/usr/include/llvm-3.9/llvm/IR/PatternMatch.h is in llvm-3.9-dev 1:3.9.1-19ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 | //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides a simple and efficient mechanism for performing general
// tree-based pattern matches on the LLVM IR. The power of these routines is
// that it allows you to write concise patterns that are expressive and easy to
// understand. The other major advantage of this is that it allows you to
// trivially capture/bind elements in the pattern to variables. For example,
// you can do something like this:
//
// Value *Exp = ...
// Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
// if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
// m_And(m_Value(Y), m_ConstantInt(C2))))) {
// ... Pattern is matched and variables are bound ...
// }
//
// This is primarily useful to things like the instruction combiner, but can
// also be useful for static analysis tools or code generators.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_PATTERNMATCH_H
#define LLVM_IR_PATTERNMATCH_H
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Operator.h"
namespace llvm {
namespace PatternMatch {
template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
return const_cast<Pattern &>(P).match(V);
}
template <typename SubPattern_t> struct OneUse_match {
SubPattern_t SubPattern;
OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
template <typename OpTy> bool match(OpTy *V) {
return V->hasOneUse() && SubPattern.match(V);
}
};
template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
return SubPattern;
}
template <typename Class> struct class_match {
template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
};
/// \brief Match an arbitrary value and ignore it.
inline class_match<Value> m_Value() { return class_match<Value>(); }
/// \brief Match an arbitrary binary operation and ignore it.
inline class_match<BinaryOperator> m_BinOp() {
return class_match<BinaryOperator>();
}
/// \brief Matches any compare instruction and ignore it.
inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
/// \brief Match an arbitrary ConstantInt and ignore it.
inline class_match<ConstantInt> m_ConstantInt() {
return class_match<ConstantInt>();
}
/// \brief Match an arbitrary undef constant.
inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
/// \brief Match an arbitrary Constant and ignore it.
inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
/// Matching combinators
template <typename LTy, typename RTy> struct match_combine_or {
LTy L;
RTy R;
match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
template <typename ITy> bool match(ITy *V) {
if (L.match(V))
return true;
if (R.match(V))
return true;
return false;
}
};
template <typename LTy, typename RTy> struct match_combine_and {
LTy L;
RTy R;
match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
template <typename ITy> bool match(ITy *V) {
if (L.match(V))
if (R.match(V))
return true;
return false;
}
};
/// Combine two pattern matchers matching L || R
template <typename LTy, typename RTy>
inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
return match_combine_or<LTy, RTy>(L, R);
}
/// Combine two pattern matchers matching L && R
template <typename LTy, typename RTy>
inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
return match_combine_and<LTy, RTy>(L, R);
}
struct match_zero {
template <typename ITy> bool match(ITy *V) {
if (const auto *C = dyn_cast<Constant>(V))
return C->isNullValue();
return false;
}
};
/// \brief Match an arbitrary zero/null constant. This includes
/// zero_initializer for vectors and ConstantPointerNull for pointers.
inline match_zero m_Zero() { return match_zero(); }
struct match_neg_zero {
template <typename ITy> bool match(ITy *V) {
if (const auto *C = dyn_cast<Constant>(V))
return C->isNegativeZeroValue();
return false;
}
};
/// \brief Match an arbitrary zero/null constant. This includes
/// zero_initializer for vectors and ConstantPointerNull for pointers. For
/// floating point constants, this will match negative zero but not positive
/// zero
inline match_neg_zero m_NegZero() { return match_neg_zero(); }
/// \brief - Match an arbitrary zero/null constant. This includes
/// zero_initializer for vectors and ConstantPointerNull for pointers. For
/// floating point constants, this will match negative zero and positive zero
inline match_combine_or<match_zero, match_neg_zero> m_AnyZero() {
return m_CombineOr(m_Zero(), m_NegZero());
}
struct apint_match {
const APInt *&Res;
apint_match(const APInt *&R) : Res(R) {}
template <typename ITy> bool match(ITy *V) {
if (auto *CI = dyn_cast<ConstantInt>(V)) {
Res = &CI->getValue();
return true;
}
if (V->getType()->isVectorTy())
if (const auto *C = dyn_cast<Constant>(V))
if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
Res = &CI->getValue();
return true;
}
return false;
}
};
/// \brief Match a ConstantInt or splatted ConstantVector, binding the
/// specified pointer to the contained APInt.
