This file is indexed.

/usr/share/acl2-8.0dfsg/books/hacking/rewrite-code.lisp is in acl2-books-source 8.0dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
(in-package "REWRITE-CODE")

(program)
(set-state-ok t)

; recognizer for ``augmented naturals'', which include 'inf as infinity
(defun aug-natp (x)
  (or (natp x)
      (equal x 'inf)))

; < relation for ``augmented naturals''
(defun aug-nat-< (x y)
  (and (not (eq x 'inf))
       (or (eq y 'inf)
           (< x y))))

; decrement function for ``augmented naturals''
(defun aug-nat-dec (x)
  (cond ((eq x 'inf) 'inf)
        ((zp x) 0)
        (t (1- x))))

; recognizer for intervals over ``augmented naturals''
(defun multiplicity-rangep (x)
  (or (null x) ; empty range
      (and (consp x)
           (aug-natp (car x))
           (aug-natp (cdr x))
           (not (aug-nat-< (cdr x) (car x))))))

; decrement function for intervals over ``augmented naturals''
(defun multiplicity-range-dec (x)
  (if (or (endp x) (equal (cdr x) 0))
    nil ; empty range
    (cons (aug-nat-dec (car x))
          (aug-nat-dec (cdr x)))))


; prepend the reverse of one list onto another
(defun rev-prepend (torev onto)
  ; (declare (xargs :guard (and (true-listp torev) (true-listp onto))))
  (if (endp torev)
    onto
    (rev-prepend (cdr torev) (cons (car torev) onto))))


; n times, pops an element from ,from and pushes it on ,to
(defun pop-push-n (n from to)
  (if (or (zp n)
          (endp from))
    (mv from to)
    (pop-push-n (1- n) (cdr from) (cons (car from) to))))


; update an entry in an alist, or add it to the end
(defun update-alist (key val lst)
  (cond ((endp lst)
         (list (cons key val)))
        ((and (consp (car lst))
              (equal (caar lst) key))
         (cons (cons key val)
               (cdr lst)))
        (t
         (cons (car lst)
               (update-alist key val (cdr lst))))))


; replaces occurances in ,expr of the symbols that are keys in ,assn-alist
; with their bindings in ,assn-alist.
;
(defun replace-assns (expr assn-alist)
  ;(declare (xargs :guard (symbol-alistp assn-alist)))
  (if (consp expr)
    (cons (replace-assns (car expr) assn-alist)
          (replace-assns (cdr expr) assn-alist))
    (if (symbolp expr)
      (let ((assn (assoc-eq expr assn-alist)))
        (if (consp assn)
          (cdr assn)
          expr))
      expr)))


; ,a1 and ,a2 are each assumed an alist with no keys duplicated.  if the keys
; don't overlap between ,a1 and ,a2 or they agree on all the bindings, the
; "union" is returned.  if they disagree on any bindings, ,t is returned.
;
(defun merge-matches (a1 a2)
  (cond ((endp a1)
         a2)
        ((endp a2)
         a1)
        (t
         (let* ((sym (caar a1))
                (binding2 (assoc-eq sym a2)))
           (if (consp binding2)
             (let ((val1 (cdar a1))
                   (val2 (cdr binding2)))
               (if (equal val1 val2)
                 (merge-matches (cdr a1) a2)
                 t))
             (merge-matches (cdr a1) (cons (car a1) a2)))))))


; returns (smallest) assn-alist satisfying
;   (equal (replace-assns pat assn-alist) expr)
; if one exists.  otherwise, returns t (indicating, roughly, that
; no assignments to ,vars in ,pat generate ,expr)
;
(defun match-pattern (expr pat vars)
  ;(declare (xargs :guard (symbol-listp vars)))
  (cond ((member-eq pat vars)
         (list (cons pat expr)))
        ((and (consp pat)
              (consp expr))
         (let ((car-result (match-pattern (car expr) (car pat) vars))
               (cdr-result (match-pattern (cdr expr) (cdr pat) vars)))
           (if (or (equal car-result t) (equal cdr-result t))
             t ; bad match
             (merge-matches car-result cdr-result))))
        ((equal pat expr)
         ())
        (t
         t) ; bad match
        ))

