/usr/include/llvm-3.9/llvm/IR/Statepoint.h is in llvm-3.9-dev 1:3.9.1-19ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 | //===-- llvm/IR/Statepoint.h - gc.statepoint utilities ------ --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains utility functions and a wrapper class analogous to
// CallSite for accessing the fields of gc.statepoint, gc.relocate,
// gc.result intrinsics; and some general utilities helpful when dealing with
// gc.statepoint.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_STATEPOINT_H
#define LLVM_IR_STATEPOINT_H
#include "llvm/ADT/iterator_range.h"
#include "llvm/ADT/Optional.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
namespace llvm {
/// The statepoint intrinsic accepts a set of flags as its third argument.
/// Valid values come out of this set.
enum class StatepointFlags {
None = 0,
GCTransition = 1, ///< Indicates that this statepoint is a transition from
///< GC-aware code to code that is not GC-aware.
MaskAll = GCTransition ///< A bitmask that includes all valid flags.
};
class GCRelocateInst;
class GCResultInst;
class ImmutableStatepoint;
bool isStatepoint(ImmutableCallSite CS);
bool isStatepoint(const Value *V);
bool isStatepoint(const Value &V);
bool isGCRelocate(ImmutableCallSite CS);
bool isGCResult(ImmutableCallSite CS);
/// Analogous to CallSiteBase, this provides most of the actual
/// functionality for Statepoint and ImmutableStatepoint. It is
/// templatized to allow easily specializing of const and non-const
/// concrete subtypes. This is structured analogous to CallSite
/// rather than the IntrinsicInst.h helpers since we need to support
/// invokable statepoints.
template <typename FunTy, typename InstructionTy, typename ValueTy,
typename CallSiteTy>
class StatepointBase {
CallSiteTy StatepointCS;
void *operator new(size_t, unsigned) = delete;
void *operator new(size_t s) = delete;
protected:
explicit StatepointBase(InstructionTy *I) {
if (isStatepoint(I)) {
StatepointCS = CallSiteTy(I);
assert(StatepointCS && "isStatepoint implies CallSite");
}
}
explicit StatepointBase(CallSiteTy CS) {
if (isStatepoint(CS))
StatepointCS = CS;
}
public:
typedef typename CallSiteTy::arg_iterator arg_iterator;
enum {
IDPos = 0,
NumPatchBytesPos = 1,
CalledFunctionPos = 2,
NumCallArgsPos = 3,
FlagsPos = 4,
CallArgsBeginPos = 5,
};
explicit operator bool() const {
// We do not assign non-statepoint CallSites to StatepointCS.
return (bool)StatepointCS;
}
/// Return the underlying CallSite.
CallSiteTy getCallSite() const {
assert(*this && "check validity first!");
return StatepointCS;
}
uint64_t getFlags() const {
return cast<ConstantInt>(getCallSite().getArgument(FlagsPos))
->getZExtValue();
}
/// Return the ID associated with this statepoint.
uint64_t getID() const {
const Value *IDVal = getCallSite().getArgument(IDPos);
return cast<ConstantInt>(IDVal)->getZExtValue();
}
/// Return the number of patchable bytes associated with this statepoint.
uint32_t getNumPatchBytes() const {
const Value *NumPatchBytesVal = getCallSite().getArgument(NumPatchBytesPos);
uint64_t NumPatchBytes =
cast<ConstantInt>(NumPatchBytesVal)->getZExtValue();
assert(isInt<32>(NumPatchBytes) && "should fit in 32 bits!");
return NumPatchBytes;
}
/// Return the value actually being called or invoked.
ValueTy *getCalledValue() const {
return getCallSite().getArgument(CalledFunctionPos);
}
InstructionTy *getInstruction() const {
return getCallSite().getInstruction();
}
/// Return the function being called if this is a direct call, otherwise
/// return null (if it's an indirect call).
FunTy *getCalledFunction() const {
return dyn_cast<Function>(getCalledValue());
}
/// Return the caller function for this statepoint.
FunTy *getCaller() const { return getCallSite().getCaller(); }
/// Determine if the statepoint cannot unwind.
bool doesNotThrow() const {
Function *F = getCalledFunction();
return getCallSite().doesNotThrow() || (F ? F->doesNotThrow() : false);
}
/// Return the type of the value returned by the call underlying the
/// statepoint.
