This file is indexed.

/usr/share/acl2-8.0dfsg/books/demos/patterned-congruences.lisp is in acl2-books-source 8.0dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
; Copyright (C) 2013, ForrestHunt, Inc.
; Written by Matt Kaufmann, December, 2013
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

; This book illustrates the use of patterned congruence rules: congruence rules
; of the form (implies (inner-equiv y1 y2) (outer-equiv (fn ...) (fn ...)))
; argument lists for fn are not simply duplicate-free lists of variables.  Some
; of the examples are lower-level than others, so this file serves several
; purposes, as follows.

; - It provides a demo of congruence-based reasoning and patterned congruences.
; - It serves as a regression test for patterned congruences.
; - It augments the user-level documentation.
; - It contains some lower-level discussion that can help ACL2 implementors
;   understand issues that might arise.

; We start with a demo, and then proceed with what are essentially regression
; tests.

(in-package "ACL2")

(include-book "misc/eval" :dir :system)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Demo
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; In this demo we introduce a notion of tree equivalence, where two binary
; trees are equivalent if one can be obtained by the other by a sequence of
; "flips", swapping left and right child at a subtree.  It is split into the
; following sections.

; Demo Section 1: A tree equivalence
; Demo Section 2: An equivalence-based rewrite rule
; Demo Section 3: Traditional congruence-based reasoning example
; Demo Section 4: Patterned congruence example

;;;;;;;;;;
; Demo Section 1: A tree equivalence
;;;;;;;;;;

; We begin with some macros to assist those not fluent in Lisp.

(defmacro leaf-p (x) ; a leaf of a binary CONS tree
  `(atom ,x))
(defmacro left (x)
  `(car ,x))
(defmacro right (x)
  `(cdr ,x))

; The following equivalence relation on binary trees holds, roughly speaking,
; when one tree can be transformed to the other by a sequence of "flips":
; switching left and right children of a node.

(defun tree-equiv (t1 t2)
  (cond ((or (leaf-p t1) (leaf-p t2))
         (equal t1 t2))
        (t (or (and (tree-equiv (left t1) (left t2))
                    (tree-equiv (right t1) (right t2)))
               (and (tree-equiv (left t1) (right t2))
                    (tree-equiv (right t1) (left t2)))))))

; An induction hint is needed to prove transitivity (below):

(defun defequiv-tree-equiv-induction-hint (t1 t2 t3)
  (cond
   ((or (leaf-p t1) (leaf-p t2) (leaf-p t3))
    t)
   (t (and (defequiv-tree-equiv-induction-hint (left t1) (left t2) (left t3))
           (defequiv-tree-equiv-induction-hint (left t1) (left t2) (right t3))
           (defequiv-tree-equiv-induction-hint (left t1) (right t2) (left t3))
           (defequiv-tree-equiv-induction-hint (left t1) (right t2) (right t3))
           (defequiv-tree-equiv-induction-hint (right t1) (left t2) (left t3))
           (defequiv-tree-equiv-induction-hint (right t1) (left t2) (right t3))
           (defequiv-tree-equiv-induction-hint (right t1) (right t2) (left t3))
           (defequiv-tree-equiv-induction-hint (right t1) (right t2) (right t3))))))

(defequiv tree-equiv
  :hints (("Goal" :induct (defequiv-tree-equiv-induction-hint x y z))))

;;;;;;;;;;
; Demo Section 2: An equivalence-based rewrite rule
;;;;;;;;;;

; The following function swaps every pair of children in a binary tree.

(defun mirror (tree)
  (cond ((leaf-p tree) tree)
        (t (cons (mirror (right tree))
                 (mirror (left tree))))))

; Notice that the following rewrite rule is based on tree-equiv, not equal.  It
; will replace (mirror x) by x at a subterm occurrence for which it is
; sufficient to preserve the tree-equiv relation.

(defthm tree-equiv-mirror
  (tree-equiv (mirror x)
              x))

;;;;;;;;;;
; Demo Section 3: Traditional congruence-based reasoning example
;;;;;;;;;;

(defun tree-product (tree)

; Returns the product of the numeric fringe of tree.

  (cond ((acl2-numberp tree)
         tree)
        ((leaf-p tree)
         1)
        (t (* (tree-product (left tree))
              (tree-product (right tree))))))

; Just a test (proved by evaluation):

(defthm test-tree-product
  (equal (tree-product '((3 (4 (5 3 a 6) 7 b (4 2)))))
         (* 3 4 5 3 6 7 4 2))
  :rule-classes nil)

; This congruence rule says that the argument of tree-product can be rewritten
; to preserve the tree-equiv relation.

(defthm tree-equiv-->-equal-tree-product
  (implies (tree-equiv x y)
           (equal (tree-product x)
                  (tree-product y)))
  :rule-classes :congruence)

; This little example is proved automatically by rewriting the term (mirror x).
; Of course, it is easy to prove this theorem directly, without
; tree-equiv-mirror or tree-equiv-->-equal-tree-product; here, we are just
; giving a simple illustration of congruence-based rewriting.

(defthm tree-product-mirror
  (equal (tree-product (mirror y))
         (tree-product y))
  :rule-classes nil)

;;;;;;;;;;
; Demo Section 4: Patterned congruence example
;;;;;;;;;;

; Now suppose we want to sweep the tree to collect not only the product of the
; numeric leaves, but additional information as well.  Function tree-data does
; that, using function combine-tree-data to combine recursive calls.

(defun combine-tree-data (t1 t2)
  (list (* (first t1) (first t2))
        (append (second t1) (second t2))))

(defun tree-data (tree)

; Returns (list product leaves), where leaves is the numeric fringe of tree and
; product is the product of those leaves.

  (cond ((acl2-numberp tree)
         (list tree (list tree)))
        ((leaf-p tree)
         (list 1 nil))
        (t (combine-tree-data (tree-data (left tree))
                              (tree-data (right tree))))))

; Test (proved by evaluation):

(defthm tree-data-test
  (equal (tree-data '((3 (4 (5 3 a 6) 7 b (4 2)))))
         (list (* 3 4 5 3 6 7 4 2)
               '(3 4 5 3 6 7 4 2)))
  :rule-classes nil)

; Here comes a patterned congruence rule.

(defthm tree-equiv-->-equal-first-tree-data
  (implies (tree-equiv x y)
           (equal (first (tree-data x))
                  (first (tree-data y))))
  :rule-classes :congruence)

; The following example is proved by the rewrite of (mirror x) to x.  While
; this example is trivial, imagine that there are k1 functions like mirror and
; k2 like tree-data.  If we prove k1 rules like tree-equiv-mirror and k2 rules
; like tree-equiv-->-equal-first-tree-data, then these k1+k2 rules set us
; up to perform automatically all k1*k2 rewrites like first-tree-data-mirror.

