/usr/include/llvm-3.9/llvm/IR/ConstantRange.h is in llvm-3.9-dev 1:3.9.1-19ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 | //===- ConstantRange.h - Represent a range ----------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Represent a range of possible values that may occur when the program is run
// for an integral value. This keeps track of a lower and upper bound for the
// constant, which MAY wrap around the end of the numeric range. To do this, it
// keeps track of a [lower, upper) bound, which specifies an interval just like
// STL iterators. When used with boolean values, the following are important
// ranges: :
//
// [F, F) = {} = Empty set
// [T, F) = {T}
// [F, T) = {F}
// [T, T) = {F, T} = Full set
//
// The other integral ranges use min/max values for special range values. For
// example, for 8-bit types, it uses:
// [0, 0) = {} = Empty set
// [255, 255) = {0..255} = Full Set
//
// Note that ConstantRange can be used to represent either signed or
// unsigned ranges.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_CONSTANTRANGE_H
#define LLVM_IR_CONSTANTRANGE_H
#include "llvm/ADT/APInt.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/Support/DataTypes.h"
namespace llvm {
/// This class represents a range of values.
///
class ConstantRange {
APInt Lower, Upper;
// If we have move semantics, pass APInts by value and move them into place.
typedef APInt APIntMoveTy;
public:
/// Initialize a full (the default) or empty set for the specified bit width.
///
explicit ConstantRange(uint32_t BitWidth, bool isFullSet = true);
/// Initialize a range to hold the single specified value.
///
ConstantRange(APIntMoveTy Value);
/// @brief Initialize a range of values explicitly. This will assert out if
/// Lower==Upper and Lower != Min or Max value for its type. It will also
/// assert out if the two APInt's are not the same bit width.
ConstantRange(APIntMoveTy Lower, APIntMoveTy Upper);
/// Produce the smallest range such that all values that may satisfy the given
/// predicate with any value contained within Other is contained in the
/// returned range. Formally, this returns a superset of
/// 'union over all y in Other . { x : icmp op x y is true }'. If the exact
/// answer is not representable as a ConstantRange, the return value will be a
/// proper superset of the above.
///
/// Example: Pred = ult and Other = i8 [2, 5) returns Result = [0, 4)
static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred,
const ConstantRange &Other);
/// Produce the largest range such that all values in the returned range
/// satisfy the given predicate with all values contained within Other.
/// Formally, this returns a subset of
/// 'intersection over all y in Other . { x : icmp op x y is true }'. If the
/// exact answer is not representable as a ConstantRange, the return value
/// will be a proper subset of the above.
///
/// Example: Pred = ult and Other = i8 [2, 5) returns [0, 2)
static ConstantRange makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
const ConstantRange &Other);
/// Produce the exact range such that all values in the returned range satisfy
/// the given predicate with any value contained within Other. Formally, this
/// returns the exact answer when the superset of 'union over all y in Other
/// is exactly same as the subset of intersection over all y in Other.
/// { x : icmp op x y is true}'.
///
/// Example: Pred = ult and Other = i8 3 returns [0, 3)
static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred,
const APInt &Other);
/// Return the largest range containing all X such that "X BinOpC Y" is
/// guaranteed not to wrap (overflow) for all Y in Other.
///
/// NB! The returned set does *not* contain **all** possible values of X for
/// which "X BinOpC Y" does not wrap -- some viable values of X may be
/// missing, so you cannot use this to contrain X's range. E.g. in the last
/// example, "(-2) + 1" is both nsw and nuw (so the "X" could be -2), but (-2)
/// is not in the set returned.
///
/// Examples:
/// typedef OverflowingBinaryOperator OBO;
/// #define MGNR makeGuaranteedNoWrapRegion
/// MGNR(Add, [i8 1, 2), OBO::NoSignedWrap) == [-128, 127)
/// MGNR(Add, [i8 1, 2), OBO::NoUnsignedWrap) == [0, -1)
/// MGNR(Add, [i8 0, 1), OBO::NoUnsignedWrap) == Full Set
/// MGNR(Add, [i8 1, 2), OBO::NoUnsignedWrap | OBO::NoSignedWrap)
/// == [0,INT_MAX)
/// MGNR(Add, [i8 -1, 6), OBO::NoSignedWrap) == [INT_MIN+1, INT_MAX-4)
static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
const ConstantRange &Other,
unsigned NoWrapKind);
/// Set up \p Pred and \p RHS such that
/// ConstantRange::makeExactICmpRegion(Pred, RHS) == *this. Return true if
/// successful.
bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const;
/// Return the lower value for this range.
///
const APInt &getLower() const { return Lower; }
/// Return the upper value for this range.
///
const APInt &getUpper() const { return Upper; }
/// Get the bit width of this ConstantRange.
///
uint32_t getBitWidth() const { return Lower.getBitWidth(); }
/// Return true if this set contains all of the elements possible
/// for this data-type.
///
bool isFullSet() const;
/// Return true if this set contains no members.
///
bool isEmptySet() const;
/// Return true if this set wraps around the top of the range.
/// For example: [100, 8).