inline apint_match m_APInt(const APInt *&Res) { return Res; }
template <int64_t Val> struct constantint_match {
template <typename ITy> bool match(ITy *V) {
if (const auto *CI = dyn_cast<ConstantInt>(V)) {
const APInt &CIV = CI->getValue();
if (Val >= 0)
return CIV == static_cast<uint64_t>(Val);
// If Val is negative, and CI is shorter than it, truncate to the right
// number of bits. If it is larger, then we have to sign extend. Just
// compare their negated values.
return -CIV == -Val;
}
return false;
}
};
/// \brief Match a ConstantInt with a specific value.
template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
return constantint_match<Val>();
}
/// \brief This helper class is used to match scalar and vector constants that
/// satisfy a specified predicate.
template <typename Predicate> struct cst_pred_ty : public Predicate {
template <typename ITy> bool match(ITy *V) {
if (const auto *CI = dyn_cast<ConstantInt>(V))
return this->isValue(CI->getValue());
if (V->getType()->isVectorTy())
if (const auto *C = dyn_cast<Constant>(V))
if (const auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
return this->isValue(CI->getValue());
return false;
}
};
/// \brief This helper class is used to match scalar and vector constants that
/// satisfy a specified predicate, and bind them to an APInt.
template <typename Predicate> struct api_pred_ty : public Predicate {
const APInt *&Res;
api_pred_ty(const APInt *&R) : Res(R) {}
template <typename ITy> bool match(ITy *V) {
if (const auto *CI = dyn_cast<ConstantInt>(V))
if (this->isValue(CI->getValue())) {
Res = &CI->getValue();
return true;
}
if (V->getType()->isVectorTy())
if (const auto *C = dyn_cast<Constant>(V))
if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
if (this->isValue(CI->getValue())) {
Res = &CI->getValue();
return true;
}
return false;
}
};
struct is_one {
bool isValue(const APInt &C) { return C == 1; }
};
/// \brief Match an integer 1 or a vector with all elements equal to 1.
inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
inline api_pred_ty<is_one> m_One(const APInt *&V) { return V; }
struct is_all_ones {
bool isValue(const APInt &C) { return C.isAllOnesValue(); }
};
/// \brief Match an integer or vector with all bits set to true.
inline cst_pred_ty<is_all_ones> m_AllOnes() {
return cst_pred_ty<is_all_ones>();
}
inline api_pred_ty<is_all_ones> m_AllOnes(const APInt *&V) { return V; }
struct is_sign_bit {
bool isValue(const APInt &C) { return C.isSignBit(); }
};
/// \brief Match an integer or vector with only the sign bit(s) set.
inline cst_pred_ty<is_sign_bit> m_SignBit() {
return cst_pred_ty<is_sign_bit>();
}
inline api_pred_ty<is_sign_bit> m_SignBit(const APInt *&V) { return V; }
struct is_power2 {
bool isValue(const APInt &C) { return C.isPowerOf2(); }
};
/// \brief Match an integer or vector power of 2.
inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); }
inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }
struct is_maxsignedvalue {
bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
};
inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() { return cst_pred_ty<is_maxsignedvalue>(); }
inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) { return V; }
template <typename Class> struct bind_ty {
Class *&VR;
bind_ty(Class *&V) : VR(V) {}
template <typename ITy> bool match(ITy *V) {
if (auto *CV = dyn_cast<Class>(V)) {
VR = CV;
return true;
}
return false;
}
};
/// \brief Match a value, capturing it if we match.
inline bind_ty<Value> m_Value(Value *&V) { return V; }
/// \brief Match an instruction, capturing it if we match.
inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
/// \brief Match a binary operator, capturing it if we match.
inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
/// \brief Match a ConstantInt, capturing the value if we match.
inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
/// \brief Match a Constant, capturing the value if we match.
inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
/// \brief Match a ConstantFP, capturing the value if we match.
inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
/// \brief Match a specified Value*.
struct specificval_ty {
const Value *Val;
specificval_ty(const Value *V) : Val(V) {}
template <typename ITy> bool match(ITy *V) { return V == Val; }
};
/// \brief Match if we have a specific specified value.
inline specificval_ty m_Specific(const Value *V) { return V; }
/// \brief Match a specified floating point value or vector of all elements of
/// that value.
struct specific_fpval {
double Val;
specific_fpval(double V) : Val(V) {}
template <typename ITy> bool match(ITy *V) {
if (const auto *CFP = dyn_cast<ConstantFP>(V))
return CFP->isExactlyValue(Val);
if (V->getType()->isVectorTy())
if (const auto *C = dyn_cast<Constant>(V))
if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
return CFP->isExactlyValue(Val);
return false;
}
};
/// \brief Match a specific floating point value or vector with all elements
/// equal to the value.
inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
/// \brief Match a float 1.0 or vector with all elements equal to 1.0.
inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
struct bind_const_intval_ty {
uint64_t &VR;
bind_const_intval_ty(uint64_t &V) : VR(V) {}
template <typename ITy> bool match(ITy *V) {
if (const auto *CV = dyn_cast<ConstantInt>(V))
if (CV->getBitWidth() <= 64) {
VR = CV->getZExtValue();
return true;
}
return false;
}
};
/// \brief Match a specified integer value or vector of all elements of that
// value.
struct specific_intval {
uint64_t Val;
specific_intval(uint64_t V) : Val(V) {}
template <typename ITy> bool match(ITy *V) {
const auto *CI = dyn_cast<ConstantInt>(V);
if (!CI && V->getType()->isVectorTy())
if (const auto *C = dyn_cast<Constant>(V))
CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue());
if (CI && CI->getBitWidth() <= 64)
return CI->getZExtValue() == Val;
return false;
}
};
/// \brief Match a specific integer value or vector with all elements equal to
/// the value.
inline specific_intval m_SpecificInt(uint64_t V) { return specific_intval(V); }
/// \brief Match a ConstantInt and bind to its value. This does not match
/// ConstantInts wider than 64-bits.
inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
//===----------------------------------------------------------------------===//
// Matcher for any binary operator.
//
template <typename LHS_t, typename RHS_t> struct AnyBinaryOp_match {
LHS_t L;
RHS_t R;
AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
template <typename OpTy> bool match(OpTy *V) {
if (auto *I = dyn_cast<BinaryOperator>(V))
return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
return false;
}
};
template <typename LHS, typename RHS>
inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
return AnyBinaryOp_match<LHS, RHS>(L, R);
}
//===----------------------------------------------------------------------===//
// Matchers for specific binary operators.
