This file is indexed.

/usr/include/llvm-6.0/llvm/XRay/Graph.h is in llvm-6.0-dev 1:6.0-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
//===-- Graph.h - XRay Graph Class ------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// A Graph Datatype for XRay.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_XRAY_GRAPH_T_H
#define LLVM_XRAY_GRAPH_T_H

#include <initializer_list>
#include <stdint.h>
#include <type_traits>
#include <utility>

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Support/Error.h"

namespace llvm {
namespace xray {

/// A Graph object represents a Directed Graph and is used in XRay to compute
/// and store function call graphs and associated statistical information.
///
/// The graph takes in four template parameters, these are:
///  - VertexAttribute, this is a structure which is stored for each vertex.
///    Must be DefaultConstructible, CopyConstructible, CopyAssignable and
///    Destructible.
///  - EdgeAttribute, this is a structure which is stored for each edge
///    Must be DefaultConstructible, CopyConstructible, CopyAssignable and
///    Destructible.
///  - EdgeAttribute, this is a structure which is stored for each variable
///  - VI, this is a type over which DenseMapInfo is defined and is the type
///    used look up strings, available as VertexIdentifier.
///  - If the built in DenseMapInfo is not defined, provide a specialization
///    class type here.
///
/// Graph is CopyConstructible, CopyAssignable, MoveConstructible and
/// MoveAssignable but is not EqualityComparible or LessThanComparible.
///
/// Usage Example Graph with weighted edges and vertices:
///   Graph<int, int, int> G;
///
///   G[1] = 0;
///   G[2] = 2;
///   G[{1,2}] = 1;
///   G[{2,1}] = -1;
///   for(const auto &v : G.vertices()){
///     // Do something with the vertices in the graph;
///   }
///   for(const auto &e : G.edges()){
///     // Do something with the edges in the graph;
///   }
///
/// Usage Example with StrRef keys.
///   Graph<int, double, StrRef> StrG;
///    char va[] = "Vertex A";
///    char vaa[] = "Vertex A";
///    char vb[] = "Vertex B"; // Vertices are referenced by String Refs.
///    G[va] = 0;
///    G[vb] = 1;
///    G[{va, vb}] = 1.0;
///    cout() << G[vaa] << " " << G[{vaa, vb}]; //prints "0 1.0".
///
template <typename VertexAttribute, typename EdgeAttribute,
          typename VI = int32_t>
class Graph {
public:
  /// These objects are used to name edges and vertices in the graph.
  typedef VI VertexIdentifier;
  typedef std::pair<VI, VI> EdgeIdentifier;

  /// This type is the value_type of all iterators which range over vertices,
  /// Determined by the Vertices DenseMap
  using VertexValueType =
      detail::DenseMapPair<VertexIdentifier, VertexAttribute>;

  /// This type is the value_type of all iterators which range over edges,
  /// Determined by the Edges DenseMap.
  using EdgeValueType = detail::DenseMapPair<EdgeIdentifier, EdgeAttribute>;

  using size_type = std::size_t;

private:
  /// The type used for storing the EdgeAttribute for each edge in the graph
  using EdgeMapT = DenseMap<EdgeIdentifier, EdgeAttribute>;

  /// The type used for storing the VertexAttribute for each vertex in
  /// the graph.
  using VertexMapT = DenseMap<VertexIdentifier, VertexAttribute>;

  /// The type used for storing the edges entering a vertex. Indexed by
  /// the VertexIdentifier of the start of the edge. Only used to determine
  /// where the incoming edges are, the EdgeIdentifiers are stored in an
  /// InnerEdgeMapT.
  using NeighborSetT = DenseSet<VertexIdentifier>;

  /// The type storing the InnerInvGraphT corresponding to each vertex in
  /// the graph (When a vertex has an incoming edge incident to it)
  using NeighborLookupT = DenseMap<VertexIdentifier, NeighborSetT>;

private:
  /// Stores the map from the start and end vertex of an edge to it's
  /// EdgeAttribute
  EdgeMapT Edges;

  /// Stores the map from VertexIdentifier to VertexAttribute
  VertexMapT Vertices;

  /// Allows fast lookup for the incoming edge set of any given vertex.
  NeighborLookupT InNeighbors;

  /// Allows fast lookup for the outgoing edge set of any given vertex.
  NeighborLookupT OutNeighbors;

