This file is indexed.

/usr/share/acl2-8.0dfsg/books/arithmetic/binomial.lisp is in acl2-books-source 8.0dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
;;; Contributed by Ruben A. Gamboa

; Copyright (C) 2014, University of Wyoming
; All rights reserved.
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

;;; This file includes a proof of the binomial theorem.

(in-package "ACL2")

(local (include-book "top"))
(include-book "factorial")
(include-book "sumlist")

;; We begin with the definition of (choose k n), which counts the
;; number of ways k items can be selected out of n distinct items.

(defun choose (k n)
  ; (declare (xargs :guard (and (integerp k) (integerp n) (<= 0 k) (<= k n))))
  (if (and (integerp k) (integerp n) (<= 0 k) (<= k n))
      (/ (factorial n)
	 (* (factorial k) (factorial (- n k))))
    0))

;; Unfortunately, ACL2 looks at the previous definition and assumes
;; that choose is a rational number -- not necessarily integer.  So
;; our first step is to establish the fact that choose is an integer
;; function.  First we need a few simplification rules.


;; The first rule is that n!/(n-1)! is equal to n.....

(defthm factorial-n/n-1
  (implies (and (integerp n)
		(<= 1 n))
	   (equal (* (factorial n)
		     (/ (factorial (+ -1 n))))
		  n))
  :hints (("Goal" :expand ((factorial n)))))

;; A more powerful rule is that n!*x/(n-1)! is equan to n*x.

(local
 (defthm factorial-n/n-1/x
   (implies (and (integerp n)
		 (<= 1 n))
	    (equal (* (factorial n)
		      (/ (factorial (+ -1 n)))
		      x)
		   (* n x)))))

;; Now, we can prove the following lemma, which was suggested to us by
;; Matt Kaufmann (thanks, Matt!).  We show that the choose function
;; can be defined by a recurrence relation.  Basically, the way to
;; choose k things out of n things is to choose 1 thing and take it
;; out.  Then, if we decide to choose that item, we need to pick an
;; additional k-1 things out of n-1 things; if not, we still need to
;; pick k things out of n-1 things....  The sum of those is the number
;; we want.

(defthm choose-reduction
  (implies (and (integerp k)
		(integerp n)
		(< 0 k)
		(< k n))
	   (equal (choose k n)
		  (+ (choose (1- k) (1- n))
		     (choose k (1- n)))))

; Matt K. change for v2-9: Subgoal number has changed, probably because of the
; change to call-stack to preserve quote-normal form.

  :hints (("Subgoal 4'" :expand ((factorial n))))
  :rule-classes nil)


;; So, we can define a new function choose-mk which follows the
;; recurrence mentioned above....

(defun choose-mk (k n)
  (if (and (integerp k)
	   (integerp n))
      (if (and (< 0 k)
	       (< k n))
	  (+ (choose-mk (1- k) (1- n))
	     (choose-mk k (1- n)))
	(if (and (<= 0 k)
		 (<= k n))
	    1
	  0))
    0))

;; ...and we can prove that it's the exact same function as choose.

(defthm choose-mk-choose
  (equal (choose-mk k n)
	 (choose k n))
  :hints (("Goal" :induct (choose-mk k n))
	  ("Subgoal *1/1" :use (:instance choose-reduction)
	   :in-theory (disable choose)))
  :rule-classes nil)

;; Now, the function choose-mk is obviously integer, so that means
;; choose must be obviously integer!

(defthm choose-is-non-negative-integer
  (and (integerp (choose k n))
       (<= 0 (choose k n)))
  :hints (("Goal" :use (:instance choose-mk-choose)
	   :in-theory (disable choose choose-mk)))
  :rule-classes (:rewrite :type-prescription))


;; We can now define the binomial expansion of (x+y)^n, starting at
;; the term containing x^k.  I.e., to get the entire binomial
;; expansion, use (binomial-expansion x y 0 n).

(defun binomial-expansion (x y k n)
  (declare (xargs :measure (nfix (1+ (- n k)))))
  (if (and (integerp k) (integerp n) (<= 0 k) (<= k n))
      (cons (* (choose k n) (expt x k) (expt y (- n k)))
	    (binomial-expansion x y (1+ k) n))
    nil))

;; We find it useful to explicitly define the expansion of x*(x+y)^n.

(defun binomial-expansion-times-x (x y k n)
  (declare (xargs :measure (nfix (1+ (- n k)))))
  (if (and (integerp k) (integerp n) (<= 0 k) (<= k n))
      (cons (* (choose k n) (expt x (1+ k)) (expt y (- n k)))
	    (binomial-expansion-times-x x y (1+ k) n))
    nil))

;; This lemma shows that our expansion for x*(x+y)^n indeed works.

(defthm binomial-expansion-times-x-correct
  (equal (* x (sumlist (binomial-expansion x y k n)))
	 (sumlist (binomial-expansion-times-x x y k n)))
  :hints (("Goal" :in-theory (disable choose))))

;; Similarly, we define an expansion of y*(x+y)^n....