//
template <typename LHS_t, typename RHS_t, unsigned Opcode>
struct BinaryOp_match {
LHS_t L;
RHS_t R;
BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
template <typename OpTy> bool match(OpTy *V) {
if (V->getValueID() == Value::InstructionVal + Opcode) {
auto *I = cast<BinaryOperator>(V);
return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
}
if (auto *CE = dyn_cast<ConstantExpr>(V))
return CE->getOpcode() == Opcode && L.match(CE->getOperand(0)) &&
R.match(CE->getOperand(1));
return false;
}
};
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
}
template <typename LHS, typename RHS>
inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
const RHS &R) {
return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
}
template <typename LHS_t, typename RHS_t, unsigned Opcode,
unsigned WrapFlags = 0>
struct OverflowingBinaryOp_match {
LHS_t L;
RHS_t R;
OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
: L(LHS), R(RHS) {}
template <typename OpTy> bool match(OpTy *V) {
if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
if (Op->getOpcode() != Opcode)
return false;
if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
!Op->hasNoUnsignedWrap())
return false;
if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
!Op->hasNoSignedWrap())
return false;
return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
}
return false;
}
};
template <typename LHS, typename RHS>
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
OverflowingBinaryOperator::NoSignedWrap>
m_NSWAdd(const LHS &L, const RHS &R) {
return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
OverflowingBinaryOperator::NoSignedWrap>(
L, R);
}
template <typename LHS, typename RHS>
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
OverflowingBinaryOperator::NoSignedWrap>
m_NSWSub(const LHS &L, const RHS &R) {
return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
OverflowingBinaryOperator::NoSignedWrap>(
L, R);
}
template <typename LHS, typename RHS>
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
OverflowingBinaryOperator::NoSignedWrap>
m_NSWMul(const LHS &L, const RHS &R) {
return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
OverflowingBinaryOperator::NoSignedWrap>(
L, R);
}
template <typename LHS, typename RHS>
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
OverflowingBinaryOperator::NoSignedWrap>
m_NSWShl(const LHS &L, const RHS &R) {
return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
OverflowingBinaryOperator::NoSignedWrap>(
L, R);
}
template <typename LHS, typename RHS>
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWAdd(const LHS &L, const RHS &R) {
return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
OverflowingBinaryOperator::NoUnsignedWrap>(
L, R);
}
template <typename LHS, typename RHS>
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWSub(const LHS &L, const RHS &R) {
return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
OverflowingBinaryOperator::NoUnsignedWrap>(
L, R);
}
template <typename LHS, typename RHS>
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWMul(const LHS &L, const RHS &R) {
return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
OverflowingBinaryOperator::NoUnsignedWrap>(
L, R);
}
template <typename LHS, typename RHS>
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWShl(const LHS &L, const RHS &R) {
return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
OverflowingBinaryOperator::NoUnsignedWrap>(
L, R);
}
//===----------------------------------------------------------------------===//
// Class that matches two different binary ops.
//
template <typename LHS_t, typename RHS_t, unsigned Opc1, unsigned Opc2>
struct BinOp2_match {
LHS_t L;
RHS_t R;
BinOp2_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
template <typename OpTy> bool match(OpTy *V) {
if (V->getValueID() == Value::InstructionVal + Opc1 ||
V->getValueID() == Value::InstructionVal + Opc2) {
auto *I = cast<BinaryOperator>(V);
return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
}
if (auto *CE = dyn_cast<ConstantExpr>(V))
return (CE->getOpcode() == Opc1 || CE->getOpcode() == Opc2) &&
L.match(CE->getOperand(0)) && R.match(CE->getOperand(1));
return false;
}
};
/// \brief Matches LShr or AShr.
template <typename LHS, typename RHS>
inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>
m_Shr(const LHS &L, const RHS &R) {
return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>(L, R);
}
/// \brief Matches LShr or Shl.
template <typename LHS, typename RHS>
inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>
m_LogicalShift(const LHS &L, const RHS &R) {
return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>(L, R);
}
/// \brief Matches UDiv and SDiv.
template <typename LHS, typename RHS>
inline BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>
m_IDiv(const LHS &L, const RHS &R) {
return BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>(L, R);
}
//===----------------------------------------------------------------------===//
// Class that matches exact binary ops.
