/usr/include/llvm-3.9/llvm/IR/InlineAsm.h is in llvm-3.9-dev 1:3.9.1-19ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 | //===-- llvm/InlineAsm.h - Class to represent inline asm strings-*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class represents the inline asm strings, which are Value*'s that are
// used as the callee operand of call instructions. InlineAsm's are uniqued
// like constants, and created via InlineAsm::get(...).
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_INLINEASM_H
#define LLVM_IR_INLINEASM_H
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/Value.h"
#include <vector>
namespace llvm {
class PointerType;
class FunctionType;
class Module;
struct InlineAsmKeyType;
template <class ConstantClass> class ConstantUniqueMap;
class InlineAsm : public Value {
public:
enum AsmDialect {
AD_ATT,
AD_Intel
};
private:
friend struct InlineAsmKeyType;
friend class ConstantUniqueMap<InlineAsm>;
InlineAsm(const InlineAsm &) = delete;
void operator=(const InlineAsm&) = delete;
std::string AsmString, Constraints;
FunctionType *FTy;
bool HasSideEffects;
bool IsAlignStack;
AsmDialect Dialect;
InlineAsm(FunctionType *Ty, const std::string &AsmString,
const std::string &Constraints, bool hasSideEffects,
bool isAlignStack, AsmDialect asmDialect);
~InlineAsm() override;
/// When the ConstantUniqueMap merges two types and makes two InlineAsms
/// identical, it destroys one of them with this method.
void destroyConstant();
public:
/// InlineAsm::get - Return the specified uniqued inline asm string.
///
static InlineAsm *get(FunctionType *Ty, StringRef AsmString,
StringRef Constraints, bool hasSideEffects,
bool isAlignStack = false,
AsmDialect asmDialect = AD_ATT);
bool hasSideEffects() const { return HasSideEffects; }
bool isAlignStack() const { return IsAlignStack; }
AsmDialect getDialect() const { return Dialect; }
/// getType - InlineAsm's are always pointers.
///
PointerType *getType() const {
return reinterpret_cast<PointerType*>(Value::getType());
}
/// getFunctionType - InlineAsm's are always pointers to functions.
///
FunctionType *getFunctionType() const;
const std::string &getAsmString() const { return AsmString; }
const std::string &getConstraintString() const { return Constraints; }
/// Verify - This static method can be used by the parser to check to see if
/// the specified constraint string is legal for the type. This returns true
/// if legal, false if not.
///
static bool Verify(FunctionType *Ty, StringRef Constraints);
// Constraint String Parsing
enum ConstraintPrefix {
isInput, // 'x'
isOutput, // '=x'
isClobber // '~x'
};
typedef std::vector<std::string> ConstraintCodeVector;
struct SubConstraintInfo {
/// MatchingInput - If this is not -1, this is an output constraint where an
/// input constraint is required to match it (e.g. "0"). The value is the
/// constraint number that matches this one (for example, if this is
/// constraint #0 and constraint #4 has the value "0", this will be 4).
signed char MatchingInput;
/// Code - The constraint code, either the register name (in braces) or the
/// constraint letter/number.
ConstraintCodeVector Codes;
/// Default constructor.
SubConstraintInfo() : MatchingInput(-1) {}
};
typedef std::vector<SubConstraintInfo> SubConstraintInfoVector;
struct ConstraintInfo;
typedef std::vector<ConstraintInfo> ConstraintInfoVector;
struct ConstraintInfo {
/// Type - The basic type of the constraint: input/output/clobber
///
ConstraintPrefix Type;
/// isEarlyClobber - "&": output operand writes result before inputs are all
/// read. This is only ever set for an output operand.
bool isEarlyClobber;
/// MatchingInput - If this is not -1, this is an output constraint where an
/// input constraint is required to match it (e.g. "0"). The value is the
/// constraint number that matches this one (for example, if this is
/// constraint #0 and constraint #4 has the value "0", this will be 4).
signed char MatchingInput;
/// hasMatchingInput - Return true if this is an output constraint that has
/// a matching input constraint.
bool hasMatchingInput() const { return MatchingInput != -1; }
/// isCommutative - This is set to true for a constraint that is commutative
/// with the next operand.
bool isCommutative;
/// isIndirect - True if this operand is an indirect operand. This means
/// that the address of the source or destination is present in the call
/// instruction, instead of it being returned or passed in explicitly. This
/// is represented with a '*' in the asm string.
bool isIndirect;
/// Code - The constraint code, either the register name (in braces) or the
/// constraint letter/number.
