This file is indexed.

/usr/include/llvm-3.9/llvm/IR/CFG.h is in llvm-3.9-dev 1:3.9.1-19ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
//===- CFG.h - Process LLVM structures as graphs ----------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines specializations of GraphTraits that allow Function and
// BasicBlock graphs to be treated as proper graphs for generic algorithms.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_CFG_H
#define LLVM_IR_CFG_H

#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"

namespace llvm {

//===----------------------------------------------------------------------===//
// BasicBlock pred_iterator definition
//===----------------------------------------------------------------------===//

template <class Ptr, class USE_iterator> // Predecessor Iterator
class PredIterator : public std::iterator<std::forward_iterator_tag,
                                          Ptr, ptrdiff_t, Ptr*, Ptr*> {
  typedef std::iterator<std::forward_iterator_tag, Ptr, ptrdiff_t, Ptr*,
                                                                    Ptr*> super;
  typedef PredIterator<Ptr, USE_iterator> Self;
  USE_iterator It;

  inline void advancePastNonTerminators() {
    // Loop to ignore non-terminator uses (for example BlockAddresses).
    while (!It.atEnd() && !isa<TerminatorInst>(*It))
      ++It;
  }

public:
  typedef typename super::pointer pointer;
  typedef typename super::reference reference;

  PredIterator() {}
  explicit inline PredIterator(Ptr *bb) : It(bb->user_begin()) {
    advancePastNonTerminators();
  }
  inline PredIterator(Ptr *bb, bool) : It(bb->user_end()) {}

  inline bool operator==(const Self& x) const { return It == x.It; }
  inline bool operator!=(const Self& x) const { return !operator==(x); }

  inline reference operator*() const {
    assert(!It.atEnd() && "pred_iterator out of range!");
    return cast<TerminatorInst>(*It)->getParent();
  }
  inline pointer *operator->() const { return &operator*(); }

  inline Self& operator++() {   // Preincrement
    assert(!It.atEnd() && "pred_iterator out of range!");
    ++It; advancePastNonTerminators();
    return *this;
  }

  inline Self operator++(int) { // Postincrement
    Self tmp = *this; ++*this; return tmp;
  }

  /// getOperandNo - Return the operand number in the predecessor's
  /// terminator of the successor.
  unsigned getOperandNo() const {
    return It.getOperandNo();
  }

  /// getUse - Return the operand Use in the predecessor's terminator
  /// of the successor.
  Use &getUse() const {
    return It.getUse();
  }
};

typedef PredIterator<BasicBlock, Value::user_iterator> pred_iterator;
typedef PredIterator<const BasicBlock,
                     Value::const_user_iterator> const_pred_iterator;
typedef llvm::iterator_range<pred_iterator> pred_range;
typedef llvm::iterator_range<const_pred_iterator> pred_const_range;

inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); }
inline const_pred_iterator pred_begin(const BasicBlock *BB) {
  return const_pred_iterator(BB);
}
inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);}
inline const_pred_iterator pred_end(const BasicBlock *BB) {
  return const_pred_iterator(BB, true);
}
inline bool pred_empty(const BasicBlock *BB) {
  return pred_begin(BB) == pred_end(BB);
}
inline pred_range predecessors(BasicBlock *BB) {
  return pred_range(pred_begin(BB), pred_end(BB));
}
inline pred_const_range predecessors(const BasicBlock *BB) {
  return pred_const_range(pred_begin(BB), pred_end(BB));
}

//===----------------------------------------------------------------------===//
// BasicBlock succ_iterator helpers
//===----------------------------------------------------------------------===//

typedef TerminatorInst::SuccIterator<TerminatorInst *, BasicBlock>
    succ_iterator;
typedef TerminatorInst::SuccIterator<const TerminatorInst *, const BasicBlock>
    succ_const_iterator;
typedef llvm::iterator_range<succ_iterator> succ_range;
typedef llvm::iterator_range<succ_const_iterator> succ_const_range;

inline succ_iterator succ_begin(BasicBlock *BB) {
  return succ_iterator(BB->getTerminator());
}
inline succ_const_iterator succ_begin(const BasicBlock *BB) {
  return succ_const_iterator(BB->getTerminator());
}
inline succ_iterator succ_end(BasicBlock *BB) {
  return succ_iterator(BB->getTerminator(), true);
}
inline succ_const_iterator succ_end(const BasicBlock *BB) {
  return succ_const_iterator(BB->getTerminator(), true);
}
inline bool succ_empty(const BasicBlock *BB) {
  return succ_begin(BB) == succ_end(BB);
}
inline succ_range successors(BasicBlock *BB) {
  return succ_range(succ_begin(BB), succ_end(BB));
}
inline succ_const_range successors(const BasicBlock *BB) {
  return succ_const_range(succ_begin(BB), succ_end(BB));
}

template <typename T, typename U>
struct isPodLike<TerminatorInst::SuccIterator<T, U>> {
  static const bool value = isPodLike<T>::value;
};



