This file is indexed.

/usr/share/acl2-8.0dfsg/books/ihs/logops-definitions.lisp is in acl2-books-source 8.0dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
; logops-definitions.lisp  --  extensions to Common Lisp logical operations
; Copyright (C) 1997  Computational Logic, Inc.
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
;;;
;;;    "logops-definitions.lisp"
;;;
;;;    This book, along with "logops-lemmas", includes a theory of the Common
;;;    Lisp logical operations on numbers, a portable implementation of the
;;;    Common Lisp byte operations, extensions to those theories, and some
;;;    useful macros.  This book contains only definitions, lemmas
;;;    necessary to admit those definitions, and selected type lemmas.
;;;
;;;    Large parts of this work were inspired by Yuan Yu's Nqthm
;;;    specification of the Motorola MC68020.
;;;
;;;    Bishop Brock
;;;    Computational Logic, Inc.
;;;    1717 West Sixth Street, Suite 290
;;;    Austin, Texas 78703
;;;    (512) 322-9951
;;;    brock@cli.com
;;;
;;;    Modified for ACL2 Version_2.6 by:
;;;    Jun Sawada, IBM Austin Research Lab. sawada@us.ibm.com
;;;    Matt Kaufmann, kaufmann@cs.utexas.edu
;;;
;;;    Modified for ACL2 Version_2.7 by:
;;;    Matt Kaufmann, kaufmann@cs.utexas.edu
;;;
;;;    Modified July 2012 by Jared Davis <jared@centtech.com>
;;;    Moved many definitions into new basic-definitions.lisp file.
;;;
;;;    Modified October 2014 by Jared Davis <jared@centtech.com>
;;;    Ported documentation to XDOC
;;;
;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(in-package "ACL2")
;;;  Global rules.

(include-book "ihs-init")
(include-book "ihs-theories")
(include-book "std/util/defval" :dir :system)

(local (include-book "math-lemmas"))
(local (include-book "quotient-remainder-lemmas"))

; From ihs-theories
(local (in-theory (enable basic-boot-strap)))

; From math-lemmas
(local (in-theory (enable ihs-math)))

; From integer-quotient-lemmas
(local (in-theory (enable quotient-remainder-rules)))

(local (in-theory (disable floor mod)))

(deflabel begin-logops-definitions)

(include-book "basic-definitions")


;;;****************************************************************************
;;;
;;;    Local Lemmas.
;;;
;;;****************************************************************************

(local (defthm x*y->-1
         (implies (and (force (real/rationalp x))
                       (force (real/rationalp y))
                       (or (and (> x 1) (>= y 1))
                           (and (>= x 1) (> y 1))))
                  (> (* x y) 1))
         :rule-classes :linear
         :hints (("Goal"
                  :in-theory (enable x*y>1-positive)
                  :cases ((equal y 1)
                          (equal x 1))))))

(local (defthm x*y->=-1
         (implies (and (force (real/rationalp x))
                       (force (real/rationalp y))
                       (>= x 1)
                       (>= y 1))
                  (>= (* x y) 1))
         :rule-classes :linear
         :hints (("Goal" :in-theory (disable <-*-left-cancel
                                             commutativity-of-*)
                  :use ((:instance <-*-left-cancel (z y) (x 1) (y x)))))))

(local (defthm x-<-y*z
         (implies (and (force (real/rationalp x))
                       (force (real/rationalp y))
                       (force (real/rationalp z))
                       (or (and (<= 0 y) (< x y) (<= 1 z))
                           (and (< 0 y) (<= x y) (< 1 z))))
                  (and (< x (* y z))
                       (< x (* z y))))
         :hints (("Goal" :in-theory (disable <-*-left-cancel <-y-*-y-x)
                  :use ((:instance <-*-left-cancel (z y) (x 1) (y z)))))))

(local (defthm x-<=-y*z
         (implies (and (force (real/rationalp x))
                       (force (real/rationalp y))
                       (force (real/rationalp z))
                       (<= x y)
                       (<= 0 y)
                       (<= 1 z))
                  (and (<= x (* y z))
                       (<= x (* z y))))
         :hints (("Goal" :in-theory (disable <-*-left-cancel <-y-*-y-x)
                  :use ((:instance <-*-left-cancel (z y) (x 1) (y z)))))))

;; [Jared]: I eliminated the type-prescription rules saying logand, logandc1,
;; and logandc2 produce integers, since ACL2 now automatically knows this.