  /// An Iterator adapter using an InnerInvGraphT::iterator as a base iterator,
  /// and storing the VertexIdentifier the iterator range comes from. The
  /// dereference operator is then performed using a pointer to the graph's edge
  /// set.
  template <bool IsConst, bool IsOut,
            typename BaseIt = typename NeighborSetT::const_iterator,
            typename T = typename std::conditional<IsConst, const EdgeValueType,
                                                   EdgeValueType>::type>
  class NeighborEdgeIteratorT
      : public iterator_adaptor_base<
            NeighborEdgeIteratorT<IsConst, IsOut>, BaseIt,
            typename std::iterator_traits<BaseIt>::iterator_category, T> {
    using InternalEdgeMapT =
        typename std::conditional<IsConst, const EdgeMapT, EdgeMapT>::type;

    friend class NeighborEdgeIteratorT<false, IsOut, BaseIt, EdgeValueType>;
    friend class NeighborEdgeIteratorT<true, IsOut, BaseIt,
                                       const EdgeValueType>;

    InternalEdgeMapT *MP;
    VertexIdentifier SI;

  public:
    template <bool IsConstDest,
              typename = typename std::enable_if<IsConstDest && !IsConst>::type>
    operator NeighborEdgeIteratorT<IsConstDest, IsOut, BaseIt,
                                   const EdgeValueType>() const {
      return NeighborEdgeIteratorT<IsConstDest, IsOut, BaseIt,
                                   const EdgeValueType>(this->I, MP, SI);
    }

    NeighborEdgeIteratorT() = default;
    NeighborEdgeIteratorT(BaseIt _I, InternalEdgeMapT *_MP,
                          VertexIdentifier _SI)
        : iterator_adaptor_base<
              NeighborEdgeIteratorT<IsConst, IsOut>, BaseIt,
              typename std::iterator_traits<BaseIt>::iterator_category, T>(_I),
          MP(_MP), SI(_SI) {}

    T &operator*() const {
      if (!IsOut)
        return *(MP->find({*(this->I), SI}));
      else
        return *(MP->find({SI, *(this->I)}));
    }
  };

public:
  /// A const iterator type for iterating through the set of edges entering a
  /// vertex.
  ///
  /// Has a const EdgeValueType as its value_type
  using ConstInEdgeIterator = NeighborEdgeIteratorT<true, false>;

  /// An iterator type for iterating through the set of edges leaving a vertex.
  ///
  /// Has an EdgeValueType as its value_type
  using InEdgeIterator = NeighborEdgeIteratorT<false, false>;

  /// A const iterator type for iterating through the set of edges entering a
  /// vertex.
  ///
  /// Has a const EdgeValueType as its value_type
  using ConstOutEdgeIterator = NeighborEdgeIteratorT<true, true>;

  /// An iterator type for iterating through the set of edges leaving a vertex.
  ///
  /// Has an EdgeValueType as its value_type
  using OutEdgeIterator = NeighborEdgeIteratorT<false, true>;

  /// A class for ranging over the incoming edges incident to a vertex.
  ///
  /// Like all views in this class it provides methods to get the beginning and
  /// past the range iterators for the range, as well as methods to determine
  /// the number of elements in the range and whether the range is empty.
  template <bool isConst, bool isOut> class InOutEdgeView {
  public:
    using iterator = NeighborEdgeIteratorT<isConst, isOut>;
    using const_iterator = NeighborEdgeIteratorT<true, isOut>;
    using GraphT = typename std::conditional<isConst, const Graph, Graph>::type;
    using InternalEdgeMapT =
        typename std::conditional<isConst, const EdgeMapT, EdgeMapT>::type;

  private:
    InternalEdgeMapT &M;
    const VertexIdentifier A;
    const NeighborLookupT &NL;

  public:
    iterator begin() {
      auto It = NL.find(A);
      if (It == NL.end())
        return iterator();
      return iterator(It->second.begin(), &M, A);
    }

    const_iterator cbegin() const {
      auto It = NL.find(A);
      if (It == NL.end())
        return const_iterator();
      return const_iterator(It->second.begin(), &M, A);
    }

    const_iterator begin() const { return cbegin(); }

    iterator end() {
      auto It = NL.find(A);
      if (It == NL.end())
        return iterator();
      return iterator(It->second.end(), &M, A);
    }
    const_iterator cend() const {
      auto It = NL.find(A);
      if (It == NL.end())
        return const_iterator();
      return const_iterator(It->second.end(), &M, A);
    }

    const_iterator end() const { return cend(); }

    size_type size() const {
      auto I = NL.find(A);
      if (I == NL.end())
        return 0;
      else
        return I->second.size();
    }

    bool empty() const { return NL.count(A) == 0; };