ConstraintCodeVector Codes;
/// isMultipleAlternative - '|': has multiple-alternative constraints.
bool isMultipleAlternative;
/// multipleAlternatives - If there are multiple alternative constraints,
/// this array will contain them. Otherwise it will be empty.
SubConstraintInfoVector multipleAlternatives;
/// The currently selected alternative constraint index.
unsigned currentAlternativeIndex;
/// Default constructor.
ConstraintInfo();
/// Parse - Analyze the specified string (e.g. "=*&{eax}") and fill in the
/// fields in this structure. If the constraint string is not understood,
/// return true, otherwise return false.
bool Parse(StringRef Str, ConstraintInfoVector &ConstraintsSoFar);
/// selectAlternative - Point this constraint to the alternative constraint
/// indicated by the index.
void selectAlternative(unsigned index);
};
/// ParseConstraints - Split up the constraint string into the specific
/// constraints and their prefixes. If this returns an empty vector, and if
/// the constraint string itself isn't empty, there was an error parsing.
static ConstraintInfoVector ParseConstraints(StringRef ConstraintString);
/// ParseConstraints - Parse the constraints of this inlineasm object,
/// returning them the same way that ParseConstraints(str) does.
ConstraintInfoVector ParseConstraints() const {
return ParseConstraints(Constraints);
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Value *V) {
return V->getValueID() == Value::InlineAsmVal;
}
// These are helper methods for dealing with flags in the INLINEASM SDNode
// in the backend.
//
// The encoding of the flag word is currently:
// Bits 2-0 - A Kind_* value indicating the kind of the operand.
// Bits 15-3 - The number of SDNode operands associated with this inline
// assembly operand.
// If bit 31 is set:
// Bit 30-16 - The operand number that this operand must match.
// When bits 2-0 are Kind_Mem, the Constraint_* value must be
// obtained from the flags for this operand number.
// Else if bits 2-0 are Kind_Mem:
// Bit 30-16 - A Constraint_* value indicating the original constraint
// code.
// Else:
// Bit 30-16 - The register class ID to use for the operand.
enum : uint32_t {
// Fixed operands on an INLINEASM SDNode.
Op_InputChain = 0,
Op_AsmString = 1,
Op_MDNode = 2,
Op_ExtraInfo = 3, // HasSideEffects, IsAlignStack, AsmDialect.
Op_FirstOperand = 4,
// Fixed operands on an INLINEASM MachineInstr.
MIOp_AsmString = 0,
MIOp_ExtraInfo = 1, // HasSideEffects, IsAlignStack, AsmDialect.
MIOp_FirstOperand = 2,
// Interpretation of the MIOp_ExtraInfo bit field.
Extra_HasSideEffects = 1,
Extra_IsAlignStack = 2,
Extra_AsmDialect = 4,
Extra_MayLoad = 8,
Extra_MayStore = 16,
Extra_IsConvergent = 32,
// Inline asm operands map to multiple SDNode / MachineInstr operands.
// The first operand is an immediate describing the asm operand, the low
// bits is the kind:
Kind_RegUse = 1, // Input register, "r".
Kind_RegDef = 2, // Output register, "=r".
Kind_RegDefEarlyClobber = 3, // Early-clobber output register, "=&r".
Kind_Clobber = 4, // Clobbered register, "~r".
Kind_Imm = 5, // Immediate.
Kind_Mem = 6, // Memory operand, "m".
// Memory constraint codes.
// These could be tablegenerated but there's little need to do that since
// there's plenty of space in the encoding to support the union of all
// constraint codes for all targets.
