This file is indexed.

/usr/lib/python2.7/dist-packages/numpy/core/getlimits.py is in python-numpy 1:1.13.3-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
"""Machine limits for Float32 and Float64 and (long double) if available...

"""
from __future__ import division, absolute_import, print_function

__all__ = ['finfo', 'iinfo']

import warnings

from .machar import MachAr
from . import numeric
from . import numerictypes as ntypes
from .numeric import array, inf
from .umath import log10, exp2
from . import umath


def _fr0(a):
    """fix rank-0 --> rank-1"""
    if a.ndim == 0:
        a = a.copy()
        a.shape = (1,)
    return a


def _fr1(a):
    """fix rank > 0 --> rank-0"""
    if a.size == 1:
        a = a.copy()
        a.shape = ()
    return a


_convert_to_float = {
    ntypes.csingle: ntypes.single,
    ntypes.complex_: ntypes.float_,
    ntypes.clongfloat: ntypes.longfloat
    }


# Parameters for creating MachAr / MachAr-like objects
_title_fmt = 'numpy {} precision floating point number'
_MACHAR_PARAMS = {
    ntypes.double: dict(
        itype = ntypes.int64,
        fmt = '%24.16e',
        title = _title_fmt.format('double')),
    ntypes.single: dict(
        itype = ntypes.int32,
        fmt = '%15.7e',
        title = _title_fmt.format('single')),
    ntypes.longdouble: dict(
        itype = ntypes.longlong,
        fmt = '%s',
        title = _title_fmt.format('long double')),
    ntypes.half: dict(
        itype = ntypes.int16,
        fmt = '%12.5e',
        title = _title_fmt.format('half'))}


class MachArLike(object):
    """ Object to simulate MachAr instance """

    def __init__(self,
                 ftype,
                 **kwargs):
        params = _MACHAR_PARAMS[ftype]
        float_conv = lambda v: array([v], ftype)
        float_to_float = lambda v : _fr1(float_conv(v))
        self._float_to_str = lambda v: (params['fmt'] %
                                        array(_fr0(v)[0], ftype))
        self.title = params['title']
        # Parameter types same as for discovered MachAr object.
        self.epsilon = self.eps = float_to_float(kwargs.pop('eps'))
        self.epsneg = float_to_float(kwargs.pop('epsneg'))
        self.xmax = self.huge = float_to_float(kwargs.pop('huge'))
        self.xmin = self.tiny = float_to_float(kwargs.pop('tiny'))
        self.ibeta = params['itype'](kwargs.pop('ibeta'))
        self.__dict__.update(kwargs)
        self.precision = int(-log10(self.eps))
        self.resolution = float_to_float(float_conv(10) ** (-self.precision))

    # Properties below to delay need for float_to_str, and thus avoid circular
    # imports during early numpy module loading.
    # See: https://github.com/numpy/numpy/pull/8983#discussion_r115838683

    @property
    def _str_eps(self):
        return self._float_to_str(self.eps)

    @property
    def _str_epsneg(self):
        return self._float_to_str(self.epsneg)

    @property
    def _str_xmin(self):
        return self._float_to_str(self.xmin)

    @property
    def _str_xmax(self):
        return self._float_to_str(self.xmax)

    @property
    def _str_resolution(self):
        return self._float_to_str(self.resolution)


# Known parameters for float16
# See docstring of MachAr class for description of parameters.
_f16 = ntypes.float16
_float16_ma = MachArLike(_f16,
                         machep=-10,
                         negep=-11,
                         minexp=-14,
                         maxexp=16,
                         it=10,
                         iexp=5,
                         ibeta=2,
                         irnd=5,
                         ngrd=0,
                         eps=exp2(_f16(-10)),
                         epsneg=exp2(_f16(-11)),
                         huge=_f16(65504),
                         tiny=_f16(2 ** -14))

# Known parameters for float32
_f32 = ntypes.float32
_float32_ma = MachArLike(_f32,
                         machep=-23,
                         negep=-24,
                         minexp=-126,
                         maxexp=128,
                         it=23,
                         iexp=8,
                         ibeta=2,
                         irnd=5,
                         ngrd=0,
                         eps=exp2(_f32(-23)),
                         epsneg=exp2(_f32(-24)),
                         huge=_f32((1 - 2 ** -24) * 2**128),
                         tiny=exp2(_f32(-126)))