    InOutEdgeView(GraphT &G, VertexIdentifier A)
        : M(G.Edges), A(A), NL(isOut ? G.OutNeighbors : G.InNeighbors) {}
  };

  /// A const iterator type for iterating through the whole vertex set of the
  /// graph.
  ///
  /// Has a const VertexValueType as its value_type
  using ConstVertexIterator = typename VertexMapT::const_iterator;

  /// An iterator type for iterating through the whole vertex set of the graph.
  ///
  /// Has a VertexValueType as its value_type
  using VertexIterator = typename VertexMapT::iterator;

  /// A class for ranging over the vertices in the graph.
  ///
  /// Like all views in this class it provides methods to get the beginning and
  /// past the range iterators for the range, as well as methods to determine
  /// the number of elements in the range and whether the range is empty.
  template <bool isConst> class VertexView {
  public:
    using iterator = typename std::conditional<isConst, ConstVertexIterator,
                                               VertexIterator>::type;
    using const_iterator = ConstVertexIterator;
    using GraphT = typename std::conditional<isConst, const Graph, Graph>::type;

  private:
    GraphT &G;

  public:
    iterator begin() { return G.Vertices.begin(); }
    iterator end() { return G.Vertices.end(); }
    const_iterator cbegin() const { return G.Vertices.cbegin(); }
    const_iterator cend() const { return G.Vertices.cend(); }
    const_iterator begin() const { return G.Vertices.begin(); }
    const_iterator end() const { return G.Vertices.end(); }
    size_type size() const { return G.Vertices.size(); }
    bool empty() const { return G.Vertices.empty(); }
    VertexView(GraphT &_G) : G(_G) {}
  };

  /// A const iterator for iterating through the entire edge set of the graph.
  ///
  /// Has a const EdgeValueType as its value_type
  using ConstEdgeIterator = typename EdgeMapT::const_iterator;

  /// An iterator for iterating through the entire edge set of the graph.
  ///
  /// Has an EdgeValueType as its value_type
  using EdgeIterator = typename EdgeMapT::iterator;

  /// A class for ranging over all the edges in the graph.
  ///
  /// Like all views in this class it provides methods to get the beginning and
  /// past the range iterators for the range, as well as methods to determine
  /// the number of elements in the range and whether the range is empty.
  template <bool isConst> class EdgeView {
  public:
    using iterator = typename std::conditional<isConst, ConstEdgeIterator,
                                               EdgeIterator>::type;
    using const_iterator = ConstEdgeIterator;
    using GraphT = typename std::conditional<isConst, const Graph, Graph>::type;

  private:
    GraphT &G;

  public:
    iterator begin() { return G.Edges.begin(); }
    iterator end() { return G.Edges.end(); }
    const_iterator cbegin() const { return G.Edges.cbegin(); }
    const_iterator cend() const { return G.Edges.cend(); }
    const_iterator begin() const { return G.Edges.begin(); }
    const_iterator end() const { return G.Edges.end(); }
    size_type size() const { return G.Edges.size(); }
    bool empty() const { return G.Edges.empty(); }
    EdgeView(GraphT &_G) : G(_G) {}
  };

public:
  // TODO: implement constructor to enable Graph Initialisation.\
  // Something like:
  //   Graph<int, int, int> G(
  //   {1, 2, 3, 4, 5},
  //   {{1, 2}, {2, 3}, {3, 4}});

  /// Empty the Graph
  void clear() {
    Edges.clear();
    Vertices.clear();
    InNeighbors.clear();
    OutNeighbors.clear();
  }

  /// Returns a view object allowing iteration over the vertices of the graph.
  /// also allows access to the size of the vertex set.
  VertexView<false> vertices() { return VertexView<false>(*this); }

  VertexView<true> vertices() const { return VertexView<true>(*this); }

  /// Returns a view object allowing iteration over the edges of the graph.
  /// also allows access to the size of the edge set.
  EdgeView<false> edges() { return EdgeView<false>(*this); }

  EdgeView<true> edges() const { return EdgeView<true>(*this); }

  /// Returns a view object allowing iteration over the edges which start at
  /// a vertex I.
  InOutEdgeView<false, true> outEdges(const VertexIdentifier I) {
    return InOutEdgeView<false, true>(*this, I);
  }

  InOutEdgeView<true, true> outEdges(const VertexIdentifier I) const {
    return InOutEdgeView<true, true>(*this, I);
  }