(defthm first-tree-data-mirror
  (equal (first (tree-data (mirror y)))
         (first (tree-data y)))
  :rule-classes nil)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; General utilities for displaying pequivs and such
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun anon (termlist)
  (subst-var-lst '_ *anonymous-var* termlist))

(defun show-pequiv-pattern (pat)
  (declare (xargs :mode :program))
  (list 'pequiv-pattern
        :fn (access pequiv-pattern pat :fn)
        :posn (access pequiv-pattern pat :posn)
        :pre-rev (anon (access pequiv-pattern pat :pre-rev))
        :post (anon (access pequiv-pattern pat :post))
        :next (let ((next (access pequiv-pattern pat :next)))
                (cond ((symbolp next) :next-var)
                      (t (show-pequiv-pattern next))))))

(defun show-pequiv (pequiv)
  (declare (xargs :mode :program))
  (list 'pequiv
        :pattern
        (show-pequiv-pattern (access pequiv pequiv :pattern))
        :unify-subst (access pequiv pequiv :unify-subst)
        :congruence-rule (access congruence-rule
                                 (access pequiv pequiv :congruence-rule)
                                 :rune)))

(defun show-pequiv-lst (pequiv-lst)
  (declare (xargs :mode :program))
  (cond ((atom pequiv-lst) ; could be :none
         nil)
        (t (cons (show-pequiv (car pequiv-lst))
                 (show-pequiv-lst (cdr pequiv-lst))))))

(defun show-pequiv-alist (pequiv-alist)
  (declare (xargs :mode :program))
  (cond ((endp pequiv-alist) nil)
        (t (cons (cons (caar pequiv-alist)
                       (show-pequiv-lst (cdar pequiv-alist)))
                 (show-pequiv-alist (cdr pequiv-alist))))))

(defmacro show-pequivs (fn)
  `(let* ((prop (getprop ',fn 'pequivs nil 'current-acl2-world (w state))))
     (and prop
          (list 'pequivs-property
                :shallow
                (show-pequiv-alist (access pequivs-property prop :shallow))
                :deep
                (show-pequiv-alist (access pequivs-property prop :deep))
                :deep-pequiv-p
                (access pequivs-property prop :deep-pequiv-p)))))

(defun show-pequiv-info (pequiv-info)
  (declare (xargs :mode :program))
  (and pequiv-info
       (list 'pequiv-info
             :rewritten-args-rev (access pequiv-info pequiv-info
                                         :rewritten-args-rev)
             :rest-args (access pequiv-info pequiv-info :rest-args)
             :alist (access pequiv-info pequiv-info :alist)
             :bkptr (access pequiv-info pequiv-info :bkptr)
             :fn (access pequiv-info pequiv-info :fn)
             :geneqv (access pequiv-info pequiv-info :geneqv)
             :deep-pequiv-lst (access pequiv-info pequiv-info
                                      :deep-pequiv-lst))))

(defmacro trace-pequivs (allp)
  `(trace!
    (rewrite :entry (list 'rewrite :term term :alist alist :bkptr bkptr
                          :geneqv geneqv
                          :pequiv-info (show-pequiv-info pequiv-info))
             :notinline t)
    (rewrite-args :entry (list 'rewrite-args
                               :args args
                               :alist alist
                               :bkptr bkptr
                               :rewritten-args-rev rewritten-args-rev
                               :deep-pequiv-lst
                               (show-pequiv-lst deep-pequiv-lst)
                               :shallow-pequiv-lst
                               (show-pequiv-lst shallow-pequiv-lst)
                               :parent-geneqv parent-geneqv
                               :fn fn
                               :geneqv geneqv)
                  :notinline t)
    one-way-unify1-term-alist
    one-way-unify1-term-alist-lst
    ,@(and allp
           '(accumulate-shallow-pequiv-alist
             geneqv-refinementp
             (expand-abbreviations
              :entry (list 'expand-abbreviations :term term :alist alist
                           :geneqv geneqv
                           :pequiv-info (show-pequiv-info pequiv-info))
              :notinline t)
             (expand-abbreviations-lst
              :entry (list 'expand-abbreviations-lst
                           :lst lst
                           :alist alist
                           :bkptr bkptr
                           :rewritten-args-rev rewritten-args-rev
                           :deep-pequiv-lst
                           (show-pequiv-lst deep-pequiv-lst)
                           :shallow-pequiv-lst
                           (show-pequiv-lst shallow-pequiv-lst)
                           :parent-geneqv parent-geneqv
                           :fn fn
                           :geneqv-lst geneqv-lst)
              :notinline t)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Some basic tests for shallow pequivs
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun f1 (x y z)
  (list x y z))

(defun f2 (x y)
  (declare (ignore y))
  x)

(defun e1 (x y)
  (equal x y))

(defequiv e1)

(defthm e1-implies-iff-f1-cong-1
  (implies (e1 y1 y2)
           (iff (f1 3 y1 (cons x x))
                (f1 3 y2 (cons x x))))
  :rule-classes (:congruence))

(defconst *pequiv-1*
  '(PEQUIV :PATTERN (PEQUIV-PATTERN :FN F1
                                    :POSN 2
                                    :PRE-REV ('3)
                                    :POST ((CONS X X))
                                    :NEXT :NEXT-VAR)
           :UNIFY-SUBST NIL
           :CONGRUENCE-RULE (:CONGRUENCE
                             E1-IMPLIES-IFF-F1-CONG-1)))

(assert-event
 (equal (show-pequivs f1)
        `(PEQUIVS-PROPERTY
          :SHALLOW ((IFF ,*pequiv-1*))
          :DEEP NIL
          :DEEP-PEQUIV-P NIL)))

(assert-event
 (equal (show-pequiv-lst
         (find-rules-of-rune
          '(:congruence e1-implies-iff-f1-cong-1)
          (w state)))
        (list *pequiv-1*)))

(defthm f2-returns-first-arg
  (e1 (f2 a b) a))

(in-theory (disable f1 f2 e1
                    (tau-system)
                    (:type-prescription f1)
                    (:type-prescription f2)))

#+skip ; only for interactive use
(trace-pequivs nil)

; Rewriting in the proof-builder comprehends patterned congruences:
(defthm test-1-proof-builder
  (iff (f1 3 (f2 z 8) (cons u u))
       (f1 3 z (cons u u)))
  :instructions ((:dv 1 2)
                 (:rewrite f2-returns-first-arg)
                 :top
                 :s-prop)
  :rule-classes nil)

(defthm test-1
  (iff (f1 3 (f2 z 8) (cons u u))
       (f1 3 z (cons u u))))

#+skip ; only for interactive use
(trace-pequivs t)

