/usr/share/acl2-8.0dfsg/books/hacking/rewrite-code.lisp is in acl2-books-source 8.0dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 | (in-package "REWRITE-CODE")
(program)
(set-state-ok t)
; recognizer for ``augmented naturals'', which include 'inf as infinity
(defun aug-natp (x)
(or (natp x)
(equal x 'inf)))
; < relation for ``augmented naturals''
(defun aug-nat-< (x y)
(and (not (eq x 'inf))
(or (eq y 'inf)
(< x y))))
; decrement function for ``augmented naturals''
(defun aug-nat-dec (x)
(cond ((eq x 'inf) 'inf)
((zp x) 0)
(t (1- x))))
; recognizer for intervals over ``augmented naturals''
(defun multiplicity-rangep (x)
(or (null x) ; empty range
(and (consp x)
(aug-natp (car x))
(aug-natp (cdr x))
(not (aug-nat-< (cdr x) (car x))))))
; decrement function for intervals over ``augmented naturals''
(defun multiplicity-range-dec (x)
(if (or (endp x) (equal (cdr x) 0))
nil ; empty range
(cons (aug-nat-dec (car x))
(aug-nat-dec (cdr x)))))
; prepend the reverse of one list onto another
(defun rev-prepend (torev onto)
; (declare (xargs :guard (and (true-listp torev) (true-listp onto))))
(if (endp torev)
onto
(rev-prepend (cdr torev) (cons (car torev) onto))))
; n times, pops an element from ,from and pushes it on ,to
(defun pop-push-n (n from to)
(if (or (zp n)
(endp from))
(mv from to)
(pop-push-n (1- n) (cdr from) (cons (car from) to))))
; update an entry in an alist, or add it to the end
(defun update-alist (key val lst)
(cond ((endp lst)
(list (cons key val)))
((and (consp (car lst))
(equal (caar lst) key))
(cons (cons key val)
(cdr lst)))
(t
(cons (car lst)
(update-alist key val (cdr lst))))))
; replaces occurances in ,expr of the symbols that are keys in ,assn-alist
; with their bindings in ,assn-alist.
;
(defun replace-assns (expr assn-alist)
;(declare (xargs :guard (symbol-alistp assn-alist)))
(if (consp expr)
(cons (replace-assns (car expr) assn-alist)
(replace-assns (cdr expr) assn-alist))
(if (symbolp expr)
(let ((assn (assoc-eq expr assn-alist)))
(if (consp assn)
(cdr assn)
expr))
expr)))
; ,a1 and ,a2 are each assumed an alist with no keys duplicated. if the keys
; don't overlap between ,a1 and ,a2 or they agree on all the bindings, the
; "union" is returned. if they disagree on any bindings, ,t is returned.
;
(defun merge-matches (a1 a2)
(cond ((endp a1)
a2)
((endp a2)
a1)
(t
(let* ((sym (caar a1))
(binding2 (assoc-eq sym a2)))
(if (consp binding2)
(let ((val1 (cdar a1))
(val2 (cdr binding2)))
(if (equal val1 val2)
(merge-matches (cdr a1) a2)
t))
(merge-matches (cdr a1) (cons (car a1) a2)))))))
; returns (smallest) assn-alist satisfying
; (equal (replace-assns pat assn-alist) expr)
; if one exists. otherwise, returns t (indicating, roughly, that
; no assignments to ,vars in ,pat generate ,expr)
;
(defun match-pattern (expr pat vars)
;(declare (xargs :guard (symbol-listp vars)))
(cond ((member-eq pat vars)
(list (cons pat expr)))
((and (consp pat)
(consp expr))
(let ((car-result (match-pattern (car expr) (car pat) vars))
(cdr-result (match-pattern (cdr expr) (cdr pat) vars)))
(if (or (equal car-result t) (equal cdr-result t))
t ; bad match
(merge-matches car-result cdr-result))))
((equal pat expr)
())
(t
t) ; bad match
))
; predicates for the parsed pieces of a rewrite-spec, a rewrite-def and its
; constituent pieces
(mutual-recursion
(defun rewrite-defp (v) ; a list (sequenced) of lists (simultaneous)
(declare (xargs :measure (acl2-count v)
:hints (("Goal"
:in-theory (disable
(:definition multiplicity-rangep))))))
(or (null v)
(and (consp v)
(rewrite-simul-defp (car v))
(rewrite-defp (cdr v)))))