; predicates for the parsed pieces of a rewrite-spec, a rewrite-def and its
; constituent pieces
(mutual-recursion
 (defun rewrite-defp (v) ; a list (sequenced) of lists (simultaneous)
   (declare (xargs :measure (acl2-count v)
                   :hints (("Goal"
                            :in-theory (disable
                                        (:definition multiplicity-rangep))))))
   (or (null v)
       (and (consp v)
            (rewrite-simul-defp (car v))
            (rewrite-defp (cdr v)))))
 (defun rewrite-simul-defp (v) ; a list (simultaneous) of entries
   (declare (xargs :measure (acl2-count v)))
   (or (null v)
       (and (consp v)
            (rewrite-entryp (car v))
            (rewrite-simul-defp (cdr v)))))
 (defun rewrite-entryp (v)
   (declare (xargs :measure (acl2-count v)))
   (and (consp v)
        (multiplicity-rangep (car v)) ; global
        (consp (cdr v))
        (rewrite-var-entry-lstp (cadr v)) ; no binding -> recursive
        (consp (cddr v))
        (symbol-listp (caddr v)) ; vars
        (consp (cdddr v))
        ; (cadddr v) is pat
        ; (cddddr v) is repl
        ))
 (defun rewrite-var-entry-lstp (v) ; var -> rewrite-def alist
   (declare (xargs :measure (acl2-count v)))
   (or (null v)
       (and (consp v)
            (rewrite-var-entryp (car v))
            (rewrite-var-entry-lstp (cdr v)))))
 (defun rewrite-var-entryp (v) ; ( var . rewrite-def )
   (declare (xargs :measure (acl2-count v)))
   (and (consp v)
        (symbolp (car v))
        (rewrite-defp (cdr v)))))

; some accessors
(defmacro entry-multrng (v) `(car ,v))
(defmacro entry-alist   (v) `(cadr ,v))
(defmacro entry-vars    (v) `(caddr ,v))
(defmacro entry-pat     (v) `(cadddr ,v))
(defmacro entry-repl    (v) `(cddddr ,v))

; some modifiers
(defun    dec-entry     (v)
  (cons (multiplicity-range-dec (car v))
        (cdr v)))
(defun update-entry-alist (v alist)
  (cons (car v)
        (cons alist
              (cddr v))))
(defun update-entry-alist-entry (v var def)
  (update-entry-alist v (update-alist var def (entry-alist v))))