(must-fail ; outer equiv equal is not preserved (only iff)
 (thm
  (equal (f1 3 (f2 z 8) (cons u u))
         (f1 3 z (cons u u)))))

#+skip ; only for interactive use
(untrace$)

(defun e2 (x y)
  (equal x y))

(defequiv e2)

(defrefinement e2 iff)

(in-theory (disable e2))

(must-fail ; e2 refines iff, not the other way around
 (thm
  (e2 (f1 3 (f2 z 8) (cons u u))
      (f1 3 z (cons u u)))))

(defun e3 (x y)
  (iff x y))

(defequiv e3)

(must-fail ; we need the refinement rule just below
 (thm
  (e3 (f1 3 (f2 z 8) (cons u u))
      (f1 3 z (cons u u)))
  :hints (("Goal" :in-theory (disable e3)))))

(defrefinement iff e3)

(in-theory (disable e3))

; Succeeds because of test-1 and refinement:
(defthm test-2
  (e3 (f1 3 (f2 z 8) (cons u u))
      (f1 3 z (cons u u)))
  :rule-classes nil)

(in-theory (disable test-1))

; Pequiv applies because of refinement:
(defthm test-2-again
  (e3 (f1 3 (f2 z 8) (cons u u))
      (f1 3 z (cons u u)))
  :rule-classes nil)

; Fails because unification fails (u and v are distinct):
(must-fail
 (thm
  (e3 (f1 3 (f2 z 8) (cons u v))
      (f1 3 z (cons u v)))))

; Still fails, because we don't know about substituting into third arg.
(must-fail
 (thm
  (implies (e1 u v)
           (e3 (f1 3 (f2 z 8) (cons u v))
               (f1 3 z (cons u u))))))

(must-fail ; not a valid congruence rule
 (defthm e1-implies-iff-f1-cong-2-try1
   (implies (e1 z1 z2)
            (iff (f1 x (f2 a b) z1)
                 (f1 x a z2)))
   :hints (("Goal" :in-theory (enable f1 f2 e1)))
   :rule-classes (:congruence)))

(defthm e1-implies-iff-f1-cong-2
  (implies (e1 z1 z2)
           (iff (f1 x (f2 a b) z1)
                (f1 x (f2 a b) z2)))
   :hints (("Goal" :in-theory (enable f1 f2 e1)))
  :rule-classes (:congruence))

(defconst *pequiv-2*
  '(PEQUIV :PATTERN (PEQUIV-PATTERN :FN F1
                                    :POSN 3
                                    :PRE-REV ((F2 _ _)
                                              _)
                                    :POST NIL
                                    :NEXT :NEXT-VAR)
           :UNIFY-SUBST NIL
           :CONGRUENCE-RULE (:CONGRUENCE E1-IMPLIES-IFF-F1-CONG-2)))

(assert-event
 (equal
  (show-pequivs f1)
  `(PEQUIVS-PROPERTY
    :SHALLOW ((IFF ,*pequiv-2* ,*pequiv-1*))
    :DEEP NIL
    :DEEP-PEQUIV-P NIL)))

; Fails because v is under a cons, hence can't be replaced by u there:
(must-fail
 (defthm test-3
   (implies (e1 u v)
            (e3 (f1 3 (f2 z 8) (cons u v))
                (f1 3 z (cons u u))))
   :rule-classes nil))

(defcong e1 e1 (cons x y) 2
  :hints (("Goal" :in-theory (enable e1))))

; The following succeeds.  Note however that v is not immediately replaced by u
; (in low-level speak, remove-trivial-equivalences does not remove v).  Rather,
; rewriting replaces v with u (in low-level speak, rewrite-solidify does that
; replacement under (cons u v) because it suffices to preserve e1 there and (e1
; v 2) is true according to the type-alist).  If you trace
; remove-trivial-equivalences, you'll see its failure below (until after v has
; been removed by rewriting), but you'll see success if instead you change (e1
; u v) to (equal u v).
(defthm test-3
  (implies (e1 u v)
           (e3 (f1 3 (f2 z 8) (cons u v))
               (f1 3 z (cons u u))))
  :rule-classes nil)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Some basic tests for deep pequivs
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun f3 (x)
  x)

(defthmd e1-implies-iff-f1-cong-3
  (implies (e1 y1 y2)
           (iff (f1 4 (f3 y1) (+ w w))
                (f1 4 (f3 y2) (+ w w))))
  :hints (("Goal" :in-theory (enable e1)))
  :rule-classes (:congruence))

(assert-event
 (equal
  (show-pequivs f1) ; unchanged except :deep-pequiv-p is now t
  `(PEQUIVS-PROPERTY
    :SHALLOW ((IFF ,*pequiv-2* ,*pequiv-1*))
    :DEEP NIL
    :DEEP-PEQUIV-P T)))

(defconst *pequiv-3*
  '(PEQUIV :PATTERN (PEQUIV-PATTERN :FN F1
                                    :POSN 2
                                    :PRE-REV ('4)
                                    :POST ((BINARY-+ W W))
                                    :NEXT (PEQUIV-PATTERN :FN F3
                                                          :POSN 1
                                                          :PRE-REV NIL
                                                          :POST NIL
                                                          :NEXT :NEXT-VAR))
           :UNIFY-SUBST NIL
           :CONGRUENCE-RULE (:CONGRUENCE E1-IMPLIES-IFF-F1-CONG-3)))

(assert-event
 (equal
  (show-pequivs f3)
  `(PEQUIVS-PROPERTY
    :SHALLOW NIL
    :DEEP ((IFF ,*pequiv-3*))
    :DEEP-PEQUIV-P NIL)))

(defun f4 (x)
  x)

(defthm f4-is-f2
  (e1 (f4 x)
      (f2 x x)))

(in-theory (disable f3 f4 f2-returns-first-arg))

(must-fail ; need to enable e1-implies-iff-f1-cong-3
 (defthm test-4
   (implies (f1 4 (f3 (f2 a a)) (+ b b))
            (f1 4 (f3 (f4 a)) (+ b b)))
   :rule-classes nil))

(in-theory (enable e1-implies-iff-f1-cong-3))

(defthm test-4
  (implies (f1 4 (f3 (f2 a a)) (+ b b))
           (f1 4 (f3 (f4 a)) (+ b b)))
  :rule-classes nil)

; Now let's try a variant of test-4 that requires some rewriting.

(defun f5 (x) ; avoid making this a simple rule; see below
  (car (list 4 x x)))

; We insist on making just one pass through the rewriter, so that we can see
; that the matcher uses the rewritten-args.  Since f5 is not a simple rule, we
; don't need a hint of :do-not '(preprocess) in order to ensure that the proof
; completes at "Goal".