(defun rewrite-simul-defp (v) ; a list (simultaneous) of entries
(declare (xargs :measure (acl2-count v)))
(or (null v)
(and (consp v)
(rewrite-entryp (car v))
(rewrite-simul-defp (cdr v)))))
(defun rewrite-entryp (v)
(declare (xargs :measure (acl2-count v)))
(and (consp v)
(multiplicity-rangep (car v)) ; global
(consp (cdr v))
(rewrite-var-entry-lstp (cadr v)) ; no binding -> recursive
(consp (cddr v))
(symbol-listp (caddr v)) ; vars
(consp (cdddr v))
; (cadddr v) is pat
; (cddddr v) is repl
))
(defun rewrite-var-entry-lstp (v) ; var -> rewrite-def alist
(declare (xargs :measure (acl2-count v)))
(or (null v)
(and (consp v)
(rewrite-var-entryp (car v))
(rewrite-var-entry-lstp (cdr v)))))
(defun rewrite-var-entryp (v) ; ( var . rewrite-def )
(declare (xargs :measure (acl2-count v)))
(and (consp v)
(symbolp (car v))
(rewrite-defp (cdr v)))))
; some accessors
(defmacro entry-multrng (v) `(car ,v))
(defmacro entry-alist (v) `(cadr ,v))
(defmacro entry-vars (v) `(caddr ,v))
(defmacro entry-pat (v) `(cadddr ,v))
(defmacro entry-repl (v) `(cddddr ,v))
; some modifiers
(defun dec-entry (v)
(cons (multiplicity-range-dec (car v))
(cdr v)))
(defun update-entry-alist (v alist)
(cons (car v)
(cons alist
(cddr v))))
(defun update-entry-alist-entry (v var def)
(update-entry-alist v (update-alist var def (entry-alist v))))
; the guts of code rewriting
(mutual-recursion
(defun rewrite-seq (form seq-from seq-to)
(declare (xargs :guard (and (rewrite-defp seq-from)
(rewrite-defp seq-to))))
(if (consp seq-from)
(mv-let (form updated)
(rewrite-simul form (car seq-from) nil)
(rewrite-seq form (cdr seq-from) (cons updated seq-to)))
(mv form (reverse seq-to))))
(defun rewrite-simul (form simul-from simul-to)
(declare (xargs :guard (and (rewrite-simul-defp simul-from)
(rewrite-simul-defp simul-to))))
(if (consp simul-from)
(let* ((entry (car simul-from))
(assns-opt (match-pattern form
(entry-pat entry)
(entry-vars entry))))
(if (eq 't assns-opt)
; no match
(rewrite-simul form
(cdr simul-from)
(cons entry simul-to))
; match!
(let* ((entry (dec-entry entry))
(simul-from (cons entry (cdr simul-from)))
(idx (len simul-to)))
(rewrite-assns (entry-repl entry)
assns-opt
idx
(rev-prepend simul-to simul-from)))))
;; no more rules to try
(let ((simul-all (reverse simul-to)))
(if (consp form)
;; descend
(mv-let (car-form simul-all)
(rewrite-simul (car form) simul-all nil)
(mv-let (cdr-form simul-all)
(rewrite-simul (cdr form) simul-all nil)
(mv (cons car-form cdr-form) simul-all)))
(mv form simul-all)))))
(defun rewrite-assns (repl assns entry-idx simul-all)
(declare (xargs :guard (and (rewrite-simul-defp simul-all)
(natp entry-idx)
(< entry-idx (len simul-all))
(symbol-alistp assns))))
(cond ((consp repl)
(mv-let (car-form simul-all)
(rewrite-assns (car repl) assns entry-idx simul-all)
(mv-let (cdr-form simul-all)
(rewrite-assns (cdr repl) assns entry-idx simul-all)
(mv (cons car-form cdr-form) simul-all))))
((symbolp repl)
(let ((assn-opt (assoc-eq repl assns)))
(if (consp assn-opt)
(let* ((form (cdr assn-opt))
(entry (nth entry-idx simul-all))
(non-rec-defs (entry-alist entry))
(non-rec-def-opt (assoc-eq repl non-rec-defs)))
(if (consp non-rec-def-opt)
; some non-recursive specification
(mv-let (form updated-def)
(rewrite-seq form (cdr non-rec-def-opt) nil)
(mv form (update-nth entry-idx
(update-entry-alist-entry entry
repl
updated-def)
simul-all)))
; no non-rec-def => recursively apply simul-all
(if (and (symbolp (entry-pat entry))
(member-eq (entry-pat entry) (entry-vars entry)))
; illegal recursive rewrite that matches everything.