# Known parameters for float64
_f64 = ntypes.float64
_epsneg_f64 = 2.0 ** -53.0
_tiny_f64 = 2.0 ** -1022.0
_float64_ma = MachArLike(_f64,
                         machep=-52,
                         negep=-53,
                         minexp=-1022,
                         maxexp=1024,
                         it=52,
                         iexp=11,
                         ibeta=2,
                         irnd=5,
                         ngrd=0,
                         eps=2.0 ** -52.0,
                         epsneg=_epsneg_f64,
                         huge=(1.0 - _epsneg_f64) / _tiny_f64 * _f64(4),
                         tiny=_tiny_f64)

# Known parameters for IEEE 754 128-bit binary float
_ld = ntypes.longdouble
_epsneg_f128 = exp2(_ld(-113))
_tiny_f128 = exp2(_ld(-16382))
# Ignore runtime error when this is not f128
with numeric.errstate(all='ignore'):
    _huge_f128 = (_ld(1) - _epsneg_f128) / _tiny_f128 * _ld(4)
_float128_ma = MachArLike(_ld,
                         machep=-112,
                         negep=-113,
                         minexp=-16382,
                         maxexp=16384,
                         it=112,
                         iexp=15,
                         ibeta=2,
                         irnd=5,
                         ngrd=0,
                         eps=exp2(_ld(-112)),
                         epsneg=_epsneg_f128,
                         huge=_huge_f128,
                         tiny=_tiny_f128)

# Known parameters for float80 (Intel 80-bit extended precision)
_epsneg_f80 = exp2(_ld(-64))
_tiny_f80 = exp2(_ld(-16382))
# Ignore runtime error when this is not f80
with numeric.errstate(all='ignore'):
    _huge_f80 = (_ld(1) - _epsneg_f80) / _tiny_f80 * _ld(4)
_float80_ma = MachArLike(_ld,
                         machep=-63,
                         negep=-64,
                         minexp=-16382,
                         maxexp=16384,
                         it=63,
                         iexp=15,
                         ibeta=2,
                         irnd=5,
                         ngrd=0,
                         eps=exp2(_ld(-63)),
                         epsneg=_epsneg_f80,
                         huge=_huge_f80,
                         tiny=_tiny_f80)

# Guessed / known parameters for double double; see:
# https://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format#Double-double_arithmetic
# These numbers have the same exponent range as float64, but extended number of
# digits in the significand.
_huge_dd = (umath.nextafter(_ld(inf), _ld(0))
            if hasattr(umath, 'nextafter')  # Missing on some platforms?
            else _float64_ma.huge)
_float_dd_ma = MachArLike(_ld,
                          machep=-105,
                          negep=-106,
                          minexp=-1022,
                          maxexp=1024,
                          it=105,
                          iexp=11,
                          ibeta=2,
                          irnd=5,
                          ngrd=0,
                          eps=exp2(_ld(-105)),
                          epsneg= exp2(_ld(-106)),
                          huge=_huge_dd,
                          tiny=exp2(_ld(-1022)))


# Key to identify the floating point type.  Key is result of
# ftype('-0.1').newbyteorder('<').tobytes()
# See:
# https://perl5.git.perl.org/perl.git/blob/3118d7d684b56cbeb702af874f4326683c45f045:/Configure
_KNOWN_TYPES = {
    b'\x9a\x99\x99\x99\x99\x99\xb9\xbf' : _float64_ma,
    b'\xcd\xcc\xcc\xbd' : _float32_ma,
    b'f\xae' : _float16_ma,
    # float80, first 10 bytes containing actual storage
    b'\xcd\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xfb\xbf' : _float80_ma,
    # double double; low, high order (e.g. PPC 64)
    b'\x9a\x99\x99\x99\x99\x99Y<\x9a\x99\x99\x99\x99\x99\xb9\xbf' :
    _float_dd_ma,
    # double double; high, low order (e.g. PPC 64 le)
    b'\x9a\x99\x99\x99\x99\x99\xb9\xbf\x9a\x99\x99\x99\x99\x99Y<' :
    _float_dd_ma,
    # IEEE 754 128-bit binary float
    b'\x9a\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\xfb\xbf' :
    _float128_ma,
}


def _get_machar(ftype):
    """ Get MachAr instance or MachAr-like instance

    Get parameters for floating point type, by first trying signatures of
    various known floating point types, then, if none match, attempting to
    identify parameters by analysis.

    Parameters
    ----------
    ftype : class
        Numpy floating point type class (e.g. ``np.float64``)

    Returns
    -------
    ma_like : instance of :class:`MachAr` or :class:`MachArLike`
        Object giving floating point parameters for `ftype`.