//
template <typename SubPattern_t> struct Exact_match {
SubPattern_t SubPattern;
Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
template <typename OpTy> bool match(OpTy *V) {
if (PossiblyExactOperator *PEO = dyn_cast<PossiblyExactOperator>(V))
return PEO->isExact() && SubPattern.match(V);
return false;
}
};
template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
return SubPattern;
}
//===----------------------------------------------------------------------===//
// Matchers for CmpInst classes
//
template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy>
struct CmpClass_match {
PredicateTy &Predicate;
LHS_t L;
RHS_t R;
CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
: Predicate(Pred), L(LHS), R(RHS) {}
template <typename OpTy> bool match(OpTy *V) {
if (Class *I = dyn_cast<Class>(V))
if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
Predicate = I->getPredicate();
return true;
}
return false;
}
};
template <typename LHS, typename RHS>
inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
}
template <typename LHS, typename RHS>
inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
}
template <typename LHS, typename RHS>
inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
}
//===----------------------------------------------------------------------===//
// Matchers for SelectInst classes
//
template <typename Cond_t, typename LHS_t, typename RHS_t>
struct SelectClass_match {
Cond_t C;
LHS_t L;
RHS_t R;
SelectClass_match(const Cond_t &Cond, const LHS_t &LHS, const RHS_t &RHS)
: C(Cond), L(LHS), R(RHS) {}
template <typename OpTy> bool match(OpTy *V) {
if (auto *I = dyn_cast<SelectInst>(V))
return C.match(I->getOperand(0)) && L.match(I->getOperand(1)) &&
R.match(I->getOperand(2));
return false;
}
};
template <typename Cond, typename LHS, typename RHS>
inline SelectClass_match<Cond, LHS, RHS> m_Select(const Cond &C, const LHS &L,
const RHS &R) {
return SelectClass_match<Cond, LHS, RHS>(C, L, R);
}
/// \brief This matches a select of two constants, e.g.:
/// m_SelectCst<-1, 0>(m_Value(V))
template <int64_t L, int64_t R, typename Cond>
inline SelectClass_match<Cond, constantint_match<L>, constantint_match<R>>
m_SelectCst(const Cond &C) {
return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
}
//===----------------------------------------------------------------------===//
// Matchers for CastInst classes
//
template <typename Op_t, unsigned Opcode> struct CastClass_match {
Op_t Op;
CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
template <typename OpTy> bool match(OpTy *V) {
if (auto *O = dyn_cast<Operator>(V))
return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
return false;
}
};
/// \brief Matches BitCast.
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
return CastClass_match<OpTy, Instruction::BitCast>(Op);
}
/// \brief Matches PtrToInt.
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
}
/// \brief Matches Trunc.
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
return CastClass_match<OpTy, Instruction::Trunc>(Op);
}
/// \brief Matches SExt.
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
return CastClass_match<OpTy, Instruction::SExt>(Op);
}
/// \brief Matches ZExt.
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
return CastClass_match<OpTy, Instruction::ZExt>(Op);
}
/// \brief Matches UIToFP.
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
return CastClass_match<OpTy, Instruction::UIToFP>(Op);
}
/// \brief Matches SIToFP.
template <typename OpTy>
inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
return CastClass_match<OpTy, Instruction::SIToFP>(Op);
}
//===----------------------------------------------------------------------===//
// Matchers for unary operators
//
template <typename LHS_t> struct not_match {
LHS_t L;
not_match(const LHS_t &LHS) : L(LHS) {}
template <typename OpTy> bool match(OpTy *V) {
if (auto *O = dyn_cast<Operator>(V))
if (O->getOpcode() == Instruction::Xor)
return matchIfNot(O->getOperand(0), O->getOperand(1));
return false;
}
private:
bool matchIfNot(Value *LHS, Value *RHS) {
return (isa<ConstantInt>(RHS) || isa<ConstantDataVector>(RHS) ||
// FIXME: Remove CV.
isa<ConstantVector>(RHS)) &&
cast<Constant>(RHS)->isAllOnesValue() && L.match(LHS);
}
};
template <typename LHS> inline not_match<LHS> m_Not(const LHS &L) { return L; }
template <typename LHS_t> struct neg_match {
LHS_t L;
neg_match(const LHS_t &LHS) : L(LHS) {}
template <typename OpTy> bool match(OpTy *V) {
if (auto *O = dyn_cast<Operator>(V))
if (O->getOpcode() == Instruction::Sub)
return matchIfNeg(O->getOperand(0), O->getOperand(1));
return false;
}
private:
bool matchIfNeg(Value *LHS, Value *RHS) {
return ((isa<ConstantInt>(LHS) && cast<ConstantInt>(LHS)->isZero()) ||
isa<ConstantAggregateZero>(LHS)) &&
L.match(RHS);
}
};
/// \brief Match an integer negate.