; for now, we'll just break the recursion.
(mv form simul-all)
; text to match against getting smaller =>
; recursively apply simul-all
(rewrite-simul form simul-all nil))))
(mv repl simul-all))))
(t
(mv repl simul-all)))))
; code for checking that the multiplicities allow zero. used after they have
; been decremented as many times as they have been used.
(mutual-recursion
(defun assert-zero-allowed-def (v state)
(if (endp v)
state
(pprogn
(assert-zero-allowed-simul-def (car v) state)
(assert-zero-allowed-def (cdr v) state))))
(defun assert-zero-allowed-simul-def (v state)
(if (endp v)
state
(pprogn
(assert-zero-allowed-entry (car v) state)
(assert-zero-allowed-simul-def (cdr v) state))))
(defun assert-zero-allowed-entry (v state)
(if (or (endp v) (endp (cdr v)))
state
(let ((rng (car v))
(var-entries (cadr v)))
(pprogn
(if (or (endp rng) (not (equal (car rng) 0)))
; zero not allowed
(pprogn
(acl2::f-put-global 'erp t state)
(fms (if (endp rng)
"Code rewrite entry used too many times:~% ~xp -> ~xr~%"
"Code rewrite entry used too few times (at least ~xn applications remaining):~% ~xp -> ~xr~%")
`((#\p . ,(entry-pat v))
(#\r . ,(entry-repl v))
(#\n . ,(and (consp rng) (car rng))))
(standard-co state)
state
(acl2::abbrev-evisc-tuple state)))
; ok
state)
(assert-zero-allowed-entry-lst var-entries state)))))
(defun assert-zero-allowed-entry-lst (v state)
(if (endp v)
state
(pprogn
(assert-zero-allowed-var-entry (car v) state)
(assert-zero-allowed-entry-lst (cdr v) state))))
(defun assert-zero-allowed-var-entry (v state)
(if (endp v)
state
(assert-zero-allowed-def (cdr v) state))))
(defun er-if-zero-not-allowed-def (def state)
(acl2::state-global-let*
((erp nil))
(pprogn
(assert-zero-allowed-def def state)
(mv (@ erp) :invisible state))))
(defun rewrite-fn (form def state)
(if (not (rewrite-defp def))
(er acl2::soft 'rewrite "Code rewrite definition illegal:~%~x0" def)
(mv-let (result new-def)
(rewrite-seq form def nil)
(er-progn
(er-if-zero-not-allowed-def new-def state)
(acl2::value result)))))
#|
(rewrite-fn '(a b (c (c d)) (x c v))
'((((0 . 2) ((%)) (%) (c . %) . (f . %))))
state)
|#
; now i build up a more convenient specification language
; first, instead of always (n . m) as range, we also allow
; + == (1 . inf)
; * == (0 . inf)
; n == (n . n)
; predicate for new multiplicity specs
(defun multiplicity-specp (x)
(declare (xargs :guard t))
(or (and (multiplicity-rangep x)
(not (equal (car x) 'inf)))
(equal x '*)
(equal x '+)
(natp x)))
(defun multiplicity-spec-to-noninf-range (x)
(declare (xargs :guard (multiplicity-specp x)))
(cond ((and (multiplicity-rangep x)
(not (equal (car x) 'inf)))
x)
((equal x '*) '(0 . inf))
((equal x '+) '(1 . inf))
((natp x) (cons x x))
(t nil) ; invalid / unrecognized
))
; now we build up some macros that build rewrite-defs from a more natural,
; flexible specification language.
; roughly speaking, entries/rules consist of some pieces:
; :pat = "pattern" to match or :carpat = pattern that must be in a car
; :repl = "replacement" to put in place of pattern (defaults to the pattern)
; :vars = "variables" = a list of symbols that should not be taken
; literally in the pattern, but can stand for any substructure
; :recvars = "recursive variables" = like :vars but the current rules also
; get applied to what these variables match
; :mult = "multiplicity" = an assertion on how many applications of this
; rule are to be made. (violation results in post facto error)
;
; entries can be combined using "simultaneous" combination:
; (:simul e1 e2 e3)
; to indicate that at each step in our pre-order search we attempt to match
; e1, then e2, then e3. if no matches, we go deeper.
;
; entries and/or :simul combinations can be combined with "sequences":
; (:seq s1 s2 s3)
; to indicate that we apply s1 to our form, apply that result to s1, and
; apply that result to s3.