Type *getActualReturnType() const {
auto *FTy = cast<FunctionType>(
cast<PointerType>(getCalledValue()->getType())->getElementType());
return FTy->getReturnType();
}
/// Number of arguments to be passed to the actual callee.
int getNumCallArgs() const {
const Value *NumCallArgsVal = getCallSite().getArgument(NumCallArgsPos);
return cast<ConstantInt>(NumCallArgsVal)->getZExtValue();
}
size_t arg_size() const { return getNumCallArgs(); }
typename CallSiteTy::arg_iterator arg_begin() const {
assert(CallArgsBeginPos <= (int)getCallSite().arg_size());
return getCallSite().arg_begin() + CallArgsBeginPos;
}
typename CallSiteTy::arg_iterator arg_end() const {
auto I = arg_begin() + arg_size();
assert((getCallSite().arg_end() - I) >= 0);
return I;
}
ValueTy *getArgument(unsigned Index) {
assert(Index < arg_size() && "out of bounds!");
return *(arg_begin() + Index);
}
/// range adapter for call arguments
iterator_range<arg_iterator> call_args() const {
return make_range(arg_begin(), arg_end());
}
/// \brief Return true if the call or the callee has the given attribute.
bool paramHasAttr(unsigned i, Attribute::AttrKind A) const {
Function *F = getCalledFunction();
return getCallSite().paramHasAttr(i + CallArgsBeginPos, A) ||
(F ? F->getAttributes().hasAttribute(i, A) : false);
}
/// Number of GC transition args.
int getNumTotalGCTransitionArgs() const {
const Value *NumGCTransitionArgs = *arg_end();
return cast<ConstantInt>(NumGCTransitionArgs)->getZExtValue();
}
typename CallSiteTy::arg_iterator gc_transition_args_begin() const {
auto I = arg_end() + 1;
assert((getCallSite().arg_end() - I) >= 0);
return I;
}
typename CallSiteTy::arg_iterator gc_transition_args_end() const {
auto I = gc_transition_args_begin() + getNumTotalGCTransitionArgs();
assert((getCallSite().arg_end() - I) >= 0);
return I;
}
/// range adapter for GC transition arguments
iterator_range<arg_iterator> gc_transition_args() const {
return make_range(gc_transition_args_begin(), gc_transition_args_end());
}
/// Number of additional arguments excluding those intended
/// for garbage collection.
int getNumTotalVMSArgs() const {
const Value *NumVMSArgs = *gc_transition_args_end();
return cast<ConstantInt>(NumVMSArgs)->getZExtValue();
}
typename CallSiteTy::arg_iterator vm_state_begin() const {
auto I = gc_transition_args_end() + 1;
assert((getCallSite().arg_end() - I) >= 0);
return I;
}
typename CallSiteTy::arg_iterator vm_state_end() const {
auto I = vm_state_begin() + getNumTotalVMSArgs();
assert((getCallSite().arg_end() - I) >= 0);
return I;
}
/// range adapter for vm state arguments
iterator_range<arg_iterator> vm_state_args() const {
return make_range(vm_state_begin(), vm_state_end());
}
typename CallSiteTy::arg_iterator gc_args_begin() const {
return vm_state_end();
}
typename CallSiteTy::arg_iterator gc_args_end() const {
return getCallSite().arg_end();
}
unsigned gcArgsStartIdx() const {
return gc_args_begin() - getInstruction()->op_begin();
}
/// range adapter for gc arguments
iterator_range<arg_iterator> gc_args() const {
return make_range(gc_args_begin(), gc_args_end());
}
/// Get list of all gc reloactes linked to this statepoint
/// May contain several relocations for the same base/derived pair.
/// For example this could happen due to relocations on unwinding
/// path of invoke.
std::vector<const GCRelocateInst *> getRelocates() const;
/// Get the experimental_gc_result call tied to this statepoint. Can be
/// nullptr if there isn't a gc_result tied to this statepoint. Guaranteed to
/// be a CallInst if non-null.
const GCResultInst *getGCResult() const {
for (auto *U : getInstruction()->users())
if (auto *GRI = dyn_cast<GCResultInst>(U))
return GRI;
return nullptr;
}
#ifndef NDEBUG
/// Asserts if this statepoint is malformed. Common cases for failure
/// include incorrect length prefixes for variable length sections or
/// illegal values for parameters.
void verify() {
assert(getNumCallArgs() >= 0 &&
"number of arguments to actually callee can't be negative");
// The internal asserts in the iterator accessors do the rest.
(void)arg_begin();
(void)arg_end();
(void)gc_transition_args_begin();
(void)gc_transition_args_end();
(void)vm_state_begin();
(void)vm_state_end();
(void)gc_args_begin();
(void)gc_args_end();
}
#endif
};
/// A specialization of it's base class for read only access
/// to a gc.statepoint.
class ImmutableStatepoint
: public StatepointBase<const Function, const Instruction, const Value,
ImmutableCallSite> {
typedef StatepointBase<const Function, const Instruction, const Value,
ImmutableCallSite> Base;
public:
explicit ImmutableStatepoint(const Instruction *I) : Base(I) {}
explicit ImmutableStatepoint(ImmutableCallSite CS) : Base(CS) {}
};
/// A specialization of it's base class for read-write access
/// to a gc.statepoint.
class Statepoint
: public StatepointBase<Function, Instruction, Value, CallSite> {
typedef StatepointBase<Function, Instruction, Value, CallSite> Base;
public:
explicit Statepoint(Instruction *I) : Base(I) {}
explicit Statepoint(CallSite CS) : Base(CS) {}
};
/// Common base class for representing values projected from a statepoint.