template <typename LHS> inline neg_match<LHS> m_Neg(const LHS &L) { return L; }
template <typename LHS_t> struct fneg_match {
LHS_t L;
fneg_match(const LHS_t &LHS) : L(LHS) {}
template <typename OpTy> bool match(OpTy *V) {
if (auto *O = dyn_cast<Operator>(V))
if (O->getOpcode() == Instruction::FSub)
return matchIfFNeg(O->getOperand(0), O->getOperand(1));
return false;
}
private:
bool matchIfFNeg(Value *LHS, Value *RHS) {
if (const auto *C = dyn_cast<ConstantFP>(LHS))
return C->isNegativeZeroValue() && L.match(RHS);
return false;
}
};
/// \brief Match a floating point negate.
template <typename LHS> inline fneg_match<LHS> m_FNeg(const LHS &L) {
return L;
}
//===----------------------------------------------------------------------===//
// Matchers for control flow.
//
struct br_match {
BasicBlock *&Succ;
br_match(BasicBlock *&Succ) : Succ(Succ) {}
template <typename OpTy> bool match(OpTy *V) {
if (auto *BI = dyn_cast<BranchInst>(V))
if (BI->isUnconditional()) {
Succ = BI->getSuccessor(0);
return true;
}
return false;
}
};
inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
template <typename Cond_t> struct brc_match {
Cond_t Cond;
BasicBlock *&T, *&F;
brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
: Cond(C), T(t), F(f) {}
template <typename OpTy> bool match(OpTy *V) {
if (auto *BI = dyn_cast<BranchInst>(V))
if (BI->isConditional() && Cond.match(BI->getCondition())) {
T = BI->getSuccessor(0);
F = BI->getSuccessor(1);
return true;
}
return false;
}
};
template <typename Cond_t>
inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
return brc_match<Cond_t>(C, T, F);
}
//===----------------------------------------------------------------------===//
// Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
//
template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t>
struct MaxMin_match {
LHS_t L;
RHS_t R;
MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
template <typename OpTy> bool match(OpTy *V) {
// Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
auto *SI = dyn_cast<SelectInst>(V);
if (!SI)
return false;
auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
if (!Cmp)
return false;
// At this point we have a select conditioned on a comparison. Check that
// it is the values returned by the select that are being compared.
Value *TrueVal = SI->getTrueValue();
Value *FalseVal = SI->getFalseValue();
Value *LHS = Cmp->getOperand(0);
Value *RHS = Cmp->getOperand(1);
if ((TrueVal != LHS || FalseVal != RHS) &&
(TrueVal != RHS || FalseVal != LHS))
return false;
typename CmpInst_t::Predicate Pred =
LHS == TrueVal ? Cmp->getPredicate() : Cmp->getSwappedPredicate();
// Does "(x pred y) ? x : y" represent the desired max/min operation?
if (!Pred_t::match(Pred))
return false;
// It does! Bind the operands.
return L.match(LHS) && R.match(RHS);
}
};
/// \brief Helper class for identifying signed max predicates.
struct smax_pred_ty {
static bool match(ICmpInst::Predicate Pred) {
return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
}
};
/// \brief Helper class for identifying signed min predicates.
struct smin_pred_ty {
static bool match(ICmpInst::Predicate Pred) {
return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
}
};
/// \brief Helper class for identifying unsigned max predicates.
struct umax_pred_ty {
static bool match(ICmpInst::Predicate Pred) {
return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
}
};
/// \brief Helper class for identifying unsigned min predicates.
struct umin_pred_ty {
static bool match(ICmpInst::Predicate Pred) {
return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
}
};
/// \brief Helper class for identifying ordered max predicates.
struct ofmax_pred_ty {
static bool match(FCmpInst::Predicate Pred) {
return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
}
};
/// \brief Helper class for identifying ordered min predicates.
struct ofmin_pred_ty {
static bool match(FCmpInst::Predicate Pred) {
return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
}
};
/// \brief Helper class for identifying unordered max predicates.
struct ufmax_pred_ty {
static bool match(FCmpInst::Predicate Pred) {
return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
}
};
/// \brief Helper class for identifying unordered min predicates.
struct ufmin_pred_ty {
static bool match(FCmpInst::Predicate Pred) {
return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
}
};
template <typename LHS, typename RHS>
inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
const RHS &R) {
return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
}
template <typename LHS, typename RHS>
inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
const RHS &R) {
return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
}
template <typename LHS, typename RHS>
inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
const RHS &R) {
return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
}
template <typename LHS, typename RHS>
inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
const RHS &R) {
return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
}
/// \brief Match an 'ordered' floating point maximum function.