    Warns
    -----
    UserWarning
        If the binary signature of the float type is not in the dictionary of
        known float types.
    """
    params = _MACHAR_PARAMS.get(ftype)
    if params is None:
        raise ValueError(repr(ftype))
    # Detect known / suspected types
    key = ftype('-0.1').newbyteorder('<').tobytes()
    ma_like = _KNOWN_TYPES.get(key)
    # Could be 80 bit == 10 byte extended precision, where last bytes can be
    # random garbage.  Try comparing first 10 bytes to pattern.
    if ma_like is None and ftype == ntypes.longdouble:
        ma_like = _KNOWN_TYPES.get(key[:10])
    if ma_like is not None:
        return ma_like
    # Fall back to parameter discovery
    warnings.warn(
        'Signature {} for {} does not match any known type: '
        'falling back to type probe function'.format(key, ftype),
        UserWarning, stacklevel=2)
    return _discovered_machar(ftype)


def _discovered_machar(ftype):
    """ Create MachAr instance with found information on float types
    """
    params = _MACHAR_PARAMS[ftype]
    return MachAr(lambda v: array([v], ftype),
                  lambda v:_fr0(v.astype(params['itype']))[0],
                  lambda v:array(_fr0(v)[0], ftype),
                  lambda v: params['fmt'] % array(_fr0(v)[0], ftype),
                  params['title'])


class finfo(object):
    """
    finfo(dtype)

    Machine limits for floating point types.

    Attributes
    ----------
    bits : int
        The number of bits occupied by the type.
    eps : float
        The smallest representable positive number such that
        ``1.0 + eps != 1.0``.  Type of `eps` is an appropriate floating
        point type.
    epsneg : floating point number of the appropriate type
        The smallest representable positive number such that
        ``1.0 - epsneg != 1.0``.
    iexp : int
        The number of bits in the exponent portion of the floating point
        representation.
    machar : MachAr
        The object which calculated these parameters and holds more
        detailed information.
    machep : int
        The exponent that yields `eps`.
    max : floating point number of the appropriate type
        The largest representable number.
    maxexp : int
        The smallest positive power of the base (2) that causes overflow.
    min : floating point number of the appropriate type
        The smallest representable number, typically ``-max``.
    minexp : int
        The most negative power of the base (2) consistent with there
        being no leading 0's in the mantissa.
    negep : int
        The exponent that yields `epsneg`.
    nexp : int
        The number of bits in the exponent including its sign and bias.
    nmant : int
        The number of bits in the mantissa.
    precision : int
        The approximate number of decimal digits to which this kind of
        float is precise.
    resolution : floating point number of the appropriate type
        The approximate decimal resolution of this type, i.e.,
        ``10**-precision``.
    tiny : float
        The smallest positive usable number.  Type of `tiny` is an
        appropriate floating point type.

    Parameters
    ----------
    dtype : float, dtype, or instance
        Kind of floating point data-type about which to get information.

    See Also
    --------
    MachAr : The implementation of the tests that produce this information.
    iinfo : The equivalent for integer data types.

    Notes
    -----
    For developers of NumPy: do not instantiate this at the module level.
    The initial calculation of these parameters is expensive and negatively
    impacts import times.  These objects are cached, so calling ``finfo()``
    repeatedly inside your functions is not a problem.

    """

    _finfo_cache = {}

    def __new__(cls, dtype):
        try:
            dtype = numeric.dtype(dtype)
        except TypeError:
            # In case a float instance was given
            dtype = numeric.dtype(type(dtype))

        obj = cls._finfo_cache.get(dtype, None)
        if obj is not None:
            return obj
        dtypes = [dtype]
        newdtype = numeric.obj2sctype(dtype)
        if newdtype is not dtype:
            dtypes.append(newdtype)
            dtype = newdtype
        if not issubclass(dtype, numeric.inexact):
            raise ValueError("data type %r not inexact" % (dtype))
        obj = cls._finfo_cache.get(dtype, None)
        if obj is not None:
            return obj
        if not issubclass(dtype, numeric.floating):
            newdtype = _convert_to_float[dtype]
            if newdtype is not dtype:
                dtypes.append(newdtype)
                dtype = newdtype
        obj = cls._finfo_cache.get(dtype, None)
        if obj is not None:
            return obj
        obj = object.__new__(cls)._init(dtype)
        for dt in dtypes:
            cls._finfo_cache[dt] = obj
        return obj