(defthm test-5
  (implies (f1 4 (f3 (f2 a a)) (+ b b))
           (f1 (f5 x) (f3 (f4 a)) (+ b b)))
  :hints ((and (not (equal id *initial-clause-id*))
               '(:error "Didn't complete at main Goal!")))
  :rule-classes nil)

; We next consider a variant of the test above that exercises simple rules
; only, thus showing that the "preprocess" process can handle patterned
; congruences.

(in-theory (disable f4-is-f2))

(defun f5-simple (x)
  (car (list 4 x)))

(defthm f4-is-f2-simple
  (e1 (f4 x)
      (f2 x 7))
  :hints (("Goal" :in-theory (enable f2 f4))))

; (trace-pequivs t)

#||
          6> (EXPAND-ABBREVIATIONS
                  :TERM (F1 (F5-SIMPLE X)
                            (F3 (F4 A))
                            (BINARY-+ B B))
                  :ALIST NIL
                  :GENEQV ((NIL IFF
                                :FAKE-RUNE-FOR-ANONYMOUS-ENABLED-RULE NIL))
                  :PEQUIV-INFO NIL)
...
            7> (EXPAND-ABBREVIATIONS-LST
                :LST ((F5-SIMPLE X)
                      (F3 (F4 A))
                      (BINARY-+ B B))
                :ALIST NIL
                :BKPTR 1
                :REWRITTEN-ARGS-REV NIL
                :DEEP-PEQUIV-LST NIL
                :SHALLOW-PEQUIV-LST
                (...
                 (PEQUIV
                    :PATTERN (PEQUIV-PATTERN :FN F1
                                             :POSN 3
                                             :PRE-REV ((F2 _ _) _)
                                             :POST NIL
                                             :NEXT :NEXT-VAR)
                    :UNIFY-SUBST NIL
                    :CONGRUENCE-RULE (:CONGRUENCE E1-IMPLIES-IFF-F1-CONG-2)))
                :PARENT-GENEQV
                ((NIL IFF
                      :FAKE-RUNE-FOR-ANONYMOUS-ENABLED-RULE NIL))
                :FN F1
                :GENEQV-LST NIL)
...
              8> (EXPAND-ABBREVIATIONS-LST
                  :LST ((F3 (F4 A)) (BINARY-+ B B))
                  :ALIST NIL
                  :BKPTR 2
                  :REWRITTEN-ARGS-REV ('4)
                  :DEEP-PEQUIV-LST NIL
                  :SHALLOW-PEQUIV-LST
                  (...
                   (PEQUIV
                    :PATTERN (PEQUIV-PATTERN :FN F1
                                             :POSN 3
                                             :PRE-REV ((F2 _ _) _)
                                             :POST NIL
                                             :NEXT :NEXT-VAR)
                    :UNIFY-SUBST NIL
                    :CONGRUENCE-RULE (:CONGRUENCE E1-IMPLIES-IFF-F1-CONG-2)))
                  :PARENT-GENEQV
                  ((NIL IFF
                        :FAKE-RUNE-FOR-ANONYMOUS-ENABLED-RULE NIL))
                  :FN F1
                  :GENEQV-LST NIL)
...
                9> (EXPAND-ABBREVIATIONS
                       :TERM (F3 (F4 A))
                       :ALIST NIL
                       :GENEQV NIL
                       :PEQUIV-INFO
                       (PEQUIV-INFO
                            :REWRITTEN-ARGS-REV ('4)
                            :REST-ARGS ((BINARY-+ B B))
                            :ALIST NIL
                            :BKPTR 2
                            :FN F1
                            :GENEQV
                            ((NIL IFF
                                  :FAKE-RUNE-FOR-ANONYMOUS-ENABLED-RULE NIL))
                            :DEEP-PEQUIV-LST NIL))
...
                  10> (EXPAND-ABBREVIATIONS-LST
                           :LST ((F4 A))
                           :ALIST NIL
                           :BKPTR 1
                           :REWRITTEN-ARGS-REV NIL
                           :DEEP-PEQUIV-LST NIL
                           :SHALLOW-PEQUIV-LST
                           ((PEQUIV :PATTERN (PEQUIV-PATTERN :FN F3
                                                             :POSN 1
                                                             :PRE-REV NIL
                                                             :POST NIL
                                                             :NEXT :NEXT-VAR)
                                    :UNIFY-SUBST ((W . B))
                                    :CONGRUENCE-RULE
                                    (:CONGRUENCE E1-IMPLIES-IFF-F1-CONG-3)))
                           :PARENT-GENEQV NIL
                           :FN F3
                           :GENEQV-LST NIL)
...
                  11> (EXPAND-ABBREVIATIONS
                        :TERM (F4 A)
                        :ALIST NIL
                        :GENEQV ((3147 E1
                                       :CONGRUENCE E1-IMPLIES-IFF-F1-CONG-3))
                        :PEQUIV-INFO NIL)
...
                  <11 (EXPAND-ABBREVIATIONS
                           536870884 (F2 A '7)
                           ((LEMMA (:CONGRUENCE E1-IMPLIES-IFF-F1-CONG-3)
                                   (:REWRITE F4-IS-F2-SIMPLE)
                                   (:REWRITE CAR-CONS)
                                   (:DEFINITION F5-SIMPLE))))
...
                  <10 (EXPAND-ABBREVIATIONS-LST
                           536870884 ((F2 A '7))
                           ((LEMMA (:CONGRUENCE E1-IMPLIES-IFF-F1-CONG-3)
                                   (:REWRITE F4-IS-F2-SIMPLE)
                                   (:REWRITE CAR-CONS)
                                   (:DEFINITION F5-SIMPLE))))
                <9 (EXPAND-ABBREVIATIONS
                        536870884 (F3 (F2 A '7))
                        ((LEMMA (:CONGRUENCE E1-IMPLIES-IFF-F1-CONG-3)
                                (:REWRITE F4-IS-F2-SIMPLE)
                                (:REWRITE CAR-CONS)
                                (:DEFINITION F5-SIMPLE))))

||#

(defthm test-5-simple
  (implies (f1 4 (f3 (f2 a 7)) (+ b b))
           (f1 (f5-simple x) (f3 (f4 a)) (+ b b)))
  :hints (("Goal" :do-not '(simplify)))
  :rule-classes nil)

; Undo the effects of the test just above.
(in-theory (e/d (f4-is-f2) (f4-is-f2-simple)))

; The next one succeeds but takes more than one pass, since we need to wait for
; the last argument to be rewritten.