Constraint_Unknown = 0,
Constraint_es,
Constraint_i,
Constraint_m,
Constraint_o,
Constraint_v,
Constraint_Q,
Constraint_R,
Constraint_S,
Constraint_T,
Constraint_Um,
Constraint_Un,
Constraint_Uq,
Constraint_Us,
Constraint_Ut,
Constraint_Uv,
Constraint_Uy,
Constraint_X,
Constraint_Z,
Constraint_ZC,
Constraint_Zy,
Constraints_Max = Constraint_Zy,
Constraints_ShiftAmount = 16,
Flag_MatchingOperand = 0x80000000
};
static unsigned getFlagWord(unsigned Kind, unsigned NumOps) {
assert(((NumOps << 3) & ~0xffff) == 0 && "Too many inline asm operands!");
assert(Kind >= Kind_RegUse && Kind <= Kind_Mem && "Invalid Kind");
return Kind | (NumOps << 3);
}
static bool isRegDefKind(unsigned Flag){ return getKind(Flag) == Kind_RegDef;}
static bool isImmKind(unsigned Flag) { return getKind(Flag) == Kind_Imm; }
static bool isMemKind(unsigned Flag) { return getKind(Flag) == Kind_Mem; }
static bool isRegDefEarlyClobberKind(unsigned Flag) {
return getKind(Flag) == Kind_RegDefEarlyClobber;
}
static bool isClobberKind(unsigned Flag) {
return getKind(Flag) == Kind_Clobber;
}
/// getFlagWordForMatchingOp - Augment an existing flag word returned by
/// getFlagWord with information indicating that this input operand is tied
/// to a previous output operand.
static unsigned getFlagWordForMatchingOp(unsigned InputFlag,
unsigned MatchedOperandNo) {
assert(MatchedOperandNo <= 0x7fff && "Too big matched operand");
assert((InputFlag & ~0xffff) == 0 && "High bits already contain data");
return InputFlag | Flag_MatchingOperand | (MatchedOperandNo << 16);
}
/// getFlagWordForRegClass - Augment an existing flag word returned by
/// getFlagWord with the required register class for the following register
/// operands.
/// A tied use operand cannot have a register class, use the register class
/// from the def operand instead.
static unsigned getFlagWordForRegClass(unsigned InputFlag, unsigned RC) {
// Store RC + 1, reserve the value 0 to mean 'no register class'.
++RC;
assert(!isImmKind(InputFlag) && "Immediates cannot have a register class");
assert(!isMemKind(InputFlag) && "Memory operand cannot have a register class");
assert(RC <= 0x7fff && "Too large register class ID");
assert((InputFlag & ~0xffff) == 0 && "High bits already contain data");
return InputFlag | (RC << 16);
}
/// Augment an existing flag word returned by getFlagWord with the constraint
/// code for a memory constraint.
static unsigned getFlagWordForMem(unsigned InputFlag, unsigned Constraint) {
assert(isMemKind(InputFlag) && "InputFlag is not a memory constraint!");
assert(Constraint <= 0x7fff && "Too large a memory constraint ID");
assert(Constraint <= Constraints_Max && "Unknown constraint ID");
assert((InputFlag & ~0xffff) == 0 && "High bits already contain data");
return InputFlag | (Constraint << Constraints_ShiftAmount);
}
static unsigned convertMemFlagWordToMatchingFlagWord(unsigned InputFlag) {
assert(isMemKind(InputFlag));
return InputFlag & ~(0x7fff << Constraints_ShiftAmount);
}
static unsigned getKind(unsigned Flags) {
return Flags & 7;
}
static unsigned getMemoryConstraintID(unsigned Flag) {
assert(isMemKind(Flag));
return (Flag >> Constraints_ShiftAmount) & 0x7fff;
}
/// getNumOperandRegisters - Extract the number of registers field from the
/// inline asm operand flag.
static unsigned getNumOperandRegisters(unsigned Flag) {
return (Flag & 0xffff) >> 3;
}
/// isUseOperandTiedToDef - Return true if the flag of the inline asm
/// operand indicates it is an use operand that's matched to a def operand.
static bool isUseOperandTiedToDef(unsigned Flag, unsigned &Idx) {
if ((Flag & Flag_MatchingOperand) == 0)
return false;
Idx = (Flag & ~Flag_MatchingOperand) >> 16;
return true;
}
/// hasRegClassConstraint - Returns true if the flag contains a register
/// class constraint. Sets RC to the register class ID.
static bool hasRegClassConstraint(unsigned Flag, unsigned &RC) {
if (Flag & Flag_MatchingOperand)
return false;
unsigned High = Flag >> 16;
// getFlagWordForRegClass() uses 0 to mean no register class, and otherwise
// stores RC + 1.
if (!High)
return false;
RC = High - 1;
return true;
}
};
} // End llvm namespace
#endif
|