  /// Returns a view object allowing iteration over the edges which point to
  /// a vertex I.
  InOutEdgeView<false, false> inEdges(const VertexIdentifier I) {
    return InOutEdgeView<false, false>(*this, I);
  }

  InOutEdgeView<true, false> inEdges(const VertexIdentifier I) const {
    return InOutEdgeView<true, false>(*this, I);
  }

  /// Looks up the vertex with identifier I, if it does not exist it default
  /// constructs it.
  VertexAttribute &operator[](const VertexIdentifier &I) {
    return Vertices.FindAndConstruct(I).second;
  }

  /// Looks up the edge with identifier I, if it does not exist it default
  /// constructs it, if it's endpoints do not exist it also default constructs
  /// them.
  EdgeAttribute &operator[](const EdgeIdentifier &I) {
    auto &P = Edges.FindAndConstruct(I);
    Vertices.FindAndConstruct(I.first);
    Vertices.FindAndConstruct(I.second);
    InNeighbors[I.second].insert(I.first);
    OutNeighbors[I.first].insert(I.second);
    return P.second;
  }

  /// Looks up a vertex with Identifier I, or an error if it does not exist.
  Expected<VertexAttribute &> at(const VertexIdentifier &I) {
    auto It = Vertices.find(I);
    if (It == Vertices.end())
      return make_error<StringError>(
          "Vertex Identifier Does Not Exist",
          std::make_error_code(std::errc::invalid_argument));
    return It->second;
  }

  Expected<const VertexAttribute &> at(const VertexIdentifier &I) const {
    auto It = Vertices.find(I);
    if (It == Vertices.end())
      return make_error<StringError>(
          "Vertex Identifier Does Not Exist",
          std::make_error_code(std::errc::invalid_argument));
    return It->second;
  }

  /// Looks up an edge with Identifier I, or an error if it does not exist.
  Expected<EdgeAttribute &> at(const EdgeIdentifier &I) {
    auto It = Edges.find(I);
    if (It == Edges.end())
      return make_error<StringError>(
          "Edge Identifier Does Not Exist",
          std::make_error_code(std::errc::invalid_argument));
    return It->second;
  }

  Expected<const EdgeAttribute &> at(const EdgeIdentifier &I) const {
    auto It = Edges.find(I);
    if (It == Edges.end())
      return make_error<StringError>(
          "Edge Identifier Does Not Exist",
          std::make_error_code(std::errc::invalid_argument));
    return It->second;
  }

  /// Looks for a vertex with identifier I, returns 1 if one exists, and
  /// 0 otherwise
  size_type count(const VertexIdentifier &I) const {
    return Vertices.count(I);
  }

  /// Looks for an edge with Identifier I, returns 1 if one exists and 0
  /// otherwise
  size_type count(const EdgeIdentifier &I) const { return Edges.count(I); }

  /// Inserts a vertex into the graph with Identifier Val.first, and
  /// Attribute Val.second.
  std::pair<VertexIterator, bool>
  insert(const std::pair<VertexIdentifier, VertexAttribute> &Val) {
    return Vertices.insert(Val);
  }

  std::pair<VertexIterator, bool>
  insert(std::pair<VertexIdentifier, VertexAttribute> &&Val) {
    return Vertices.insert(std::move(Val));
  }

  /// Inserts an edge into the graph with Identifier Val.first, and
  /// Attribute Val.second. If the key is already in the map, it returns false
  /// and doesn't update the value.
  std::pair<EdgeIterator, bool>
  insert(const std::pair<EdgeIdentifier, EdgeAttribute> &Val) {
    const auto &p = Edges.insert(Val);
    if (p.second) {
      const auto &EI = Val.first;
      Vertices.FindAndConstruct(EI.first);
      Vertices.FindAndConstruct(EI.second);
      InNeighbors[EI.second].insert(EI.first);
      OutNeighbors[EI.first].insert(EI.second);
    };

    return p;
  }

  /// Inserts an edge into the graph with Identifier Val.first, and
  /// Attribute Val.second. If the key is already in the map, it returns false
  /// and doesn't update the value.
  std::pair<EdgeIterator, bool>
  insert(std::pair<EdgeIdentifier, EdgeAttribute> &&Val) {
    auto EI = Val.first;
    const auto &p = Edges.insert(std::move(Val));
    if (p.second) {
      Vertices.FindAndConstruct(EI.first);
      Vertices.FindAndConstruct(EI.second);
      InNeighbors[EI.second].insert(EI.first);
      OutNeighbors[EI.first].insert(EI.second);
    };

    return p;
  }
};
}
}
#endif