; the guts of code rewriting
(mutual-recursion
 (defun rewrite-seq (form seq-from seq-to)
   (declare (xargs :guard (and (rewrite-defp seq-from)
                               (rewrite-defp seq-to))))
   (if (consp seq-from)
     (mv-let (form updated)
             (rewrite-simul form (car seq-from) nil)
             (rewrite-seq form (cdr seq-from) (cons updated seq-to)))
     (mv form (reverse seq-to))))
 (defun rewrite-simul (form simul-from simul-to)
   (declare (xargs :guard (and (rewrite-simul-defp simul-from)
                               (rewrite-simul-defp simul-to))))
   (if (consp simul-from)
     (let* ((entry (car simul-from))
            (assns-opt (match-pattern form
                                      (entry-pat entry)
                                      (entry-vars entry))))
       (if (eq 't assns-opt)
         ; no match
         (rewrite-simul form
                        (cdr simul-from)
                        (cons entry simul-to))
         ; match!
         (let* ((entry (dec-entry entry))
                (simul-from (cons entry (cdr simul-from)))
                (idx (len simul-to)))
           (rewrite-assns (entry-repl entry)
                          assns-opt
                          idx
                          (rev-prepend simul-to simul-from)))))
     ;; no more rules to try
     (let ((simul-all (reverse simul-to)))
       (if (consp form)
         ;; descend
         (mv-let (car-form simul-all)
                 (rewrite-simul (car form) simul-all nil)
                 (mv-let (cdr-form simul-all)
                         (rewrite-simul (cdr form) simul-all nil)
                         (mv (cons car-form cdr-form) simul-all)))
         (mv form simul-all)))))
 (defun rewrite-assns (repl assns entry-idx simul-all)
   (declare (xargs :guard (and (rewrite-simul-defp simul-all)
                               (natp entry-idx)
                               (< entry-idx (len simul-all))
                               (symbol-alistp assns))))
   (cond ((consp repl)
          (mv-let (car-form simul-all)
                  (rewrite-assns (car repl) assns entry-idx simul-all)
                  (mv-let (cdr-form simul-all)
                          (rewrite-assns (cdr repl) assns entry-idx simul-all)
                          (mv (cons car-form cdr-form) simul-all))))
         ((symbolp repl)
          (let ((assn-opt (assoc-eq repl assns)))
            (if (consp assn-opt)
              (let* ((form (cdr assn-opt))
                     (entry (nth entry-idx simul-all))
                     (non-rec-defs (entry-alist entry))
                     (non-rec-def-opt (assoc-eq repl non-rec-defs)))
                (if (consp non-rec-def-opt)
                  ; some non-recursive specification
                  (mv-let (form updated-def)
                          (rewrite-seq form (cdr non-rec-def-opt) nil)
                          (mv form (update-nth entry-idx
                                               (update-entry-alist-entry entry
                                                                         repl
                                                                         updated-def)
                                               simul-all)))
                  ; no non-rec-def => recursively apply simul-all
                  (if (and (symbolp (entry-pat entry))
                           (member-eq (entry-pat entry) (entry-vars entry)))
                    ; illegal recursive rewrite that matches everything.
                    ; for now, we'll just break the recursion.
                    (mv form simul-all)
                    ; text to match against getting smaller =>
                    ;   recursively apply simul-all
                    (rewrite-simul form simul-all nil))))
              (mv repl simul-all))))
         (t
          (mv repl simul-all)))))

; code for checking that the multiplicities allow zero.  used after they have
; been decremented as many times as they have been used.
(mutual-recursion
 (defun assert-zero-allowed-def (v state)
   (if (endp v)
     state
     (pprogn
      (assert-zero-allowed-simul-def (car v) state)
      (assert-zero-allowed-def (cdr v) state))))
 (defun assert-zero-allowed-simul-def (v state)
   (if (endp v)
     state
     (pprogn
      (assert-zero-allowed-entry (car v) state)
      (assert-zero-allowed-simul-def (cdr v) state))))
 (defun assert-zero-allowed-entry (v state)
   (if (or (endp v) (endp (cdr v)))
     state
     (let ((rng (car v))
           (var-entries (cadr v)))
       (pprogn
        (if (or (endp rng) (not (equal (car rng) 0)))
          ; zero not allowed
          (pprogn
           (acl2::f-put-global 'erp t state)
           (fms (if (endp rng)
                "Code rewrite entry used too many times:~%  ~xp -> ~xr~%"
                "Code rewrite entry used too few times (at least ~xn applications remaining):~%  ~xp -> ~xr~%")
              `((#\p . ,(entry-pat  v))
                (#\r . ,(entry-repl v))
                (#\n . ,(and (consp rng) (car rng))))
              (standard-co state)
              state
              (acl2::abbrev-evisc-tuple state)))
          ; ok
          state)
        (assert-zero-allowed-entry-lst var-entries state)))))
 (defun assert-zero-allowed-entry-lst (v state)
   (if (endp v)
     state
     (pprogn
      (assert-zero-allowed-var-entry (car v) state)
      (assert-zero-allowed-entry-lst (cdr v) state))))
 (defun assert-zero-allowed-var-entry (v state)
   (if (endp v)
     state
     (assert-zero-allowed-def (cdr v) state))))

(defun er-if-zero-not-allowed-def (def state)
  (acl2::state-global-let*
   ((erp nil))
   (pprogn
    (assert-zero-allowed-def def state)
    (mv (@ erp) :invisible state))))

(defun rewrite-fn (form def state)
  (if (not (rewrite-defp def))
    (er acl2::soft 'rewrite "Code rewrite definition illegal:~%~x0" def)
    (mv-let (result new-def)
            (rewrite-seq form def nil)
            (er-progn
             (er-if-zero-not-allowed-def new-def state)
             (acl2::value result)))))