    def _init(self, dtype):
        self.dtype = numeric.dtype(dtype)
        machar = _get_machar(dtype)

        for word in ['precision', 'iexp',
                     'maxexp', 'minexp', 'negep',
                     'machep']:
            setattr(self, word, getattr(machar, word))
        for word in ['tiny', 'resolution', 'epsneg']:
            setattr(self, word, getattr(machar, word).flat[0])
        self.bits = self.dtype.itemsize * 8
        self.max = machar.huge.flat[0]
        self.min = -self.max
        self.eps = machar.eps.flat[0]
        self.nexp = machar.iexp
        self.nmant = machar.it
        self.machar = machar
        self._str_tiny = machar._str_xmin.strip()
        self._str_max = machar._str_xmax.strip()
        self._str_epsneg = machar._str_epsneg.strip()
        self._str_eps = machar._str_eps.strip()
        self._str_resolution = machar._str_resolution.strip()
        return self

    def __str__(self):
        fmt = (
            'Machine parameters for %(dtype)s\n'
            '---------------------------------------------------------------\n'
            'precision = %(precision)3s   resolution = %(_str_resolution)s\n'
            'machep = %(machep)6s   eps =        %(_str_eps)s\n'
            'negep =  %(negep)6s   epsneg =     %(_str_epsneg)s\n'
            'minexp = %(minexp)6s   tiny =       %(_str_tiny)s\n'
            'maxexp = %(maxexp)6s   max =        %(_str_max)s\n'
            'nexp =   %(nexp)6s   min =        -max\n'
            '---------------------------------------------------------------\n'
            )
        return fmt % self.__dict__

    def __repr__(self):
        c = self.__class__.__name__
        d = self.__dict__.copy()
        d['klass'] = c
        return (("%(klass)s(resolution=%(resolution)s, min=-%(_str_max)s,"
                 " max=%(_str_max)s, dtype=%(dtype)s)") % d)


class iinfo(object):
    """
    iinfo(type)

    Machine limits for integer types.

    Attributes
    ----------
    bits : int
        The number of bits occupied by the type.
    min : int
        The smallest integer expressible by the type.
    max : int
        The largest integer expressible by the type.

    Parameters
    ----------
    int_type : integer type, dtype, or instance
        The kind of integer data type to get information about.

    See Also
    --------
    finfo : The equivalent for floating point data types.

    Examples
    --------
    With types:

    >>> ii16 = np.iinfo(np.int16)
    >>> ii16.min
    -32768
    >>> ii16.max
    32767
    >>> ii32 = np.iinfo(np.int32)
    >>> ii32.min
    -2147483648
    >>> ii32.max
    2147483647

    With instances:

    >>> ii32 = np.iinfo(np.int32(10))
    >>> ii32.min
    -2147483648
    >>> ii32.max
    2147483647

    """

    _min_vals = {}
    _max_vals = {}

    def __init__(self, int_type):
        try:
            self.dtype = numeric.dtype(int_type)
        except TypeError:
            self.dtype = numeric.dtype(type(int_type))
        self.kind = self.dtype.kind
        self.bits = self.dtype.itemsize * 8
        self.key = "%s%d" % (self.kind, self.bits)
        if self.kind not in 'iu':
            raise ValueError("Invalid integer data type.")

    def min(self):
        """Minimum value of given dtype."""
        if self.kind == 'u':
            return 0
        else:
            try:
                val = iinfo._min_vals[self.key]
            except KeyError:
                val = int(-(1 << (self.bits-1)))
                iinfo._min_vals[self.key] = val
            return val

    min = property(min)

    def max(self):
        """Maximum value of given dtype."""
        try:
            val = iinfo._max_vals[self.key]
        except KeyError:
            if self.kind == 'u':
                val = int((1 << self.bits) - 1)
            else:
                val = int((1 << (self.bits-1)) - 1)
            iinfo._max_vals[self.key] = val
        return val

    max = property(max)

    def __str__(self):
        """String representation."""
        fmt = (
            'Machine parameters for %(dtype)s\n'
            '---------------------------------------------------------------\n'
            'min = %(min)s\n'
            'max = %(max)s\n'
            '---------------------------------------------------------------\n'
            )
        return fmt % {'dtype': self.dtype, 'min': self.min, 'max': self.max}

    def __repr__(self):
        return "%s(min=%s, max=%s, dtype=%s)" % (self.__class__.__name__,
                                    self.min, self.max, self.dtype)