/usr/share/acl2-8.0dfsg/books/bdd/alu.lisp is in acl2-books-source 8.0dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 | ; ACL2 books using the bdd hints
; Copyright (C) 1997 Computational Logic, Inc.
; License: A 3-clause BSD license. See the LICENSE file distributed with ACL2.
; Written by: Matt Kaufmann
; email: Matt_Kaufmann@aus.edsr.eds.com
; Computational Logic, Inc.
; 1717 West Sixth Street, Suite 290
; Austin, TX 78703-4776 U.S.A.
(in-package "ACL2")
; These definitions are based on definitions in the FM9001 events files, and
; lead up to a version of the theorem CORE-ALU-IS-V-ALU from
; "~hunt/fm9001-replay/core-alu.events", which had previously proved by Boyer
; and Hunt using Moore's BDD package.
(include-book "bdd-primitives")
(defun p-cell (a an b pa pan pb)
(b-nand3 (b-nand a pa)
(b-nand an pan)
(b-nand b pb)))
(defun g-cell (a an bn ga gan gbn)
(b-and3 (b-nand a ga)
(b-nand an gan)
(b-nand bn gbn)))
(defun alu-cell (c a b mpg)
(let ((gbn (car mpg))
(gan (cadr mpg))
(ga (caddr mpg))
(pb (cadddr mpg))
(pan (caddddr mpg))
(pa (cadddddr mpg))
(m (caddddddr mpg)))
(let ((an (b-not a))
(bn (b-not b)))
(let ((p (p-cell a an b pa pan pb))
(g (g-cell a an bn ga gan gbn))
(mc (b-nand c m)))
(let ((z (b-equv3 mc p g)))
(list p g z))))))
(defun tv-alu-help (c a b mpg tree)
(if (nlistp tree)
(alu-cell c (car a) (car b) mpg)
(let ((a-car (tfirstn a tree))
(b-car (tfirstn b tree))
(a-cdr (trestn a tree))
(b-cdr (trestn b tree)))
(let ((lhs (tv-alu-help c a-car b-car mpg (car tree))))
(let ((p-car (car lhs))
(g-car (cadr lhs))
(sum-car (cddr lhs)))
(let ((c-car (t-carry c p-car g-car)))
(let ((rhs (tv-alu-help c-car a-cdr b-cdr mpg (cdr tree))))
(let ((p-cdr (car rhs))
(g-cdr (cadr rhs))
(sum-cdr (cddr rhs)))
(cons (b-and p-car p-cdr)
(cons (t-carry g-car p-cdr g-cdr)
(append sum-car sum-cdr)))))))))))
(defun shift-or-buf-cntl (c an zero op0 op1 op2 op3)
(let ((op0- (b-not op0))
(op1- (b-not op1))
(op2- (b-not op2)))
(let ((decode-ror (b-and op0- op1-))
(decode-asr op0))
(let ((ror-si (b-and decode-ror c))
(asr-si (b-and decode-asr an)))
(let ((si (b-or asr-si ror-si))
(t1 (b-nand op2- op3))
(t2 (b-and op0 op1)))
(list (b-or3 t2 t1 zero)
si))))))
(defun shift-or-buf (c a an zero op0 op1 op2 op3)
(let ((pass (car (shift-or-buf-cntl c an zero op0 op1 op2 op3)))
(si (cadr (shift-or-buf-cntl c an zero op0 op1 op2 op3))))
(v-if pass a (v-shift-right a si))))
(defun carry-out-help (a0 result zero op0 op1 op2 op3)
(let ((result- (b-not result))
(zero- (b-not zero))
(op0- (b-not op0))
(op1- (b-not op1))
(op2- (b-not op2))
(op3- (b-not op3)))
(let ((op0 (b-not op0-))
(op1 (b-not op1-))
(op2 (b-not op2-))
(op3 (b-not op3-)))
(b-and (b-nand3 (b-nand4 op3- (b-nand op0- op1-) op2- result)
(b-nand3 op3- op2 result-)
(b-nand4 op3 op2- (b-nand op0 op1) a0))
zero-))))
(defun overflow-help (rn an bn zero op0 op1 op2 op3)
(let ((an- (b-not an))
(zero- (b-not zero))