(defthm times-2
  (equal (* 2 x)
         (+ x x)))

(must-fail
 (defthm test-6
   (implies (f1 4 (f3 (f2 a a)) (* 2 b))
            (f1 (f5 x) (f3 (f4 a)) (* 2 b)))
   :hints ((and (not (equal id *initial-clause-id*))
                '(:error "Didn't complete at main Goal!")))
   :rule-classes nil))

(defthm test-6
  (implies (f1 4 (f3 (f2 a a)) (* 2 b))
           (f1 (f5 x) (f3 (f4 a)) (* 2 b)))
  :rule-classes nil)

; Next, we test the use of our matcher when the alist comes into play.

(defun f6 (k u y)
  (f1 k (f3 (f4 u)) y))

; For the following, (trace-pequivs nil) shows:

#||

    3> (REWRITE :TERM (F1 K (F3 (F4 U)) Y)
                :ALIST ((Y BINARY-+ B B) (U . A) (K QUOTE 4))
                :BKPTR RHS
                :GENEQV ((NIL IFF
                              :FAKE-RUNE-FOR-ANONYMOUS-ENABLED-RULE NIL))
                :PEQUIV-INFO NIL)
...
            7> (ONE-WAY-UNIFY1-TERM-ALIST-LST ((BINARY-+ W W))
                                              (Y)
                                              ((Y BINARY-+ B B) (U . A) (K QUOTE 4))
                                              NIL)
...
            <7 (ONE-WAY-UNIFY1-TERM-ALIST-LST T ((W . B)))

||#

(defthm test-7
  (implies (f1 4 (f3 (f2 a a)) (* 2 b))
           (f6 4 a (* 2 b)))
  :hints (("Goal" :do-not '(preprocess)) ; defeat premature expansion of f6
          (and (not (equal id *initial-clause-id*))
               '(:error "Didn't complete at main Goal!")))
  :rule-classes nil)

; We next construct an example for which our matching algorithm deals with
; alists that contain pairs of the form (v . (:sublis-var u . s)), where u is a
; term, meaning that v is bound to u/s.

(defun f6-a (k u y)
  (f1 k (f3 (f4 u)) (+ (* y y) (* y y))))

; For the following, (trace-pequivs nil) shows:

#||

    3> (REWRITE :TERM (F1 K (F3 (F4 U))
                          (BINARY-+ (BINARY-* Y Y)
                                    (BINARY-* Y Y)))
                :ALIST ((Y . B) (U . A) (K QUOTE 4))
                :BKPTR BODY
                :GENEQV ((NIL IFF
                              :FAKE-RUNE-FOR-ANONYMOUS-ENABLED-RULE NIL))
                :PEQUIV-INFO NIL)
...
            7> (ONE-WAY-UNIFY1-TERM-ALIST-LST ((BINARY-+ W W))
                                              ((BINARY-+ (BINARY-* Y Y)
                                                         (BINARY-* Y Y)))
                                              ((Y . B) (U . A) (K QUOTE 4))
                                              NIL)
...
            <7 (ONE-WAY-UNIFY1-TERM-ALIST-LST T
                                              ((W :SUBLIS-VAR (BINARY-* Y Y)
                                                  (Y . B)
                                                  (U . A)
                                                  (K QUOTE 4))))


||#

(defthm test-7-a
  (implies (f1 4 (f3 (f2 a a)) (* 2 b b))
           (f6-a 4 a b))
  :hints (("Goal" :do-not '(preprocess)) ; defeat premature expansion of f6
          (and (not (equal id *initial-clause-id*))
               '(:error "Didn't complete at main Goal!")))
  :rule-classes nil)

; A typical use will be mv-nth.  Let's try such an example.

(defund f7 (y)
  (mv (true-listp y) (len (append y y))))

(defun e4 (x y)
  (equal (len x) (len y)))
(defequiv e4)
(in-theory (disable e4))

(defthm len-append
  (equal (len (append x y))
         (+ (len x) (len y))))

(defthm e4-implies-equal-mv-nth-cong
  (implies (e4 y1 y2)
           (equal (mv-nth 1 (f7 y1))
                  (mv-nth 1 (f7 y2))))
  :hints (("Goal" :in-theory (enable e4 f7)))
  :rule-classes :congruence)

(defthm len-revappend
  (equal (len (revappend x y))
         (+ (len x) (len y))))

(defthm len-reverse
  (equal (len (reverse x))
         (len x)))

(defthm reverse-is-id
  (e4 (reverse x) x)
  :hints (("Goal" :in-theory (enable e4))))

(defthm test-8
  (equal (mv-nth 1 (f7 (reverse x)))
         (mv-nth 1 (f7 x)))
  :hints (("Goal" ; unnecessary hint, but avoids warning
           :in-theory (disable reverse))))

(defun id (x)
  x)

(in-theory (disable id (:type-prescription id)))

(defthm e4-implies-equal-mv-nth-cong-b
  (implies (e4 y1 y2)
           (equal (mv-nth 1 (id (f7 y1)))
                  (mv-nth 1 (id (f7 y2)))))
  :hints (("Goal" :in-theory (enable e4 f7 id)))
  :rule-classes :congruence)

(defthm test-8-b
  (equal (append (mv-nth 1 (id (f7 (reverse x))))
                 (list u v))
         (append (mv-nth 1 (id (f7 x)))
                 (list u v)))
  :hints (("Goal" ; unnecessary hint, but avoids warning
           :in-theory (disable reverse))))

(defconst *pequiv-4*
  '(PEQUIV
    :PATTERN
    (PEQUIV-PATTERN
     :FN MV-NTH
     :POSN 2
     :PRE-REV ('1)
     :POST NIL
     :NEXT (PEQUIV-PATTERN :FN ID
                           :POSN 1
                           :PRE-REV NIL
                           :POST NIL
                           :NEXT (PEQUIV-PATTERN :FN F7
                                                 :POSN 1
                                                 :PRE-REV NIL
                                                 :POST NIL
                                                 :NEXT :NEXT-VAR)))
    :UNIFY-SUBST NIL
    :CONGRUENCE-RULE (:CONGRUENCE E4-IMPLIES-EQUAL-MV-NTH-CONG-B)))

(assert-event
 (equal
  (show-pequivs id)
  `(PEQUIVS-PROPERTY
    :SHALLOW NIL
    :DEEP ((EQUAL ,*pequiv-4*))
    :DEEP-PEQUIV-P NIL)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Some soundness checks
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; We introduce the trivial coarsest equivalence relation, in which everything
; is equivalent.

(defun triv-equiv (x y)
     (declare (ignore x y))
     t)
(defequiv triv-equiv)

; We next do checks showing that we prevent some unsound congruence-based
; reasoning due to inappropriate independent rewrites.