#|
(rewrite-fn '(a b (c (c d)) (x c v))
            '((((0 . 2) ((%)) (%) (c . %) . (f . %))))
            state)
|#

; now i build up a more convenient specification language

; first, instead of always (n . m) as range, we also allow
; + == (1 . inf)
; * == (0 . inf)
; n == (n . n)

; predicate for new multiplicity specs
(defun multiplicity-specp (x)
  (declare (xargs :guard t))
  (or (and (multiplicity-rangep x)
           (not (equal (car x) 'inf)))
      (equal x '*)
      (equal x '+)
      (natp x)))

(defun multiplicity-spec-to-noninf-range (x)
  (declare (xargs :guard (multiplicity-specp x)))
  (cond ((and (multiplicity-rangep x)
              (not (equal (car x) 'inf)))
         x)
        ((equal x '*) '(0 . inf))
        ((equal x '+) '(1 . inf))
        ((natp x) (cons x x))
        (t nil) ; invalid / unrecognized
        ))


; now we build up some macros that build rewrite-defs from a more natural,
; flexible specification language.

; roughly speaking, entries/rules consist of some pieces:
;   :pat  = "pattern" to match   or  :carpat = pattern that must be in a car
;   :repl = "replacement" to put in place of pattern (defaults to the pattern)
;   :vars = "variables" = a list of symbols that should not be taken
;           literally in the pattern, but can stand for any substructure
;   :recvars = "recursive variables" = like :vars but the current rules also
;           get applied to what these variables match
;   :mult = "multiplicity" = an assertion on how many applications of this
;           rule are to be made.  (violation results in post facto error)
;
; entries can be combined using "simultaneous" combination:
;   (:simul e1 e2 e3)
; to indicate that at each step in our pre-order search we attempt to match
; e1, then e2, then e3.  if no matches, we go deeper.
;
; entries and/or :simul combinations can be combined with "sequences":
;   (:seq s1 s2 s3)
; to indicate that we apply s1 to our form, apply that result to s1, and
; apply that result to s3.

; syntax more precisely:
; above relevant functions, i have kind-of a BNF for the language.  the
; parentheses and dots are required cons structure.  symbols are also
; matched literally, unless they are surrounded with _ _.  items in [] are
; optional, with a default value given after an =.  ... is a postfix shorthand
; for 0 or more of something.

; to the right is an indication of what is shorthand for what.  if something
; is canonical, "(canonical)" appears, meaning it should be pretty obvious
; how this maps to the lower level structure, if you understand it.  ;)

; _def_ ::= ()                          => (:seq)
;         | (_def_)                     => _def_
;         | (:seq _simul-def_...)       (canonical)
;         | _simul-def_                 => (:seq _simul-def_)

(defmacro quote-rewrite-def (&rest v)
  (cond
   ((endp v)
    ''nil)
   ((and (consp (car v))
         (null (cdr v)))
    `(quote-rewrite-def . ,(car v)))
   ((eq ':seq (car v))
    `(quote-rewrite-def-rest . ,(cdr v)))
   (t
    `(list (quote-rewrite-simul-def . ,v)))))

(defmacro quote-rewrite-def-rest (&rest v)
  (if (endp v)
    ''nil
    `(cons
      (quote-rewrite-simul-def . ,(car v))
      (quote-rewrite-def-rest . ,(cdr v)))))

; _simul-def_ ::= ()                       => (:simul)
;               | (:simul _entry_...)      (canonical)
;               | _entry_                  => (:simul _entry_)

(defmacro quote-rewrite-simul-def (&rest v)
  (cond
   ((endp v)
    ''nil)
   ((eq ':simul (car v))
    `(quote-rewrite-simul-def-rest . ,(cdr v)))
   (t
    `(list (quote-rewrite-entry . ,v)))))

(defmacro quote-rewrite-simul-def-rest (&rest v)
  (if (endp v)
    ''nil
    `(cons
      (quote-rewrite-entry . ,(car v))
      (quote-rewrite-simul-def-rest . ,(cdr v)))))