///
bool isWrappedSet() const;
/// Return true if this set wraps around the INT_MIN of
/// its bitwidth. For example: i8 [120, 140).
///
bool isSignWrappedSet() const;
/// Return true if the specified value is in the set.
///
bool contains(const APInt &Val) const;
/// Return true if the other range is a subset of this one.
///
bool contains(const ConstantRange &CR) const;
/// If this set contains a single element, return it, otherwise return null.
///
const APInt *getSingleElement() const {
if (Upper == Lower + 1)
return &Lower;
return nullptr;
}
/// Return true if this set contains exactly one member.
///
bool isSingleElement() const { return getSingleElement() != nullptr; }
/// Return the number of elements in this set.
///
APInt getSetSize() const;
/// Return the largest unsigned value contained in the ConstantRange.
///
APInt getUnsignedMax() const;
/// Return the smallest unsigned value contained in the ConstantRange.
///
APInt getUnsignedMin() const;
/// Return the largest signed value contained in the ConstantRange.
///
APInt getSignedMax() const;
/// Return the smallest signed value contained in the ConstantRange.
///
APInt getSignedMin() const;
/// Return true if this range is equal to another range.
///
bool operator==(const ConstantRange &CR) const {
return Lower == CR.Lower && Upper == CR.Upper;
}
bool operator!=(const ConstantRange &CR) const {
return !operator==(CR);
}
/// Subtract the specified constant from the endpoints of this constant range.
ConstantRange subtract(const APInt &CI) const;
/// \brief Subtract the specified range from this range (aka relative
/// complement of the sets).
ConstantRange difference(const ConstantRange &CR) const;
/// Return the range that results from the intersection of
/// this range with another range. The resultant range is guaranteed to
/// include all elements contained in both input ranges, and to have the
/// smallest possible set size that does so. Because there may be two
/// intersections with the same set size, A.intersectWith(B) might not
/// be equal to B.intersectWith(A).
///
ConstantRange intersectWith(const ConstantRange &CR) const;
/// Return the range that results from the union of this range
/// with another range. The resultant range is guaranteed to include the
/// elements of both sets, but may contain more. For example, [3, 9) union
/// [12,15) is [3, 15), which includes 9, 10, and 11, which were not included
/// in either set before.
///
ConstantRange unionWith(const ConstantRange &CR) const;
/// Return a new range in the specified integer type, which must
/// be strictly larger than the current type. The returned range will
/// correspond to the possible range of values if the source range had been
/// zero extended to BitWidth.
ConstantRange zeroExtend(uint32_t BitWidth) const;
/// Return a new range in the specified integer type, which must
/// be strictly larger than the current type. The returned range will
/// correspond to the possible range of values if the source range had been
/// sign extended to BitWidth.
ConstantRange signExtend(uint32_t BitWidth) const;
/// Return a new range in the specified integer type, which must be
/// strictly smaller than the current type. The returned range will
/// correspond to the possible range of values if the source range had been
/// truncated to the specified type.
ConstantRange truncate(uint32_t BitWidth) const;
/// Make this range have the bit width given by \p BitWidth. The
/// value is zero extended, truncated, or left alone to make it that width.
ConstantRange zextOrTrunc(uint32_t BitWidth) const;
/// Make this range have the bit width given by \p BitWidth. The
/// value is sign extended, truncated, or left alone to make it that width.
ConstantRange sextOrTrunc(uint32_t BitWidth) const;
/// Return a new range representing the possible values resulting
/// from an addition of a value in this range and a value in \p Other.
ConstantRange add(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a subtraction of a value in this range and a value in \p Other.
ConstantRange sub(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a multiplication of a value in this range and a value in \p Other,
/// treating both this and \p Other as unsigned ranges.
ConstantRange multiply(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a signed maximum of a value in this range and a value in \p Other.
ConstantRange smax(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from an unsigned maximum of a value in this range and a value in \p Other.
ConstantRange umax(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a signed minimum of a value in this range and a value in \p Other.
ConstantRange smin(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from an unsigned minimum of a value in this range and a value in \p Other.
ConstantRange umin(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from an unsigned division of a value in this range and a value in
/// \p Other.
ConstantRange udiv(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a binary-and of a value in this range by a value in \p Other.
ConstantRange binaryAnd(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a binary-or of a value in this range by a value in \p Other.
ConstantRange binaryOr(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting
/// from a left shift of a value in this range by a value in \p Other.
/// TODO: This isn't fully implemented yet.
ConstantRange shl(const ConstantRange &Other) const;
/// Return a new range representing the possible values resulting from a
/// logical right shift of a value in this range and a value in \p Other.
ConstantRange lshr(const ConstantRange &Other) const;
/// Return a new range that is the logical not of the current set.
///
ConstantRange inverse() const;
/// Print out the bounds to a stream.
///
void print(raw_ostream &OS) const;
/// Allow printing from a debugger easily.
///
void dump() const;
};
inline raw_ostream &operator<<(raw_ostream &OS, const ConstantRange &CR) {
CR.print(OS);
return OS;
}
} // End llvm namespace
#endif
|