; syntax more precisely:
; above relevant functions, i have kind-of a BNF for the language. the
; parentheses and dots are required cons structure. symbols are also
; matched literally, unless they are surrounded with _ _. items in [] are
; optional, with a default value given after an =. ... is a postfix shorthand
; for 0 or more of something.
; to the right is an indication of what is shorthand for what. if something
; is canonical, "(canonical)" appears, meaning it should be pretty obvious
; how this maps to the lower level structure, if you understand it. ;)
; _def_ ::= () => (:seq)
; | (_def_) => _def_
; | (:seq _simul-def_...) (canonical)
; | _simul-def_ => (:seq _simul-def_)
(defmacro quote-rewrite-def (&rest v)
(cond
((endp v)
''nil)
((and (consp (car v))
(null (cdr v)))
`(quote-rewrite-def . ,(car v)))
((eq ':seq (car v))
`(quote-rewrite-def-rest . ,(cdr v)))
(t
`(list (quote-rewrite-simul-def . ,v)))))
(defmacro quote-rewrite-def-rest (&rest v)
(if (endp v)
''nil
`(cons
(quote-rewrite-simul-def . ,(car v))
(quote-rewrite-def-rest . ,(cdr v)))))
; _simul-def_ ::= () => (:simul)
; | (:simul _entry_...) (canonical)
; | _entry_ => (:simul _entry_)
(defmacro quote-rewrite-simul-def (&rest v)
(cond
((endp v)
''nil)
((eq ':simul (car v))
`(quote-rewrite-simul-def-rest . ,(cdr v)))
(t
`(list (quote-rewrite-entry . ,v)))))
(defmacro quote-rewrite-simul-def-rest (&rest v)
(if (endp v)
''nil
`(cons
(quote-rewrite-entry . ,(car v))
(quote-rewrite-simul-def-rest . ,(cdr v)))))
; some stuff for entries
(defun namep (v)
(and (symbolp v)
(not (null v))
(not (keywordp v))))
; _var-spec_ ::= () (canonical)
; | _name_ => ((_name_))
; | (_name_ . _var-spec_) => ((_name_) . _var-spec_)
; | ((_name_ . _def_) . _var-spec_) (canonical)
(defun var-specp (v)
(or (null v)
(namep v)
(and (consp v)
(or (namep (car v))
(and (consp (car v))
(namep (caar v))))
(var-specp (cdr v)))))
; _recvar-spec_ ::= () (canonical)
; | _name_ => (_name_)
; | (_name_ . _var-spec_) (canonical)
(defun recvar-specp (v)
(or (null v)
(namep v)
(and (consp v)
(namep (car v))
(recvar-specp (cdr v)))))
(defun get-var-names (var-spec)
(if (consp var-spec)
(cons (if (consp (car var-spec))
(caar var-spec)
(car var-spec))
(get-var-names (cdr var-spec)))
(if (null var-spec)
nil
(list var-spec))))
(defun canonicalize-var-bindings (var-spec)
(if (consp var-spec)
(cons (if (consp (car var-spec))
(car var-spec)
(list (car var-spec)))
(canonicalize-var-bindings (cdr var-spec)))
(if (null var-spec)
nil
(list (list var-spec)))))
; _entry_ ::= (:pat _pat_ (canonical)
; [:repl _repl_=_pat_]
; [:mult _mult_=*]
; [:vars _var-spec_=()]
; [:recvars _recvar-spec_=()])
; | (:carpat _pat_ => (:pat (_pat_ . %cdr%)
; [:repl _repl_=_pat_] :repl (_repl_ . %cdr%)
; [:mult _mult_=*] :recvars (%cdr% . _recvar-spec_)
; [:vars _var-spec_=()] :vars _var-spec_ :mult _mult_)
; [:recvars _recvar-spec_=()])
(defmacro quote-rewrite-entry (&key (pat '() patp)
(carpat '() carpatp)
(repl '() replp)
(mult '*)
(vars '())
(recvars '()))
(declare (xargs :guard (and (multiplicity-specp mult)
(var-specp vars)
(recvar-specp recvars)
(not (and patp carpatp))
(or (and patp
(not (member pat (get-var-names recvars))))
(and carpatp