; some stuff for entries
(defun namep (v)
  (and (symbolp v)
       (not (null v))
       (not (keywordp v))))

; _var-spec_ ::= ()                                (canonical)
;              | _name_                            => ((_name_))
;              | (_name_ . _var-spec_)             => ((_name_) . _var-spec_)
;              | ((_name_ . _def_) . _var-spec_)   (canonical)

(defun var-specp (v)
  (or (null v)
      (namep v)
      (and (consp v)
           (or (namep (car v))
               (and (consp (car v))
                    (namep (caar v))))
           (var-specp (cdr v)))))

; _recvar-spec_ ::= ()                             (canonical)
;                 | _name_                         => (_name_)
;                 | (_name_ . _var-spec_)          (canonical)

(defun recvar-specp (v)
  (or (null v)
      (namep v)
      (and (consp v)
           (namep (car v))
           (recvar-specp (cdr v)))))

(defun get-var-names (var-spec)
  (if (consp var-spec)
    (cons (if (consp (car var-spec))
            (caar var-spec)
            (car var-spec))
          (get-var-names (cdr var-spec)))
    (if (null var-spec)
      nil
      (list var-spec))))

(defun canonicalize-var-bindings (var-spec)
  (if (consp var-spec)
    (cons (if (consp (car var-spec))
            (car var-spec)
            (list (car var-spec)))
          (canonicalize-var-bindings (cdr var-spec)))
    (if (null var-spec)
      nil
      (list (list var-spec)))))

; _entry_ ::= (:pat _pat_                     (canonical)
;              [:repl _repl_=_pat_]
;              [:mult _mult_=*]
;              [:vars _var-spec_=()]
;              [:recvars _recvar-spec_=()])
;           | (:carpat _pat_                  => (:pat  (_pat_  . %cdr%)
;              [:repl _repl_=_pat_]               :repl (_repl_ . %cdr%)
;              [:mult _mult_=*]                :recvars (%cdr% . _recvar-spec_)
;              [:vars _var-spec_=()]           :vars _var-spec_ :mult _mult_)
;              [:recvars _recvar-spec_=()])

(defmacro quote-rewrite-entry (&key (pat '() patp)
                                    (carpat '() carpatp)
                                    (repl '() replp)
                                    (mult '*)
                                    (vars '())
                                    (recvars '()))
  (declare (xargs :guard (and (multiplicity-specp mult)
                              (var-specp vars)
                              (recvar-specp recvars)
                              (not (and patp carpatp))
                              (or (and patp
                                       (not (member pat (get-var-names recvars))))
                                  (and carpatp
                                       (not (member carpat (get-var-names recvars)))))
                              (not (intersectp-eq (get-var-names vars)
                                                  (get-var-names recvars))))))
  (let* ((cdrvar '%cdr-reserved%)
         (nrcvar-names (get-var-names vars))
         (recvar-names (append (if carpatp (list cdrvar) '())
                               (get-var-names recvars)))
         (var-names (append nrcvar-names recvar-names))
         (pat (if patp
                pat
                (cons carpat cdrvar)))
         (repl (if replp
                 (if carpatp
                   (cons repl cdrvar)
                   repl)
                 pat)))
    `(list* ',(multiplicity-spec-to-noninf-range mult)
            (quote-rewrite-var-entry-lst . ,(canonicalize-var-bindings vars))
            ',var-names
            ',pat
            ',repl)))

; see _var-spec_ above

(defmacro quote-rewrite-var-entry-lst (&rest bindings)
  (if (endp bindings)
    ''nil
    `(cons (quote-rewrite-var-entry ,(car bindings))
           (quote-rewrite-var-entry-lst . ,(cdr bindings)))))

(defmacro quote-rewrite-var-entry (v)
  (declare (xargs :guard (and (consp v)
                              (namep (car v)))))
  `(cons ',(car v)
         (quote-rewrite-def . ,(cdr v))))



; and now to put the more convenient language on top of the code rewriting:

; for "export"
(defmacro er-rewrite-form (form &rest def)
  `(rewrite-fn
    ,form
    (quote-rewrite-def . ,def)
    state))



