This file is indexed.

/usr/share/acl2-8.0dfsg/books/arithmetic/idiv.lisp is in acl2-books-source 8.0dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
;;; Contributed by Ruben A. Gamboa

; Copyright (C) 2014, University of Wyoming
; All rights reserved.
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

#|

This file contains some obvious theorems about the integer division and
related functions.  This should be developed into a significant library,
but for now, we're just keeping the theorems that we need.

|#

(in-package "ACL2")

(include-book "top")

(defthm quotient-cancellation
  (implies (and (integerp x) (< 0 x) (integerp y) (< 0 y)
		(integerp z) (< 0 z))
	   (equal (nonnegative-integer-quotient (* z x) (* z y))
		  (nonnegative-integer-quotient x y))))

(defthm quotient-numer-denom-lemma
  (implies (and (integerp x) (< 0 x) (integerp y) (< 0 y))
	   (equal (nonnegative-integer-quotient (* (numerator (/ x y))
						   (denominator (/ x y))
						   x)
						(* (numerator (/ x y))
						   (denominator (/ x y))
						   y))
		  (nonnegative-integer-quotient x y)))
  :hints (("Goal"
	   :use (:instance quotient-cancellation
			   (z (* (numerator (/ x y)) (denominator (/ x y)))))
	   :in-theory (disable quotient-cancellation))))

(defthm numer-denom-lemma-silly
  (implies (and (acl2-numberp x) (acl2-numberp y) (not (equal 0 y)))
	   (equal (* x d)
		  (* y x (/ y) d)))
  :rule-classes nil)

(defthm numer-denom-lemma
  (implies (and (integerp x) (integerp y) (not (equal 0 y)))
	   (and (equal (* (denominator (/ x y)) x)
		       (* (numerator (/ x y)) y))))
  :hints (("Goal" :use (:instance Rational-implies2 (x (/ x y)))
	   :in-theory (disable Rational-implies2 equal-*-/-2))
	  ("Goal'4'" :use (:instance numer-denom-lemma-silly
				     (d (denominator (* x (/ y))))))))

(defthm quotient-numer-denom-lemma2-silly
  (implies (and (integerp x) (< 0 x) (integerp y) (< 0 y)
		(acl2-numberp d) (acl2-numberp n) (not (= 0 d))
		(equal (* d x) (* n y)))
	   (equal (* X d d)
		  (* Y d n)))
  :rule-classes nil)

(defthm quotient-numer-denom-lemma2
  (implies (and (integerp x) (< 0 x) (integerp y) (< 0 y))
	   (equal (* X (DENOMINATOR (* X (/ Y)))
		     (DENOMINATOR (* X (/ Y))))
		  (* Y (DENOMINATOR (* X (/ Y)))
		     (NUMERATOR (* X (/ Y))))))
  :hints (("Goal" :use (:instance quotient-numer-denom-lemma2-silly
				  (d (DENOMINATOR (* X (/ Y))))
				  (n (NUMERATOR (* X (/ Y))))))))

(defthm quotient-numer-denom-lemma3
  (implies (and (integerp x) (< 0 x) (integerp y) (< 0 y))
	   (equal (nonnegative-integer-quotient (* (numerator (/ x y))
						   (denominator (/ x y))
						   x)
						(* (numerator (/ x y))
						   (denominator (/ x y))
						   y))
		  (nonnegative-integer-quotient (numerator (/ x y))
						(denominator (/ x y)))))
  :hints (("Goal"
	   :use ((:instance quotient-cancellation
			    (x (numerator (/ x y)))
			    (y (denominator (/ x y)))
			    (z (* (denominator (/ x y)) x)))
		 (:instance numer-denom-lemma))
	   :in-theory (disable quotient-cancellation numer-denom-lemma))))

(defthm quotient-numer-denom
  (implies (and (integerp x) (< 0 x) (integerp y) (< 0 y))
	   (equal (nonnegative-integer-quotient (numerator (/ x y))
						(denominator (/ x y)))
		  (nonnegative-integer-quotient x y)))
  :hints (("Goal" :use ((:instance quotient-numer-denom-lemma)
			(:instance quotient-numer-denom-lemma3))
	   :in-theory (disable quotient-numer-denom-lemma
			       quotient-numer-denom-lemma3))))

(defthm remainder-theorem-1
  (implies (and (integerp x) (< 0 x) (integerp y) (< 0 y))
	   (equal (+ (* (truncate x y) y) (rem x y)) x)))

(defthm remainder-lemma
  (implies (and (integerp x) (< 0 x) (integerp y) (< 0 y))
	   (< (- x (* y (nonnegative-integer-quotient x y))) y))
  :rule-classes (:rewrite :linear))

(defthm remainder-theorem-2
  (implies (and (integerp x) (< 0 x) (integerp y) (< 0 y))
	   (< (rem x y) y)))

(defthm quotient-lower-bound
  (implies (and (integerp x) (< 0 x) (integerp y) (< 0 y))
	   (<= (nonnegative-integer-quotient x y)
	       (/ x y)))
  :rule-classes (:linear :rewrite))

(defthm quotient-upper-bound
  (implies (and (integerp x) (< 0 x) (integerp y) (< 0 y))
	   (< (/ x y)
	      (1+ (nonnegative-integer-quotient x y))))
  :hints (("Goal" :use (:instance remainder-lemma)
	   :in-theory (disable remainder-lemma)))
  :rule-classes (:rewrite :linear))

(defthm truncate-lower-bound
  (implies (and (integerp x) (< 0 x) (integerp y) (< 0 y))
	   (<= (truncate x y) (/ x y)))
  :rule-classes (:linear :rewrite))

(defthm truncate-upper-bound
  (implies (and (integerp x) (< 0 x) (integerp y) (< 0 y))
	   (< (/ x y) (1+ (truncate x y))))
  :rule-classes (:linear :rewrite))

(defthm rem-lower-bound
  (implies (and (integerp x) (< 0 x) (integerp y) (< 0 y))
	   (<= 0 (rem x y)))
  :rule-classes (:linear :rewrite))

(defthm rem-upper-bound
  (implies (and (integerp x) (< 0 x) (integerp y) (< 0 y))
	   (< (rem x y) y))
  :rule-classes (:linear :rewrite))