; The following is certainly a theorem, since (equal (id1 a) a) is equal to t
; for all a.  Now suppose the rewriter encounters the term (equal (identity b)
; b).  The following congruence rule would make it sufficient to maintain
; triv-equiv when rewriting (identity x).  But the following is a provable
; rewrite rule: (triv-equiv (identity x) 1).  Applying this rule, we would
; reduce the original equality to (equal 1 b).  We would have thus transformed
; a theorem into a non-theorem, from which we could easily prove nil.  Hence
; the defthm just below should produce the following error:

;   ACL2 Error in ( DEFTHM EQUIV-IMPLIES-EQUAL-EQUAL-2 ...):
;   EQUIV-IMPLIES-EQUAL-EQUAL-2 is an unacceptable :CONGRUENCE rule because
;   the variable X-EQUIV occurs more than once in
;   (EQUAL (IDENTITY X-EQUIV) X-EQUIV).  See :DOC congruence.

(must-fail
 (defthm equiv-implies-equal-equal-2
   (implies (triv-equiv x x-equiv)
            (equal (equal (identity x) x)
                   (equal (identity x-equiv) x-equiv)))
   :rule-classes (:congruence)))

; Here is another such example.

(defun some-consp (x y)
  (or (consp x) (consp y)))

(defthm triv-equiv-implies-equal-some-consp-1
  (implies (triv-equiv x x-equiv)
           (equal (some-consp x (cons a b))
                  (some-consp x-equiv (cons a b))))
  :rule-classes (:congruence))

(defthm triv-equiv-implies-equal-some-consp-2
  (implies (triv-equiv y y-equiv)
           (equal (some-consp (cons a b) y)
                  (some-consp (cons a b) y-equiv)))
  :rule-classes (:congruence))

(defthm cons-is-nil
  (triv-equiv (cons x y) nil))

(in-theory (disable some-consp (some-consp)))

(defthm some-consp-rewrite-1
  (equal (some-consp (cons a b) (cons c d))
         (some-consp nil (cons c d)))
  :rule-classes nil)

(must-fail
; Notice that congruence rule triv-equiv-implies-equal-some-consp-1 allows rule
; cons-is-nil to rewrite the first some-consp call below to (some-consp nil
; (cons c d)), and at that point, congruence rule
; triv-equiv-implies-equal-some-consp-2 does not apply.
 (defthm some-consp-rewrite-2
   (equal (some-consp (cons a b) (cons c d))
          (some-consp (cons a b) nil))
   :rule-classes nil))

(defthm some-consp-rewrite-2
  (equal (some-consp (cons a b) (cons c d))
         (some-consp (cons a b) nil))
  :hints (("Goal"
           :in-theory (disable triv-equiv-implies-equal-some-consp-1)))
  :rule-classes nil)

(must-fail
; [Same comment as for preceding must-fail form:]
; Notice that congruence rule triv-equiv-implies-equal-some-consp-1 allows rule
; cons-is-nil to rewrite the first some-consp call below to (some-consp nil
; (cons c d)), and at that point, congruence rule
; triv-equiv-implies-equal-some-consp-2 does not apply.
; [Additional comment:]
; Notice also that this alleged theorem is false: the left-hand side of the
; equality is true but the right-hand side is false.  So it is good that the
; two arguments of the first some-consp call were not both rewritten using
; cons-is-nil!  This shows why the set of relevant patterned equivalences for
; an argument (here, of some-consp) is computed with respect to sibling
; arguments to the left that have been rewritten and sibling arguments on the
; right to the right that have not yet been rewritten.
 (thm (equal (some-consp (cons c1 c2) (cons d1 d2))
             (some-consp nil nil))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; A few additional tests
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; We make sure that if there is a duplicate variable in the argument list for
; the outer-equiv, then the congruence rule is treated as a (shallow) patterned
; congruence rule, not as a general (i.e., ordinary) congruence rule.

(defund f8 (x y z)
  (and (equal (len x) (len y))
       (equal (len y) (len z))))

(defthm e4-implies-equal-f8-cong
  (implies (e4 z1 z2)
           (equal (f8 x x z1)
                  (f8 x x z2)))
  :hints (("Goal" :in-theory (enable e4 f8)))
  :rule-classes :congruence)

(defthm test-9
  (equal (f8 a a (reverse u))
         (f8 a a u))
  :hints (("Goal" ; unnecessary hint, but avoids warning
           :in-theory (disable reverse)))
  :rule-classes nil)

; If the first two parameters of f8 are not syntactically equal, then the match
; fails for attempting rule e4-implies-equal-f8-cong.
(must-fail
 (thm
  (equal (f8 a b (reverse u))
         (f8 a b u))
  :hints (("Goal" ; unnecessary hint, but avoids warning
           :in-theory (disable reverse)))))

; We disallow calls in the conclusion of EQUAL, IF, IMPLIES, and lambdas.
; During development of support for patterned congruences, there was manual
; inspection of the error messages below.

(must-fail
 (defthm e4-implies-equal-f8-cong-bad-equal
   (implies (e4 z1 z2)
            (equal (f8 (equal a b) 17 z1)
                   (f8 (equal a b) 17 z2)))
   :hints (("Goal" :in-theory (enable e4 f8)))
   :rule-classes :congruence))

(must-fail
 (defthm e4-implies-equal-f8-cong-bad-if
   (implies (e4 z1 z2)
            (equal (f8 (if (consp x) (cons 0 (cdr x)) x) x z1)
                   (f8 (if (consp x) (cons 0 (cdr x)) x) x z2)))
   :hints (("Goal" :in-theory (enable e4 f8)))
   :rule-classes :congruence))

(must-fail
 (defthm e4-implies-equal-f8-cong-bad-equal
   (implies (e4 z1 z2)
            (equal (f8 (equal a b) 17 z1)
                   (f8 (equal a b) 17 z2)))
   :hints (("Goal" :in-theory (enable e4 f8)))
   :rule-classes :congruence))

(must-fail
 (defthm e4-implies-equal-f8-cong-bad-equal-if
   (implies (e4 z1 z2)
            (equal (f8 (if (and (consp x)
                                (consp (cdr x))
                                (equal (car x) (cdr x)))
                           (cons 0 (cdr x))
                         x)
                       x z1)
                   (f8 (if (and (consp x)
                                (consp (cdr x))
                                (equal (car x) (cdr x)))
                           (cons 0 (cdr x))
                         x)
                       x z2)))
   :hints (("Goal" :in-theory (enable e4 f8)))
   :rule-classes :congruence))

(must-fail
 (defthm e4-implies-equal-f8-cong-bad-implies
   (implies (e4 z1 z2)
            (equal (f8 (implies (consp x) (cons 0 (cdr x))) x z1)
                   (f8 (implies (consp x) (cons 0 (cdr x))) x z2)))
   :hints (("Goal" :in-theory (enable e4 f8)))
   :rule-classes :congruence))