(op1- (b-not op1))
(op2- (b-not op2))
(op3- (b-not op3)))
(let ((an (b-not an-))
(op2 (b-not op2-)))
(b-if rn
(b-nor (b-nand (b-nor (b-nand3 op3-
(b-or3 op1- op2- (b-xor an bn))
(b-nand3 op1- op2 an-))
(b-nand (b-nand3 op1 op2- (b-xor an bn))
(b-nand3 op1- op2- an)))
zero-)
(b-nand3 (b-nand op2 an-)
(b-nand3 op0 op1- an)
(b-nand op2- an)))
(b-nor (b-nand (b-nor (b-nand3 op3-
(b-or3 op1- op2- (b-xor an bn))
(b-nand3 op1- op2 an-))
(b-nand (b-nand3 op1 op2- (b-xor an bn))
(b-nand3 op1- op2- an)))
zero-)
(b-not (b-nand3 (b-nand op2 an-)
(b-nand3 op0 op1- an)
(b-nand op2- an)))))
)))
(defun core-alu (c a b zero mpg op tree)
(let ((op0 (car op))
(op1 (cadr op))
(op2 (caddr op))
(op3 (cadddr op)))
(let ((last-bit (sub1 (len a))))
(let ((alu-help (tv-alu-help c a b mpg tree)))
(let ((alu-p (car alu-help))
(alu-g (cadr alu-help))
(alu-sum (cddr alu-help)))
(let ((alu-carry (t-carry c alu-p alu-g))
(out (shift-or-buf c alu-sum (nth (sub1 (len a)) a)
zero op0 op1 op2 op3)))
(cons (carry-out-help (nth 0 a) alu-carry zero op0 op1 op2 op3)
(cons (overflow-help (nth last-bit alu-sum)
(nth last-bit a)
(nth last-bit b)
zero op0 op1 op2 op3)
(cons (v-zerop out)
out)))))))))
;;;;;;;;;;;; v-alu
(defun cvzbv (carry overflow vector)
(cons carry (cons overflow (cons (v-zerop vector) vector))))
(defun v-adder (c a b)
(if (nlistp a)
(cons (boolfix c) nil)
(cons (b-xor3 c (car a) (car b))
(v-adder (b-or (b-and (car a) (car b))
(b-or (b-and (car a) c)
(b-and (car b) c)))
(cdr a)
(cdr b)))))
(defun v-adder-carry-out (c a b)
(nth (len a) (v-adder c a b)))
(defun v-adder-output (c a b)
(firstn (len a) (v-adder c a b)))
(defun v-adder-overflowp (c a b)
(b-and (b-equv (nth (sub1 (len a)) a)
(nth (sub1 (len b)) b))
(b-xor (nth (sub1 (len a)) a)
(nth (sub1 (len a)) (v-adder-output c a b)))))
(defun cvzbv-v-adder (c a b)
(cvzbv (v-adder-carry-out c a b)
(v-adder-overflowp c a b)
(v-adder-output c a b)))
(defun cvzbv-inc (a)
(cvzbv-v-adder t a (nat-to-v 0 (len a))))
(defun v-subtracter-carry-out (c a b)
(b-not (v-adder-carry-out (b-not c) (v-not a) b)))
(defun v-subtracter-overflowp (c a b)
(v-adder-overflowp (b-not c) (v-not a) b))
(defun v-subtracter-output (c a b)
(v-adder-output (b-not c) (v-not a) b))
(defun cvzbv-v-subtracter (c a b)
(cvzbv (v-subtracter-carry-out c a b)
(v-subtracter-overflowp c a b)
(v-subtracter-output c a b)))
(defun cvzbv-neg (a)
(cvzbv-v-subtracter nil a (nat-to-v 0 (len a))))
(defun cvzbv-dec (a)
(cvzbv-v-subtracter t (nat-to-v 0 (len a)) a))
(defun v-ror (a si)
(v-shift-right a si))
(defun cvzbv-v-ror (c a)
(cvzbv (if (nlistp a) c (nth 0 a)) nil (v-ror a c)))
(defun v-asr (a)
(v-shift-right a (nth (sub1 (len a)) a)))
(defun cvzbv-v-asr (a)
(cvzbv (if (listp a) (nth 0 a) nil) nil (v-asr a)))
(defun v-lsr (a)
(v-shift-right a nil))
(defun cvzbv-v-lsr (a)
(cvzbv (if (listp a) (nth 0 a) nil) nil (v-lsr a)))
(defun cvzbv-v-not (a)
(cvzbv nil nil (v-not a)))