; EXAMPLES, for understanding the semantics more precisely:
#|
ACL2 !>(er-rewrite-form 'a)
 A
ACL2 !>(er-rewrite-form 'a (:pat a :repl b))
 B
ACL2 !>(er-rewrite-form 'a (:seq (:pat a :repl b) (:pat b :repl c)))
 C
ACL2 !>(er-rewrite-form '(a . b) (:seq (:pat a :repl b) (:pat b :repl c)))
 (C . C)
ACL2 !>(er-rewrite-form '(a . b) (:simul (:pat a :repl b) (:pat b :repl c)))
 (B . C)
ACL2 !>(er-rewrite-form '(b . a) (:simul (:pat a :repl b) (:pat b :repl c)))
 (C . B)
ACL2 !>(er-rewrite-form '(+ (fn1 42) (fn1 53))
                        (:pat (fn1 %) :repl (fn2 %) :vars (%)))
 (+ (FN2 42) (FN2 53))
ACL2 !>(er-rewrite-form '(+ (fn1 42) (fn1 53))
                        (:pat (fn1 %) :repl (fn2 %) :vars %))
 (+ (FN2 42) (FN2 53))
ACL2 !>(er-rewrite-form '(+ (fn1 (fn1 42)) (fn1 53))
                        (:pat (fn1 %) :repl (fn2 %) :vars %))
 (+ (FN2 (FN1 42)) (FN2 53))
ACL2 !>(er-rewrite-form '(+ (fn1 (fn1 42)) (fn1 53))
                        (:pat (fn1 %) :repl (fn2 %) :recvars %))
 (+ (FN2 (FN2 42)) (FN2 53))
ACL2 !>(er-rewrite-form '(+ (stuff fn1 42) (fn1 42))
                        (:pat (fn1 %) :repl (fn2 %) :vars %))
 (+ (STUFF FN2 42) (FN2 42))
ACL2 !>(er-rewrite-form '(+ (stuff fn1 42) (fn1 42))
                (:pat ((fn1 %1) . %2) :repl ((fn2 %1) . %2) :vars (%1 %2)))
 (+ (STUFF FN1 42) (FN2 42))
ACL2 !>(er-rewrite-form '(+ (stuff fn1 42) (fn1 42) (fn1 53))
                (:pat ((fn1 %1) . %2) :repl ((fn2 %1) . %2) :vars (%1 %2)))
 (+ (STUFF FN1 42) (FN2 42) (FN1 53))
ACL2 !>(er-rewrite-form '(+ (stuff fn1 42) (fn1 42) (fn1 53))
                (:pat ((fn1 %1) . %2) :repl ((fn2 %1) . %2) :recvars (%1 %2)))
 (+ (STUFF FN1 42) (FN2 42) (FN2 53))

|#
; this demonstrates that in order to rewrite a function call in a more
; robust way, we should do
;   (:pat  ((old-fn . %params%) . %cdr%)
;    :repl ((new-fn . %params%) . %cdr%)
;    :vars %params%  :recvars %cdr%)
; rather than
;   (:pat  (old-fn . %params%)
;    :repl (new-fn . %params%)
;    :vars %params%)
; but if we do it this way, will we match a function called in the
; top level of a function?  consider (defun x (v) (y v)).  rather than
; rewriting (y v) at the top level, we shall rewrite ((y v)), which is the
; last cons of the defun.  we will use this below in
; compute-copy-defun+rewrite.
;
; however, we offer :carpat as a shortcut for such specifications.  the
; following are equivalent:
#|
ACL2 !>(er-rewrite-form '(+ (stuff fn1 42) (fn1 42) (fn1 53))
                (:pat ((fn1 %1) . %2) :repl ((fn2 %1) . %2) :recvars (%1 %2)))
 (+ (STUFF FN1 42) (FN2 42) (FN2 53))
ACL2 !>(er-rewrite-form '(+ (stuff fn1 42) (fn1 42) (fn1 53))
                (:carpat (fn1 %1) :repl (fn2 %1) :recvars %1))
 (+ (STUFF FN1 42) (FN2 42) (FN2 53))
|#

; also, note that I, by convention, wrap my variables in %% to make them
; stand out.  but any non-keyword, non-nil symbol can be a variable.