(must-fail
 (defthm e4-implies-equal-f8-cong-bad-lambda
   (implies (e4 z1 z2)
            (equal (f8 (let ((x (append nil x))) x)
                       x
                       z1)
                   (f8 (let ((x (append nil x))) x)
                       x
                       z2)))
   :hints (("Goal" :in-theory (enable e4 f8)))
   :rule-classes :congruence))

(must-fail
 (defthm e4-implies-equal-f8-cong-bad-equal-lambda
   (implies (e4 z1 z2)
            (equal (f8 (let ((x (append (equal x x) x))) x)
                       x
                       z1)
                   (f8 (let ((x (append (equal x x) x))) x)
                       x
                       z2)))
   :hints (("Goal" :in-theory (enable e4 f8)))
   :rule-classes :congruence))

(must-fail
 (defthm e4-implies-equal-f8-cong-bad-equal-if-lambda
   (implies (e4 z1 z2)
            (equal (f8 (let ((x (append (equal (if (consp x) x nil) x) x))) x)
                       x
                       z1)
                   (f8 (let ((x (append (equal (if (consp x) x nil) x) x))) x)
                       x
                       z2)))
   :hints (("Goal" :in-theory (enable e4 f8)))
   :rule-classes :congruence))

; Each variable from the hypothesis must occur in the appropriate part of the
; conclusion.

(must-fail
 (defthm e4-implies-equal-f8-cong-no-var-1
   (implies (e4 z1 z2)
            (equal (f8 x x z-wrong)
                   (f8 x x z2)))
   :hints (("Goal" :in-theory (enable e4 f8)))
   :rule-classes :congruence))

(must-fail
 (defthm e4-implies-equal-f8-cong-no-var-2
   (implies (e4 z1 z2)
            (equal (f8 x x z1)
                   (f8 x x z-wrong)))
   :hints (("Goal" :in-theory (enable e4 f8)))
   :rule-classes :congruence))

(must-fail
 (defthm e4-implies-equal-f8-cong-no-var-1-alt
   (implies (e4 z1 z2)
            (equal (f8 x x z-wrong)
                   (f8 x x z1)))
   :hints (("Goal" :in-theory (enable e4 f8)))
   :rule-classes :congruence))

; The following form contains misellaneous lower-level tests, in particular of
; a low-level matching routine that is used in the implementation of patterned
; equivalence relations.

(progn

(defun e5 (x y) (equal (fix x) (fix y)))

(defequiv e5)

(defthm e5-implies-equal-a
  (implies (e5 y y-equiv)
           (equal (* x (+ y x)) (* x (+ y-equiv x))))
  :rule-classes (:congruence))

(assert-event
 (equal (getprop 'binary-+ 'pequivs nil 'current-acl2-world (w state))
        (let* ((lhs '(binary-* x (binary-+ y x)))
               (addr '(2 1))
               (rule (car (getprop 'e5-implies-equal-a
                                   'runic-mapping-pairs
                                   nil 'current-acl2-world (w state))))
               (nume (access congruence-rule rule :nume))
               (equiv 'e5)
               (rune '(:congruence e5-implies-equal-a))
               (deep-pequivs
                `((equal ,(make-pequiv lhs addr nume equiv rune)))))
          (make pequivs-property
                :deep deep-pequivs))))

(assert-event
 (equal (getprop 'binary-* 'pequivs nil 'current-acl2-world (w state))
        (make pequivs-property
              :deep-pequiv-p t)))

(assert-event
 (let ((pat  '(cons (f x     y) (g x     z)))
       (term '(cons (f (h a) b) (g (h a) c)))
       (term-alist nil)
       (alist '((y . b))))
   (mv-let
    (ans s)
    (one-way-unify1-term-alist pat term term-alist alist)
    (and ans
         (equal s '((z . c) (x . (h a)) (y . b)))))))

(assert-event
 (let ((pat  '(cons (f x     y) (g x     z)))
       (term '(cons (f (h a) b) (g (h a) c)))
       (term-alist '((b . bb)))
       (alist '((y . b))))
   (mv-let
    (ans s)
    (one-way-unify1-term-alist pat term term-alist alist)
    (declare (ignore s))
    (not ans))))

(assert-event
 (let ((pat  '(cons (f x     y) (g x     z)))
       (term '(cons (f (h a) b) (g (h a) c)))
       (term-alist '((b . bb)))
       (alist nil))
   (mv-let
    (ans s)
    (one-way-unify1-term-alist pat term term-alist alist)
    (and ans
         (equal s '((z . (:sublis-var c (b . bb)))
                    (y . (:sublis-var b (b . bb)))
                    (x . (:sublis-var (h a) (b . bb)))))))))

(assert-event
 (let ((pat  '(cons (f x     y) (g x     (p x w))))
       (term '(cons (f (h a) b) (g (h a) c)))
       (term-alist '((b . bb) (c . (p (r a1) a2))))
       (alist nil))
   (mv-let
    (ans s)
    (one-way-unify1-term-alist pat term term-alist alist)
    (declare (ignore s))
    (not ans))))

(assert-event
 (let ((pat  '(cons (f x     y) (g x     (p x w))))
       (term '(cons (f (h a) b) (g (h a) c)))
       (term-alist '((b . bb) (c . (p (h a) a2))))
       (alist nil))
   (mv-let
    (ans s)
    (one-way-unify1-term-alist pat term term-alist alist)
    (and ans
         (equal s '((w . a2)
                    (y . (:sublis-var b (b . bb) (c . (p (h a) a2))))
                    (x . (:sublis-var (h a) (b . bb) (c . (p (h a) a2))))))))))

(assert-event
 (let ((pat  '(cons (f x     y) (g x     (p x w))))
       (term '(cons (f (h a) b) (g (h a) c)))
       (term-alist '((b . bb) (c . (p (h a) a2))))
       (alist '((y . bb))))
   (mv-let
    (ans s)
    (one-way-unify1-term-alist pat term term-alist alist)
    (and ans
         (equal s '((w . a2)
                    (x . (:sublis-var (h a) (b . bb) (c . (p (h a) a2))))
                    (y . bb)))))))

(assert-event
 (let ((pat  '(r (f x     y) (g x     (p x w)) (s u)))
       (term '(r (f (h a) b) (g (h a) c)       (s (k b (g2 b)))))
       (term-alist '((b . bb) (c . (p (h a) a2))))
       (alist '((y . bb)
                (u . (:sublis-var (k x1 x2) (x1 . bb) (x2 . (g2 bb)))))))
   (mv-let
    (ans s)
    (one-way-unify1-term-alist pat term term-alist alist)
    (and ans
         (equal s
                '((w . a2)
                  (x . (:sublis-var (h a) (b . bb) (c . (p (h a) a2))))
                  (y . bb)
                  (u . (:sublis-var (k x1 x2) (x1 . bb) (x2 . (g2 bb))))))))))