;; [Jared]: I moved definitions like bitp, bfix, etc., into
;; basic-definitions.lisp.

(defsection bitp-basics
  :parents (bitp)

  ;; [Jared] 2016-04-08: I think we shouldn't need this now that bitp is
  ;; more deeply known to type-set.
  ;; (defthm bitp-forward
  ;;   (implies (bitp i)
  ;;            (and (integerp i)
  ;;                 (>= i 0)
  ;;                 (< i 2)))
  ;;   :rule-classes :forward-chaining)

  (defthm bitp-mod-2
    (implies (integerp i)
             (bitp (mod i 2)))
    :rule-classes ((:rewrite)
                   (:generalize :corollary (implies (integerp i)
                                                    (or (equal (mod i 2) 0)
                                                        (equal (mod i 2) 1)))))
    :hints (("Goal" :in-theory (enable linearize-mod)))))

(local (in-theory (enable unsigned-byte-p signed-byte-p integer-range-p)))
(local (in-theory (disable bitp)))
(local (in-theory (disable bfix)))


(defsection unsigned-byte-p-basics
  :parents (unsigned-byte-p)

  (defthm unsigned-byte-p-forward
    (implies (unsigned-byte-p bits i)
             (and (integerp i)
                  (>= i 0)
                  (< i (expt 2 bits))))
    :rule-classes :forward-chaining)

  (defthmd unsigned-byte-p-unsigned-byte-p
    (implies (and (unsigned-byte-p size i)
                  (integerp size1)
                  (>= size1 size))
             (unsigned-byte-p size1 i))
    :hints (("Goal" :in-theory (disable expt-is-weakly-increasing-for-base>1)
             :use ((:instance expt-is-weakly-increasing-for-base>1
                    (r 2) (i size) (j size1)))))))

(local (in-theory (disable unsigned-byte-p)))

(defxdoc unsigned-byte-p-discussion
  :parents (unsigned-byte-p)
  :short "Discussion on how to use unsigned-byte-p"
  :long "<p>@(csee unsigned-byte-p) (and @(see signed-byte-p) for that matter) are
  tricky enough that there is no one-size-fits-all solution that everyone
  should use to reason about them.  Depending on your problem you might try any
  of these strategies:</p>

  <ol>

  <li><it>Arithmetic</it> -- Leave unsigned-byte-p's regular definition
  enabled and try to reason about the resulting inequalities.  This sometimes
  works and may be a good approach if you have goals involving \"non bit-vector
  functions\" like +, *, /, etc.  I usually don't use this approach but I
  haven't done a lot of proofs about true arithmetic functions.</li>

  <li><it>Induction</it> -- Disable unsigned-byte-p's regular definition but
  instead enable an alternate definition, e.g., the
  centaur/bitops/ihsext-basics book has unsigned-byte-p**, which is a recursive
  version that works well for induction.  This definition is in the
  ihsext-recursive-redefs ruleset and also works well with other ** definitions
  like logand**.  This is often a good strategy when proving lemmas about
  unsigned-byte-p but is probably mainly useful when reasoning about new
  recursive functions.</li>

  <li><it>Vector</it> -- Leave @(see unsigned-byte-p) disabled except to
  prove lemmas, and expect to reason about (unsigned-byte-p n x) via lemmas.  I
  think I usually prefer this strategy as it feels more reliable/less magical
  than reasoning about arithmetic inequalities.  Some useful books:

    <ol>

      <li>bitops/ihsext-basics proves the nice/obvious lemmas about
      signed/unsigned-byte-p on many bit-vector functions like logior,
      logand, etc.</li>

      <li>bitops/signed-byte-p has lemmas about signed/unsigned-byte-p for
      some arithmetic functions (+, -, *) and also extended lemmas about
      bit-vector stuff.  It's often very handy for the kinds of guard
      obligations that arise from things like (the (unsigned-byte 32)
      x).</li>

