) &&
      cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
  }
}

} // end llvm namespace

#endif