(assert-event
 (let ((pat  '(r (f x     y) (g x     (p x w)) (s u)))
       (term '(r (f (h a) b) (g (h a) c)       (s (k b (g2 b)))))
       (term-alist '((b . bb) (c . (p (h a) a2))))
       (alist '((y . bb))))
   (mv-let
    (ans s)
    (one-way-unify1-term-alist pat term term-alist alist)
    (and ans
         (equal s
                '((u . (:sublis-var (k b (g2 b))
                                    (b . bb) (c . (p (h a) a2))))
                  (w . a2)
                  (x . (:sublis-var (h a) (b . bb) (c . (p (h a) a2))))
                  (y . bb)))))))

(assert-event
 (let ((pat  '(r (f x     y) (g x     (p x w)) (s u)))
       (term '(r (f (h a) b) (g (h a) c)       (s (k b (g2 b)))))
       (term-alist '((b . bb) (c . (p (h a) a2))))
       (alist '((y . bb)
                (u . (:sublis-var (k x1 x2) (x1 . bb))))))
   (mv-let
    (ans s)
    (one-way-unify1-term-alist pat term term-alist alist)
    (declare (ignore s))
    (null ans))))

)

; The next set of tests is based closely on those for f1, but replacing f1 with
; a function f9 that takes an extra argument before the position of the
; designated variable occurring on the lhs of the patterned congruence rule.
; This test is intended to stress the implementation's reversal of the
; arguments before that position, and also to test that the matching algorithm
; pays attention to variables occurring both before and after that position.

(defun f9 (x1 x2 y z1 z2)
  (list x1 x2 y z1 z2))

(defthm e1-implies-iff-f9-cong-1
  (implies (e1 y1 y2)
           (iff (f9 3 (car u) y1 (cons x x) (cdr u))
                (f9 3 (car u) y2 (cons x x) (cdr u))))
  :rule-classes (:congruence))

(defconst *pequiv-5*
  '(PEQUIV :PATTERN (PEQUIV-PATTERN :FN F9
                                    :POSN 3
                                    :PRE-REV ((CAR U) '3)
                                    :POST ((CONS X X) (CDR U))
                                    :NEXT :NEXT-VAR)
           :UNIFY-SUBST NIL
           :CONGRUENCE-RULE (:CONGRUENCE
                             E1-IMPLIES-IFF-F9-CONG-1)))

(assert-event
 (equal (show-pequivs f9)
        `(PEQUIVS-PROPERTY
          :SHALLOW ((IFF ,*pequiv-5*))
          :DEEP NIL
          :DEEP-PEQUIV-P NIL)))

(assert-event
 (equal (show-pequiv-lst
         (find-rules-of-rune
          '(:congruence e1-implies-iff-f9-cong-1)
          (w state)))
        (list *pequiv-5*)))

; (defthm f2-returns-first-arg
;   (e1 (f2 a b) a))
(in-theory (enable f2-returns-first-arg))

(in-theory (disable f9 f2 e1
                    (tau-system)
                    (:type-prescription f9)
                    (:type-prescription f2)))

(defthm test-10
  (iff (f9 3 (car v) (f2 z 8) (cons u u) (cdr v))
       (f9 3 (car v) z (cons u u) (cdr v)))
  :rule-classes nil)

(defthm test-10-proof-builder
  (iff (f9 3 (car v) (f2 z 8) (cons u u) (cdr v))
       (f9 3 (car v) z (cons u u) (cdr v)))
  :instructions ((:dv 1 3)
                 (:rewrite f2-returns-first-arg)
                 :top
                 :s-prop)
  :rule-classes nil)

(must-fail ; match fails between (car v) and w
 (thm
  (iff (f9 3 (car v) (f2 z 8) (cons u u) w)
       (f9 3 (car v) z (cons u u) w))))

(must-fail ; initial two args are in the wrong order
 (thm
  (iff (f9 (car v) 3 (f2 z 8) (cons u u) (cdr v))
       (f9 (car v) 3 z (cons u u) (cdr v)))))

; The implementation replaces uniquely occurring variables by a special
; "anonymous variable", as discussed in the Essay on Patterned Congruences and
; Equivalences.  It would likely be unsound to allow this variable to occur in
; the submitted patterned congruence rule, so we check here that this causes an
; error.

(assert-event (eq *anonymous-var* '|Anonymous variable|))

(must-fail
 (defthm e1-implies-iff-f9-cong-1-bad
   (implies (e1 y1 y2)
            (iff (f9 3 (car |Anonymous variable|)
                     y1
                     (cons x x) (cdr |Anonymous variable|))
                 (f9 3 (car |Anonymous variable|)
                     y2
                     (cons x x) (cdr |Anonymous variable|))))
   :rule-classes (:congruence)))

; The next test emphasizes a point made in :doc patterned-congruence: the match
; is done after preceding arguments have already been rewritten.

(defun f10 (x)
  (list 3 x x))

(defun f11 (x y)
  (declare (ignore y))
  x)

(defthm e1-implies-iff-f11-cong-2
  (implies (e1 y1 y2)
           (iff (f11 (f10 x) y1)
                (f11 (f10 x) y2)))
  :rule-classes (:congruence))

(in-theory (disable f11 (:t f11) e1))

(must-fail ; fails because f10 expands before matching the rule's lhs
 (thm (implies (e1 y1 y2)
               (iff (f11 (f10 x) y1)
                    (f11 (f10 x) y2)))))

(defthm test-11
  (implies (e1 y1 y2)
           (iff (f11 (f10 x) y1)
                (f11 (f10 x) y2)))
  :hints (("Goal" :in-theory (disable f10)))
  :rule-classes nil)

; Our next test checks that we account for matches connecting the argument
; containing the unique variable and arguments after that one.

(defun e6 (x y)
  (equal x y))

(defequiv e6)

(defun f12 (x y)
  (equal x y))

(defun f13 (x y)
  (declare (ignore y))
  x)

(defthm e1-implies-equal-f12-f13-cong-2
  (implies (e6 y1 y2)
           (equal (f12 (f13 x y1) x)
                  (f12 (f13 x y2) x)))
  :rule-classes (:congruence))

(defun f14 (x)
  x)

(defthm f14-is-id
  (e6 (f14 x) x))

(in-theory (disable e6 (:t e6) f12 (:t f12) f13 (:t f13) f14 (:t f14)))

(defthm test-12
  (equal (f12 (f13 x (f14 y)) x)
         (f12 (f13 x y) x))
  :rule-classes nil)

(must-fail
 (thm
  (equal (f12 (f13 x (f14 y)) x2)
         (f12 (f13 x y) x2))))