/// Floating point has one special value 'NaN'. Therefore, there is no total
/// order. However, if we can ignore the 'NaN' value (for example, because of a
/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
/// semantics. In the presence of 'NaN' we have to preserve the original
/// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
///
/// max(L, R) iff L and R are not NaN
/// m_OrdFMax(L, R) = R iff L or R are NaN
template <typename LHS, typename RHS>
inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
const RHS &R) {
return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
}
/// \brief Match an 'ordered' floating point minimum function.
/// Floating point has one special value 'NaN'. Therefore, there is no total
/// order. However, if we can ignore the 'NaN' value (for example, because of a
/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
/// semantics. In the presence of 'NaN' we have to preserve the original
/// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
///
/// max(L, R) iff L and R are not NaN
/// m_OrdFMin(L, R) = R iff L or R are NaN
template <typename LHS, typename RHS>
inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
const RHS &R) {
return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
}
/// \brief Match an 'unordered' floating point maximum function.
/// Floating point has one special value 'NaN'. Therefore, there is no total
/// order. However, if we can ignore the 'NaN' value (for example, because of a
/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
/// semantics. In the presence of 'NaN' we have to preserve the original
/// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
///
/// max(L, R) iff L and R are not NaN
/// m_UnordFMin(L, R) = L iff L or R are NaN
template <typename LHS, typename RHS>
inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
m_UnordFMax(const LHS &L, const RHS &R) {
return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
}
//===----------------------------------------------------------------------===//
// Matchers for overflow check patterns: e.g. (a + b) u< a
//
template <typename LHS_t, typename RHS_t, typename Sum_t>
struct UAddWithOverflow_match {
LHS_t L;
RHS_t R;
Sum_t S;
UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
: L(L), R(R), S(S) {}
template <typename OpTy> bool match(OpTy *V) {
Value *ICmpLHS, *ICmpRHS;
ICmpInst::Predicate Pred;
if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
return false;
Value *AddLHS, *AddRHS;
auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
// (a + b) u< a, (a + b) u< b
if (Pred == ICmpInst::ICMP_ULT)
if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
// a >u (a + b), b >u (a + b)
if (Pred == ICmpInst::ICMP_UGT)
if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
return false;
}
};
/// \brief Match an icmp instruction checking for unsigned overflow on addition.
///
/// S is matched to the addition whose result is being checked for overflow, and
/// L and R are matched to the LHS and RHS of S.
template <typename LHS_t, typename RHS_t, typename Sum_t>
UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
}
/// \brief Match an 'unordered' floating point minimum function.
/// Floating point has one special value 'NaN'. Therefore, there is no total
/// order. However, if we can ignore the 'NaN' value (for example, because of a
/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
/// semantics. In the presence of 'NaN' we have to preserve the original
/// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
///
/// max(L, R) iff L and R are not NaN
/// m_UnordFMin(L, R) = L iff L or R are NaN
template <typename LHS, typename RHS>
inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
m_UnordFMin(const LHS &L, const RHS &R) {
return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
}
template <typename Opnd_t> struct Argument_match {
unsigned OpI;
Opnd_t Val;
Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
template <typename OpTy> bool match(OpTy *V) {
CallSite CS(V);
return CS.isCall() && Val.match(CS.getArgument(OpI));
}
};
/// \brief Match an argument.
template <unsigned OpI, typename Opnd_t>
inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
return Argument_match<Opnd_t>(OpI, Op);
}
/// \brief Intrinsic matchers.