(not (member carpat (get-var-names recvars)))))
(not (intersectp-eq (get-var-names vars)
(get-var-names recvars))))))
(let* ((cdrvar '%cdr-reserved%)
(nrcvar-names (get-var-names vars))
(recvar-names (append (if carpatp (list cdrvar) '())
(get-var-names recvars)))
(var-names (append nrcvar-names recvar-names))
(pat (if patp
pat
(cons carpat cdrvar)))
(repl (if replp
(if carpatp
(cons repl cdrvar)
repl)
pat)))
`(list* ',(multiplicity-spec-to-noninf-range mult)
(quote-rewrite-var-entry-lst . ,(canonicalize-var-bindings vars))
',var-names
',pat
',repl)))
; see _var-spec_ above
(defmacro quote-rewrite-var-entry-lst (&rest bindings)
(if (endp bindings)
''nil
`(cons (quote-rewrite-var-entry ,(car bindings))
(quote-rewrite-var-entry-lst . ,(cdr bindings)))))
(defmacro quote-rewrite-var-entry (v)
(declare (xargs :guard (and (consp v)
(namep (car v)))))
`(cons ',(car v)
(quote-rewrite-def . ,(cdr v))))
; and now to put the more convenient language on top of the code rewriting:
; for "export"
(defmacro er-rewrite-form (form &rest def)
`(rewrite-fn
,form
(quote-rewrite-def . ,def)
state))
; EXAMPLES, for understanding the semantics more precisely:
#|
ACL2 !>(er-rewrite-form 'a)
A
ACL2 !>(er-rewrite-form 'a (:pat a :repl b))
B
ACL2 !>(er-rewrite-form 'a (:seq (:pat a :repl b) (:pat b :repl c)))
C
ACL2 !>(er-rewrite-form '(a . b) (:seq (:pat a :repl b) (:pat b :repl c)))
(C . C)
ACL2 !>(er-rewrite-form '(a . b) (:simul (:pat a :repl b) (:pat b :repl c)))
(B . C)
ACL2 !>(er-rewrite-form '(b . a) (:simul (:pat a :repl b) (:pat b :repl c)))
(C . B)
ACL2 !>(er-rewrite-form '(+ (fn1 42) (fn1 53))
(:pat (fn1 %) :repl (fn2 %) :vars (%)))
(+ (FN2 42) (FN2 53))
ACL2 !>(er-rewrite-form '(+ (fn1 42) (fn1 53))
(:pat (fn1 %) :repl (fn2 %) :vars %))
(+ (FN2 42) (FN2 53))
ACL2 !>(er-rewrite-form '(+ (fn1 (fn1 42)) (fn1 53))
(:pat (fn1 %) :repl (fn2 %) :vars %))
(+ (FN2 (FN1 42)) (FN2 53))
ACL2 !>(er-rewrite-form '(+ (fn1 (fn1 42)) (fn1 53))
(:pat (fn1 %) :repl (fn2 %) :recvars %))
(+ (FN2 (FN2 42)) (FN2 53))
ACL2 !>(er-rewrite-form '(+ (stuff fn1 42) (fn1 42))
(:pat (fn1 %) :repl (fn2 %) :vars %))
(+ (STUFF FN2 42) (FN2 42))
ACL2 !>(er-rewrite-form '(+ (stuff fn1 42) (fn1 42))
(:pat ((fn1 %1) . %2) :repl ((fn2 %1) . %2) :vars (%1 %2)))
(+ (STUFF FN1 42) (FN2 42))
ACL2 !>(er-rewrite-form '(+ (stuff fn1 42) (fn1 42) (fn1 53))
(:pat ((fn1 %1) . %2) :repl ((fn2 %1) . %2) :vars (%1 %2)))
(+ (STUFF FN1 42) (FN2 42) (FN1 53))
ACL2 !>(er-rewrite-form '(+ (stuff fn1 42) (fn1 42) (fn1 53))
(:pat ((fn1 %1) . %2) :repl ((fn2 %1) . %2) :recvars (%1 %2)))
(+ (STUFF FN1 42) (FN2 42) (FN2 53))
|#
; this demonstrates that in order to rewrite a function call in a more
; robust way, we should do
; (:pat ((old-fn . %params%) . %cdr%)
; :repl ((new-fn . %params%) . %cdr%)
; :vars %params% :recvars %cdr%)
; rather than
; (:pat (old-fn . %params%)
; :repl (new-fn . %params%)
; :vars %params%)
; but if we do it this way, will we match a function called in the
; top level of a function? consider (defun x (v) (y v)). rather than
; rewriting (y v) at the top level, we shall rewrite ((y v)), which is the
; last cons of the defun. we will use this below in
; compute-copy-defun+rewrite.