//===--------------------------------------------------------------------===//
// GraphTraits specializations for basic block graphs (CFGs)
//===--------------------------------------------------------------------===//

// Provide specializations of GraphTraits to be able to treat a function as a
// graph of basic blocks...

template <> struct GraphTraits<BasicBlock*> {
  typedef BasicBlock NodeType;
  typedef BasicBlock *NodeRef;
  typedef succ_iterator ChildIteratorType;

  static NodeType *getEntryNode(BasicBlock *BB) { return BB; }
  static inline ChildIteratorType child_begin(NodeType *N) {
    return succ_begin(N);
  }
  static inline ChildIteratorType child_end(NodeType *N) {
    return succ_end(N);
  }
};

template <> struct GraphTraits<const BasicBlock*> {
  typedef const BasicBlock NodeType;
  typedef const BasicBlock *NodeRef;
  typedef succ_const_iterator ChildIteratorType;

  static NodeType *getEntryNode(const BasicBlock *BB) { return BB; }

  static inline ChildIteratorType child_begin(NodeType *N) {
    return succ_begin(N);
  }
  static inline ChildIteratorType child_end(NodeType *N) {
    return succ_end(N);
  }
};

// Provide specializations of GraphTraits to be able to treat a function as a
// graph of basic blocks... and to walk it in inverse order.  Inverse order for
// a function is considered to be when traversing the predecessor edges of a BB
// instead of the successor edges.
//
template <> struct GraphTraits<Inverse<BasicBlock*> > {
  typedef BasicBlock NodeType;
  typedef BasicBlock *NodeRef;
  typedef pred_iterator ChildIteratorType;
  static NodeType *getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; }
  static inline ChildIteratorType child_begin(NodeType *N) {
    return pred_begin(N);
  }
  static inline ChildIteratorType child_end(NodeType *N) {
    return pred_end(N);
  }
};

template <> struct GraphTraits<Inverse<const BasicBlock*> > {
  typedef const BasicBlock NodeType;
  typedef const BasicBlock *NodeRef;
  typedef const_pred_iterator ChildIteratorType;
  static NodeType *getEntryNode(Inverse<const BasicBlock*> G) {
    return G.Graph;
  }
  static inline ChildIteratorType child_begin(NodeType *N) {
    return pred_begin(N);
  }
  static inline ChildIteratorType child_end(NodeType *N) {
    return pred_end(N);
  }
};



//===--------------------------------------------------------------------===//
// GraphTraits specializations for function basic block graphs (CFGs)
//===--------------------------------------------------------------------===//

// Provide specializations of GraphTraits to be able to treat a function as a
// graph of basic blocks... these are the same as the basic block iterators,
// except that the root node is implicitly the first node of the function.
//
template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> {
  static NodeType *getEntryNode(Function *F) { return &F->getEntryBlock(); }

  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
  typedef Function::iterator nodes_iterator;
  static nodes_iterator nodes_begin(Function *F) { return F->begin(); }
  static nodes_iterator nodes_end  (Function *F) { return F->end(); }
  static size_t         size       (Function *F) { return F->size(); }
};
template <> struct GraphTraits<const Function*> :
  public GraphTraits<const BasicBlock*> {
  static NodeType *getEntryNode(const Function *F) {return &F->getEntryBlock();}

  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
  typedef Function::const_iterator nodes_iterator;
  static nodes_iterator nodes_begin(const Function *F) { return F->begin(); }
  static nodes_iterator nodes_end  (const Function *F) { return F->end(); }
  static size_t         size       (const Function *F) { return F->size(); }
};


// Provide specializations of GraphTraits to be able to treat a function as a
// graph of basic blocks... and to walk it in inverse order.  Inverse order for
// a function is considered to be when traversing the predecessor edges of a BB
// instead of the successor edges.
//
template <> struct GraphTraits<Inverse<Function*> > :
  public GraphTraits<Inverse<BasicBlock*> > {
  static NodeType *getEntryNode(Inverse<Function*> G) {
    return &G.Graph->getEntryBlock();
  }
};
template <> struct GraphTraits<Inverse<const Function*> > :
  public GraphTraits<Inverse<const BasicBlock*> > {
  static NodeType *getEntryNode(Inverse<const Function *> G) {
    return &G.Graph->getEntryBlock();
  }
};

} // End llvm namespace

#endif