struct IntrinsicID_match {
unsigned ID;
IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
template <typename OpTy> bool match(OpTy *V) {
if (const auto *CI = dyn_cast<CallInst>(V))
if (const auto *F = CI->getCalledFunction())
return F->getIntrinsicID() == ID;
return false;
}
};
/// Intrinsic matches are combinations of ID matchers, and argument
/// matchers. Higher arity matcher are defined recursively in terms of and-ing
/// them with lower arity matchers. Here's some convenient typedefs for up to
/// several arguments, and more can be added as needed
template <typename T0 = void, typename T1 = void, typename T2 = void,
typename T3 = void, typename T4 = void, typename T5 = void,
typename T6 = void, typename T7 = void, typename T8 = void,
typename T9 = void, typename T10 = void>
struct m_Intrinsic_Ty;
template <typename T0> struct m_Intrinsic_Ty<T0> {
typedef match_combine_and<IntrinsicID_match, Argument_match<T0>> Ty;
};
template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
typedef match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>
Ty;
};
template <typename T0, typename T1, typename T2>
struct m_Intrinsic_Ty<T0, T1, T2> {
typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
Argument_match<T2>> Ty;
};
template <typename T0, typename T1, typename T2, typename T3>
struct m_Intrinsic_Ty<T0, T1, T2, T3> {
typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
Argument_match<T3>> Ty;
};
/// \brief Match intrinsic calls like this:
/// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
return IntrinsicID_match(IntrID);
}
template <Intrinsic::ID IntrID, typename T0>
inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
}
template <Intrinsic::ID IntrID, typename T0, typename T1>
inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
const T1 &Op1) {
return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
}
template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
}
template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
typename T3>
inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
}
// Helper intrinsic matching specializations.
template <typename Opnd0>
inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
return m_Intrinsic<Intrinsic::bswap>(Op0);
}
template <typename Opnd0, typename Opnd1>
inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
const Opnd1 &Op1) {
return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
}
template <typename Opnd0, typename Opnd1>
inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
const Opnd1 &Op1) {
return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
}
template <typename Opnd_t> struct Signum_match {
Opnd_t Val;
Signum_match(const Opnd_t &V) : Val(V) {}
template <typename OpTy> bool match(OpTy *V) {
unsigned TypeSize = V->getType()->getScalarSizeInBits();
if (TypeSize == 0)
return false;
unsigned ShiftWidth = TypeSize - 1;
Value *OpL = nullptr, *OpR = nullptr;
// This is the representation of signum we match:
//
// signum(x) == (x >> 63) | (-x >>u 63)
//
// An i1 value is its own signum, so it's correct to match
//
// signum(x) == (x >> 0) | (-x >>u 0)
//
// for i1 values.
auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
auto Signum = m_Or(LHS, RHS);
return Signum.match(V) && OpL == OpR && Val.match(OpL);
}
};
/// \brief Matches a signum pattern.
///
/// signum(x) =
/// x > 0 -> 1
/// x == 0 -> 0
/// x < 0 -> -1
template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
return Signum_match<Val_t>(V);
}
//===----------------------------------------------------------------------===//
// Matchers for two-operands operators with the operators in either order
//
/// \brief Matches an ICmp with a predicate over LHS and RHS in either order.
/// Does not swap the predicate.
template<typename LHS, typename RHS>
inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
}
/// \brief Matches an And with LHS and RHS in either order.
template<typename LHS, typename RHS>
inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
BinaryOp_match<RHS, LHS, Instruction::And>>
m_c_And(const LHS &L, const RHS &R) {
return m_CombineOr(m_And(L, R), m_And(R, L));
}
/// \brief Matches an Or with LHS and RHS in either order.
template<typename LHS, typename RHS>
inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
BinaryOp_match<RHS, LHS, Instruction::Or>>
m_c_Or(const LHS &L, const RHS &R) {
return m_CombineOr(m_Or(L, R), m_Or(R, L));
}
/// \brief Matches an Xor with LHS and RHS in either order.
template<typename LHS, typename RHS>
inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
BinaryOp_match<RHS, LHS, Instruction::Xor>>
m_c_Xor(const LHS &L, const RHS &R) {
return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
}
} // end namespace PatternMatch
} // end namespace llvm
#endif
|