(defun v-alu (c a b op)
(cond ((equal op '(nil nil nil nil)) (cvzbv nil nil (v-buf a)))
((equal op '( t nil nil nil)) (cvzbv-inc a))
((equal op '(nil t nil nil)) (cvzbv-v-adder c a b))
((equal op '( t t nil nil)) (cvzbv-v-adder nil a b))
((equal op '(nil nil t nil)) (cvzbv-neg a))
((equal op '(t nil t nil)) (cvzbv-dec a))
((equal op '(nil t t nil)) (cvzbv-v-subtracter c a b))
((equal op '(t t t nil)) (cvzbv-v-subtracter nil a b))
((equal op '(nil nil nil t)) (cvzbv-v-ror c a))
((equal op '( t nil nil t)) (cvzbv-v-asr a))
((equal op '(nil t nil t)) (cvzbv-v-lsr a))
((equal op '( t t nil t)) (cvzbv nil nil (v-xor a b)))
((equal op '(nil nil t t)) (cvzbv nil nil (v-or a b)))
((equal op '( t nil t t)) (cvzbv nil nil (v-and a b)))
((equal op '(nil t t t)) (cvzbv-v-not a))
(t (cvzbv nil nil (v-buf a)))))
(defun carry-in-help (czop)
(let ((c (car czop))
(z (cadr czop))
(op0 (caddr czop))
(op1 (cadddr czop))
(op2 (caddddr czop))
(op3 (cadddddr czop)))
(declare (ignore z))
(let ((c- (b-not c))
(op0- (b-not op0))
(op1- (b-not op1))
(op2- (b-not op2))
(op3- (b-not op3)))
(let ((c (b-not c-))
(op0 (b-not op0-))
(op1 (b-not op1-))
(op2 (b-not op2-))
(op3 (b-not op3-)))
(b-or (b-nand3 (b-nand3 op1- op2- op3-)
(b-nand3 op0- op1- op2)
(b-nand3 op0 op1 op2))
(b-nand3 (b-nand op3 c)
(b-nand3 op0- op2- c)
(b-nand3 op0- op2 c-)))))))
(defun decode-gen (zero swap op0 op1 op2 op3)
(let ((zero- (b-not zero))
(swap- (b-not swap))
(op0- (b-not op0))
(op1- (b-not op1))
(op2- (b-not op2))
(op3- (b-not op3)))
(let ((zero (b-not zero-))
(swap (b-not swap-))
(op0 (b-not op0-))
(op1 (b-not op1-))
(op2 (b-not op2-))
(op3 (b-not op3-)))
(declare (ignore swap))
(list (b-nand3 (b-nand3 op0 op3 (b-xor op1 op2))
(b-nand3 op2 op3- (b-nand op1- swap-))
(b-nand3 op1 op2- op3-))
(b-nor (b-nand (b-nand4 op0 op1 op2- op3)
(b-nand3 op2 op3- (b-nand op1- swap-)))
zero)
(b-nor (b-nand3 (b-nand3 op0 op3 (b-xor op1 op2))
(b-nand3 op0 op1- op2)
(b-nand3 op1 op2- op3-))
zero)))))
(defun decode-prop (zero swap op0 op1 op2 op3)
(let ((zero- (b-not zero))
(swap- (b-not swap))
(op0- (b-not op0))
(op1- (b-not op1))
(op2- (b-not op2))
(op3- (b-not op3)))
(let ((zerop (b-not zero-))
(swap (b-not swap-))
(op0 (b-not op0-))
(op1 (b-not op1-))
(op2 (b-not op2-))
(op3 (b-not op3-)))
(declare (ignore zerop))
(list (b-nand3 (b-nand4 op0- op1- op2 op3)
(b-nand op1 op3-)
(b-nand3 op2- op3- swap))
(b-nor op2- (b-nor op3- (b-nor op0 op1-)))
(b-and (b-nand3 (b-nand op3 (b-equv op0 op1))
(b-nand op2- (b-nand swap op3-))
(b-nand4 op0 op1- op2 op3-))
zero-)))))
(defun decode-mode (op0 op1 op2 op3)
(b-nor (b-nor3 op0 op1 op2)
op3))
(defun mpg (zsop)
(let ((zero (car zsop))
(swap (cadr zsop))
(op0 (caddr zsop))
(op1 (cadddr zsop))
(op2 (caddddr zsop))
(op3 (cadddddr zsop)))
(append (decode-gen zero swap op0 op1 op2 op3)
(append (decode-prop zero swap op0 op1 op2 op3)
(list (decode-mode op0 op1 op2 op3))))))
|