/// Currently, the only projections available are gc.result and gc.relocate.
class GCProjectionInst : public IntrinsicInst {
public:
static inline bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::experimental_gc_relocate ||
I->getIntrinsicID() == Intrinsic::experimental_gc_result;
}
static inline bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
/// Return true if this relocate is tied to the invoke statepoint.
/// This includes relocates which are on the unwinding path.
bool isTiedToInvoke() const {
const Value *Token = getArgOperand(0);
return isa<LandingPadInst>(Token) || isa<InvokeInst>(Token);
}
/// The statepoint with which this gc.relocate is associated.
const Instruction *getStatepoint() const {
const Value *Token = getArgOperand(0);
// This takes care both of relocates for call statepoints and relocates
// on normal path of invoke statepoint.
if (!isa<LandingPadInst>(Token)) {
assert(isStatepoint(Token));
return cast<Instruction>(Token);
}
// This relocate is on exceptional path of an invoke statepoint
const BasicBlock *InvokeBB =
cast<Instruction>(Token)->getParent()->getUniquePredecessor();
assert(InvokeBB && "safepoints should have unique landingpads");
assert(InvokeBB->getTerminator() &&
"safepoint block should be well formed");
assert(isStatepoint(InvokeBB->getTerminator()));
return InvokeBB->getTerminator();
}
};
/// Represents calls to the gc.relocate intrinsic.
class GCRelocateInst : public GCProjectionInst {
public:
static inline bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::experimental_gc_relocate;
}
static inline bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
/// The index into the associate statepoint's argument list
/// which contains the base pointer of the pointer whose
/// relocation this gc.relocate describes.
unsigned getBasePtrIndex() const {
return cast<ConstantInt>(getArgOperand(1))->getZExtValue();
}
/// The index into the associate statepoint's argument list which
/// contains the pointer whose relocation this gc.relocate describes.
unsigned getDerivedPtrIndex() const {
return cast<ConstantInt>(getArgOperand(2))->getZExtValue();
}
Value *getBasePtr() const {
ImmutableCallSite CS(getStatepoint());
return *(CS.arg_begin() + getBasePtrIndex());
}
Value *getDerivedPtr() const {
ImmutableCallSite CS(getStatepoint());
return *(CS.arg_begin() + getDerivedPtrIndex());
}
};
/// Represents calls to the gc.result intrinsic.
class GCResultInst : public GCProjectionInst {
public:
static inline bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::experimental_gc_result;
}
static inline bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
template <typename FunTy, typename InstructionTy, typename ValueTy,
typename CallSiteTy>
std::vector<const GCRelocateInst *>
StatepointBase<FunTy, InstructionTy, ValueTy, CallSiteTy>::getRelocates()
const {
std::vector<const GCRelocateInst *> Result;
CallSiteTy StatepointCS = getCallSite();
// Search for relocated pointers. Note that working backwards from the
// gc_relocates ensures that we only get pairs which are actually relocated
// and used after the statepoint.
for (const User *U : getInstruction()->users())
if (auto *Relocate = dyn_cast<GCRelocateInst>(U))
Result.push_back(Relocate);
if (!StatepointCS.isInvoke())
return Result;
// We need to scan thorough exceptional relocations if it is invoke statepoint
LandingPadInst *LandingPad =
cast<InvokeInst>(getInstruction())->getLandingPadInst();
// Search for gc relocates that are attached to this landingpad.
for (const User *LandingPadUser : LandingPad->users()) {
if (auto *Relocate = dyn_cast<GCRelocateInst>(LandingPadUser))
Result.push_back(Relocate);
}
return Result;
}
/// Call sites that get wrapped by a gc.statepoint (currently only in
/// RewriteStatepointsForGC and potentially in other passes in the future) can
/// have attributes that describe properties of gc.statepoint call they will be
/// eventually be wrapped in. This struct is used represent such directives.
struct StatepointDirectives {
Optional<uint32_t> NumPatchBytes;
Optional<uint64_t> StatepointID;
static const uint64_t DefaultStatepointID = 0xABCDEF00;
static const uint64_t DeoptBundleStatepointID = 0xABCDEF0F;
};
/// Parse out statepoint directives from the function attributes present in \p
/// AS.
StatepointDirectives parseStatepointDirectivesFromAttrs(AttributeSet AS);
/// Return \c true if the the \p Attr is an attribute that is a statepoint
/// directive.
bool isStatepointDirectiveAttr(Attribute Attr);
}
#endif
|