;
; however, we offer :carpat as a shortcut for such specifications. the
; following are equivalent:
#|
ACL2 !>(er-rewrite-form '(+ (stuff fn1 42) (fn1 42) (fn1 53))
(:pat ((fn1 %1) . %2) :repl ((fn2 %1) . %2) :recvars (%1 %2)))
(+ (STUFF FN1 42) (FN2 42) (FN2 53))
ACL2 !>(er-rewrite-form '(+ (stuff fn1 42) (fn1 42) (fn1 53))
(:carpat (fn1 %1) :repl (fn2 %1) :recvars %1))
(+ (STUFF FN1 42) (FN2 42) (FN2 53))
|#
; also, note that I, by convention, wrap my variables in %% to make them
; stand out. but any non-keyword, non-nil symbol can be a variable.
; and now we want to support rewriting function definitions:
; for "export"
;
; looks up a function definition, returning it in an error triple
(defun get-defun (name state)
(let*
((ev-wrld (acl2::decode-logical-name name (w state)))
(cltl-command
(and ev-wrld
(let ((cltl-cmd (getprop 'cltl-command 'global-value
nil 'current-acl2-world ev-wrld)))
(and (consp cltl-cmd)
(equal (car cltl-cmd) 'defuns)
(= (len cltl-cmd) 4)
cltl-cmd)))))
(and cltl-command
(let* ((mode (second cltl-command))
(defuns-body (fourth cltl-command))
(ll (cadr defuns-body))
(tail (cddr defuns-body))
(stobjs (remove nil (getprop name 'stobjs-in
nil 'current-acl2-world ev-wrld)))
(dec `(declare (xargs :mode ,mode
:stobjs ,stobjs))))
`(defun ,name ,ll ,dec . ,tail)))))
; for "export"
;
; compute the ,defun-like event to execute if we want to define ,dst to be
; like ,src except for rewriting the code according to ,rwdef.
;
; ,src and ,dst may certainly be the same
;
; as mentioned above, ,rwdef is applied to the body in a singleton list;
; e.g. (defun x (v) (y v)) applies rwdef to ((y v)), so if we want to, for
; example, put a let around the body, we would use either
; (:pat (%body%)
; :repl ((let (...) %body%))
; :vars %body%)
; or
; (:pat %bodycons%
; :repl ((let (...) . %bodycons%)) ; notice the dot!
; :vars %bodycons%)
; or
; (:carpat %body%
; :repl (let (...) %body%)
; :vars %body%)
(defun compute-copy-defun+rewrite (src dst rwdef defun-like state)
(if (and (null rwdef) (eq src dst))
(value '(value-triple :nothing-to-do))
(let*
((src-defun (get-defun src state)))
(if src-defun
(value
(let* ((tuple (cddr src-defun)) ; remove 'defun and name
(bodycons (last tuple))
(tuple-no-body (butlast tuple 1)))
(if (null rwdef)
(list* defun-like dst tuple)
`(make-event
(er-let* ((b2 (er-rewrite-form ',bodycons . ,rwdef)))
(value `(,',defun-like ,',dst ,@',tuple-no-body . ,b2)))))))
(er soft 'compute-copy-defun+rewrite
"Illegal or missing defun for ~x0." src)))))
; for "export"
;
; asserts that the definition of a function at certify-book time
; time matches that at include-book time. this is an extra check that
; can be useful in the presence of redefinitions.
(defmacro assert-include-defun-matches-certify-defun (name)
(declare (xargs :guard (symbolp name)))
`(make-event
`(acl2::assert-event
(let ((certify-time-defun ',(get-defun ',name state))
(include-time-defun (get-defun ',',name state)))
(or (equal certify-time-defun include-time-defun)
(cw "Certify time def: ~x0~%Include time def: ~x1~%"
certify-time-defun include-time-defun)))
:on-skip-proofs t)))
; for "export"
;
; defun ,dst to be like ,src except for rewriting the code according to
; ,rewrite-spec
;
; ,src and ,dst may be the same (if redefinition allowed)
;
; see compute-copy-defun+rewrite for more info
;
(defmacro copy-defun+rewrite (src dst &rest rewrite-spec)
(declare (xargs :guard (and (symbolp src)
(symbolp dst))))
`(progn
(assert-include-defun-matches-certify-defun ,src)
(make-event (compute-copy-defun+rewrite
',src ',dst ',rewrite-spec 'defun state))))
; for "export"
;
; defun ,dst to be like ,src
;
; ,src and ,dst may be the same (if redefinition allowed)
;
; see compute-copy-defun+rewrite for more info
;
(defmacro copy-defun (src dst)
`(copy-defun+rewrite ,src ,dst))
|