(defun binomial-expansion-times-y (x y k n)
  (declare (xargs :measure (nfix (1+ (- n k)))))
  (if (and (integerp k) (integerp n) (<= 0 k) (<= k n))
      (cons (* (choose k n) (expt x k) (expt y (1+ (- n k))))
	    (binomial-expansion-times-y x y (1+ k) n))
    nil))

;; ...and prove it works, too.

(defthm binomial-expansion-times-y-correct
  (equal (* y (sumlist (binomial-expansion x y k n)))
	 (sumlist (binomial-expansion-times-y x y k n)))
  :hints (("Goal" :in-theory (disable choose))))

;; The following function expands (x+y)^n in a manner reminiscent of
;; Pascal's triangle.  Consider (x+y)^n.  It is equal to
;; (x+y)*(x+y)^{n-1} or x*(x+y)^{n-1} + y*(x+y)^{n-1}.  If we can show
;; that the binomial theorem is true for (x+y)^{n-1} (for induction,
;; for example), then we can reduce (x+y)^n to x times the binomial
;; expansion of (x+y)^{n-1} plus y times the binomial expansion of
;; (x+y)^{n-1} -- and we already have a function for x/y * the
;; binomial expansion of (x+y) from above!  We start with a function
;; which computes x*(x+y)^{n-1} + y*(x+y)^{n-1} by interleaving the
;; terms from each of the two sums.  I.e., x*a1, y*a1, x*a2, y*a2, etc
;; where ai are the terms in the binomial expansion of (x+y)^{n-1}.

(defun binomial-expansion-triangle (x y k n)
  (declare (xargs :measure (nfix (1+ (- n k)))))
  (if (and (integerp k) (integerp n) (<= 0 k) (<= k n))
      (cons (* (choose k n) (expt x (1+ k)) (expt y (- n k)))
	    (cons (* (choose k n) (expt x k) (expt y (1+ (- n k))))
		  (binomial-expansion-triangle x y (1+ k) n)))
    nil))

;; This is the key lemma that states that our function defined above
;; really does behave the way we said it did.

(defthm binomial-expansion-times-x-plus-times-y
  (equal (+ (sumlist (binomial-expansion-times-x x y k n))
	    (sumlist (binomial-expansion-times-y x y k n)))
	 (sumlist (binomial-expansion-triangle x y k n)))
  :hints (("Goal" :in-theory (disable choose expt))))

;; The following function computes the same value, but it does it by
;; emulating Pascal's triangle directly.  We will next show that this
;; function computes the same value as above, and hence that it is a
;; faithful computation of (a+b)^n.  Later, we will only have to
;; reduct the two choose terms below by collecting like x^k*y^{n-k}
;; terms and we'll have the needed result.

(defun binomial-expansion-pascal-triangle (x y k n)
  (declare (xargs :measure (nfix (1+ (- n k)))))
  (if (and (integerp k) (integerp n) (<= 0 k))
      (if (< k n)
	  (cons       (* (choose k n)      (expt x (1+ k)) (expt y (- n k)))
		(cons (* (choose (1+ k) n) (expt x (1+ k)) (expt y (- n k)))
		      (binomial-expansion-pascal-triangle x y (1+ k) n)))
	(if (= k n)
	    (list (* (choose k n) (expt x (1+ k)) (expt y (- n k))))
	  nil))
    nil))

;; Interesting that ACL2 needs a rewrite rule for this....

(local
 (defthm silly-inequality
   (implies (and (integerp k)
		 (integerp n)
		 (< k n))
	    (<= (+ 1 k) n))))

;; Now we need to show ACL2 how to reduse some of the terms that
;; appear in the main proof below.  First (choose k k) is equal to 1
;; (except in malformed cases when it's equal to 0).


(local
 (defthm choose-k-k
   (equal (choose k k)
	  (if (and (integerp k) (<= 0 k))
	      1
	    0))))

;; I think this is proved elsewhere, but x^0 = 1.

(local
 (defthm expt-x-0
   (equal (expt x 0) 1)))

;; Now, the binomial-expansion-triangle function returns an empty list
;; when we want to start at item k+1 and go up to item k....

(local
 (defthm binomial-expansion-triangle-x-y-k-1+k
   (equal (binomial-expansion-triangle x y (+ 1 k) k) nil)
   :hints (("Goal" :expand (binomial-expansion-triangle x y (+ 1 k) K)))))

;; We also show how the last term in the binomial-expansion-triangle
;; is expanded.

(local
 (defthm binomial-expansion-triangle-x-y-k-k-lemma
   (equal (binomial-expansion-triangle x y k k)
	  (if (and (integerp k) (<= 0 k))
	      (list (expt x (1+ k))
		    (* (expt x k) y))
	    nil))))

;; And finally, we can show that the Pascal triangle develops the
;; correct binomial coefficients....