; and now we want to support rewriting function definitions:

; for "export"
;
; looks up a function definition, returning it in an error triple
(defun get-defun (name state)
  (let*
   ((ev-wrld (acl2::decode-logical-name name (w state)))
    (cltl-command
     (and ev-wrld
          (let ((cltl-cmd (getprop 'cltl-command 'global-value
                                   nil 'current-acl2-world ev-wrld)))
            (and (consp cltl-cmd)
                 (equal (car cltl-cmd) 'defuns)
                 (= (len cltl-cmd) 4)
                 cltl-cmd)))))
   (and cltl-command
        (let* ((mode (second cltl-command))
               (defuns-body (fourth cltl-command))
               (ll (cadr defuns-body))
               (tail (cddr defuns-body))
               (stobjs (remove nil (getprop name 'stobjs-in
                                            nil 'current-acl2-world ev-wrld)))
               (dec `(declare (xargs :mode ,mode
                                     :stobjs ,stobjs))))
           `(defun ,name ,ll ,dec . ,tail)))))


; for "export"
;
; compute the ,defun-like event to execute if we want to define ,dst to be
; like ,src except for rewriting the code according to ,rwdef.
;
; ,src and ,dst may certainly be the same
;
; as mentioned above, ,rwdef is applied to the body in a singleton list;
; e.g. (defun x (v) (y v)) applies rwdef to ((y v)), so if we want to, for
; example, put a let around the body, we would use either
;  (:pat (%body%)
;   :repl ((let (...) %body%))
;   :vars %body%)
; or
;  (:pat %bodycons%
;   :repl ((let (...) . %bodycons%))  ; notice the dot!
;   :vars %bodycons%)
; or
;  (:carpat %body%
;   :repl (let (...) %body%)
;   :vars %body%)
(defun compute-copy-defun+rewrite (src dst rwdef defun-like state)
  (if (and (null rwdef) (eq src dst))
    (value '(value-triple :nothing-to-do))
    (let*
     ((src-defun (get-defun src state)))
     (if src-defun
       (value
        (let* ((tuple (cddr src-defun)) ; remove 'defun and name
               (bodycons (last tuple))
               (tuple-no-body (butlast tuple 1)))
          (if (null rwdef)
            (list* defun-like dst tuple)
            `(make-event
              (er-let* ((b2 (er-rewrite-form ',bodycons . ,rwdef)))
                (value `(,',defun-like ,',dst ,@',tuple-no-body . ,b2)))))))
       (er soft 'compute-copy-defun+rewrite
           "Illegal or missing defun for ~x0." src)))))


; for "export"
;
; asserts that the definition of a function at certify-book time
; time matches that at include-book time.  this is an extra check that
; can be useful in the presence of redefinitions.
(defmacro assert-include-defun-matches-certify-defun (name)
  (declare (xargs :guard (symbolp name)))
  `(make-event
    `(acl2::assert-event
      (let ((certify-time-defun ',(get-defun ',name state))
            (include-time-defun (get-defun ',',name state)))
        (or (equal certify-time-defun include-time-defun)
            (cw "Certify time def: ~x0~%Include time def: ~x1~%"
                certify-time-defun include-time-defun)))
      :on-skip-proofs t)))



; for "export"
;
; defun ,dst to be like ,src except for rewriting the code according to
; ,rewrite-spec
;
; ,src and ,dst may be the same (if redefinition allowed)
;
; see compute-copy-defun+rewrite for more info
;
(defmacro copy-defun+rewrite (src dst &rest rewrite-spec)
  (declare (xargs :guard (and (symbolp src)
                              (symbolp dst))))
  `(progn
    (assert-include-defun-matches-certify-defun ,src)
    (make-event (compute-copy-defun+rewrite
                 ',src ',dst ',rewrite-spec 'defun state))))


; for "export"
;
; defun ,dst to be like ,src
;
; ,src and ,dst may be the same (if redefinition allowed)
;
; see compute-copy-defun+rewrite for more info
;
(defmacro copy-defun (src dst)
  `(copy-defun+rewrite ,src ,dst))