(defthm binomial-expansion-pascal-triangle-correct
  (implies (and (integerp k) (integerp n) (<= 0 k) (<= k n))
	   (equal (sumlist (binomial-expansion-triangle x y k n))
		  (+ (* (choose k n) (expt x k) (expt y (1+ (- n k))))
		     (sumlist (binomial-expansion-pascal-triangle x y k n)))))
  :hints (("Goal"
	   :in-theory (disable choose expt
			       right-unicity-of-1-for-expt
			       expt-minus distributivity-of-expt-over-*
			       exponents-multiply
			       functional-commutativity-of-expt-/-base
			       exponents-add
			       exponents-add-for-nonneg-exponents))
	  ("Subgoal *1/5"
	   :in-theory (disable choose expt))))

;; Now, we show what happens when we try to get the binomial-expansion
;; of an empty interval.

(defthm binomial-expansion-zero
  (implies (< n k)
	   (equal (binomial-expansion x y k n) nil)))

;; From our previous lemma, we can establish quickly that the Pascal
;; triangle computes the same value as the binomial expansion.

(defthm pascal-triangle-binomial
  (implies (and (integerp k) (integerp n) (<= 0 k))
	   (equal (sumlist (binomial-expansion-pascal-triangle x y k n))
		  (sumlist (binomial-expansion x y (1+ k) (1+ n)))))
  :hints (("Goal"
	   :induct (binomial-expansion-pascal-triangle x y k n)
	   :in-theory (disable choose expt
			       right-unicity-of-1-for-expt
			       expt-minus distributivity-of-expt-over-*
			       exponents-multiply
			       functional-commutativity-of-expt-/-base
			       exponents-add
			       exponents-add-for-nonneg-exponents))
	  ("Subgoal *1/1''"
	   :use ((:instance choose-reduction
			    (k (+ 1 k))
			    (n (+ 1 n)))))))

;; We are almost ready now to prove the binomial theorem.  First, we
;; show ACL2 how to evaluate more terms that appear in the proofs to
;; follow.  For example, there's only 1 way to choose the empty set
;; out of a bunch of items -- unless we have a malformed set, in which
;; case it happens to be 0....

(defthm choose-0-n
  (equal (choose 0 n)
	 (if (and (integerp n) (<= 0 n))
	     1
	   0)))

;; The heart of the proof is the following lemma, which formalizes the
;; (x+y)^n = x*(x+y)^{n-1} + y*(x+y)^{n-1} argument given earlier.

(defthm binomial-theorem-induction-lemma
  (implies (and (integerp n) (< 0 n))
	   (equal (+ (* x (sumlist (binomial-expansion x y 0 (1- n))))
		     (* y (sumlist (binomial-expansion x y 0 (1- n)))))
		  (sumlist (binomial-expansion x y 0 n))))

  :hints (("Goal"
	   :in-theory (disable expt))))

;; It's easier to reason about the following function than about the
;; real expt function -- take a look at the definition of expt to see
;; what we mean!

(defun n-expt (x n)
  (declare (xargs :guard (and (acl2-numberp x) (integerp n) (<= n 0))))
  (if (and (integerp n) (< 0 n))
      (* x (n-expt x (1- n)))
    1))

;; This little theorem is pretty useful below.  I'm not sure why it
;; isn't a standard theorem of ACL2, but there's probably a subtle
;; reason involving cyclic rules....

(local
 (defthm distributivity-2
   (equal (* (+ x y) z)
	  (+ (* x z) (* y z)))))

;; Now, we're almost there.  We prove the binomial theorem, but using
;; the function n-expt instead of expt -- we told you it was easier to
;; reason about!

(defthm binomial-theorem-fake
  (implies (and (integerp n) (<= 0 n))
	   (equal (n-expt (+ x y) n)
		  (sumlist (binomial-expansion x y 0 n))))
  :hints (("Goal" :induct (n-expt x n))
	  ("Subgoal *1/1'" :in-theory (disable binomial-expansion))
	  ("Subgoal *1/1'''" :by (:instance binomial-theorem-induction-lemma))))

;; For the big step, we now show that our definition of expt really is
;; the same as expt.

(defthm n-expt-expt
  (implies (and (integerp n) (<= 0 n))
 	   (equal (expt x n)
 		  (n-expt x n))))

;; And therefore, we can now prove the binomial theorem!

(defthm binomial-theorem
  (implies (and (integerp n) (<= 0 n))
	   (equal (expt (+ x y) n)
		  (sumlist
		   (binomial-expansion x y 0 n)))))


;; Here's an added bonus.  It's not obvious that the binomial
;; expansions of (x+y)^n and (y+x)^n are the same -- it's a deep
;; consequence of the fact that (choose k n) and (choose (- n k) n)
;; are the same.  But, it's obvious if you look at just (x+y)^n
;; vs. (y+x)^n.  So, we get the fact that the binomial expansions
;; commute x&y for free!

(defthm binomial-sum-commutes
  (implies (and (integerp n) (<= 0 n))
	   (equal (sumlist (binomial-expansion x y 0 n))
		  (sumlist (binomial-expansion y x 0 n))))
  :hints (("Goal"
	   :use ((:instance binomial-theorem)
		 (:instance binomial-theorem (x y) (y x)))
	   :in-theory (disable binomial-theorem)))
  :rule-classes nil)