    </ol></li>
  </ol>

  <p>We have occasionally written wrapper functions like @('u32p'), but, I
  think that perhaps the only reason we did this was for macros like @(see
  def-typed-record), where we needed a unary predicate to introduce a fancier
  data structure.  Once we had the typed records in place, we just enabled
  these wrappers and did all our reasoning about @(see unsigned-byte-p).
  (I don't think you'd want to reason about a each various u32p, u64p, etc.,
  individually.)</p>

  <p>In the context of FTY, I don't think you need wrappers, but if for some
  reason you do want to use them then that is probably basically fine.  Note
  here that you have some choice for your fixing function.  You can fix to 0 as
  you've done in your examples, but you might instead prefer to fix to
  @'(loghead n x)').  Why?  When you use loghead, it preserves the lower @('N')
  bits, and this may interact much more nicely with rules about true bit-vector
  functions.  This approach is also good for GL, where loghead is supported in
  an especially good way.</p>

  <p>That said, it should be possible to get by without wrappers; see for
  instance the definition of sizednum in centaur/fty/deftypes-tests.lisp, or
  the definition of vl-constint in centaur/vl/expr.lisp, both of which use a
  loghead-based approach to do the fixing.  (The vl-constint example has
  a :require that is an inequality instead of an unsigned-byte-p term, but I
  don't think there's any particular reason to do it this way instead of the
  other.)</p>

  <p>In general there is good reason to expect it to sometimes be hard to work
  with unsigned-byte-p.  For instance, consider a theorem like the following,
  from @('centaur/bitops/signed-byte-p.lisp'):</p>

  @({
   (defthm lousy-unsigned-byte-p-of-*-mixed
     ;; Probably won't ever unify with anything.
     (implies (and (unsigned-byte-p n1 a)
		   (unsigned-byte-p n2 b))
	      (unsigned-byte-p (+ n1 n2) (* a b)))
     :hints((\"Goal\" :use ((:instance upper-bound)))))
  })

  <p>This would be a good rule to try on goals like @('(unsigned-byte-p 10 (* a
  b))'), but without some insight into @('a') and @('b') it's hard to know how
  to successfully instantiate @('N1/N2').  So you end up resorting to @(':use')
  hints, or special-case variants of this theorem (e.g., another theorem that
  says 7 bits * 3 bits --&gt; 10 bits), or you do something more sophisticated
  with bind-free or similar.</p>

  <p>If you find yourself going down this road, you might see in particular Dave
  Greve's \"Parameterized Congruences\" paper from the 2006 workshop, which is
  implemented in the coi/nary/nary.lisp book.  You could also look at Sol
  Swords' book to do something similar, see :doc contextual-rewriting.</p>")


(defsection signed-byte-p-basics
  :parents (signed-byte-p)

  (defthm signed-byte-p-forward
    (implies (signed-byte-p bits i)
             (and (integerp i)
                  (>= i (- (expt 2 (- bits 1))))
                  (< i (expt 2 (- bits 1)))))
    :rule-classes :forward-chaining))

(local (in-theory (disable signed-byte-p)))


;; [Jared]: I moved definitions like ifloor, expt, logcar, logbit, etc., into
;; basic-definitions.lisp.  I also moved the most basic type theorems.  But I
;; didn't move various theorems about these functions, e.g., bounds theorems,
;; and I didn't move the guard macros.


;;;Matt: You will find instances of these throughout "logops-lemmas". These
;;;should all be redundant now, but in case they aren't I'll leave them in.

(defsection logbit-guard
  :parents (logops-definitions)
  :short "@(call logbit-guard) is a macro form of the guards for @(see logbit)."

  (defmacro logbit-guard (pos i)
    `(and (force (integerp ,pos))
          (force (>= ,pos 0))
          (force (integerp ,i)))))

(defsection logmask-guard
  :parents (logops-definitions)
  :short "@(call logmask-guard) is a macro form of the guards for @(see logmask)."

  (defmacro logmask-guard (size)
    `(and (force (integerp ,size))
          (force (>= ,size 0)))))

(defsection loghead-guard
  :parents (logops-definitions)
  :short "@(call loghead-guard) is a macro form of the guards for @(see loghead)."

  (defmacro loghead-guard (size i)
    `(and (force (integerp ,size))
          (force (>= ,size 0))
          (force (integerp ,i)))))

(defsection logtail-guard
  :parents (logops-definitions)
  :short "@(call logtail-guard) is a macro form of the guards for @(see logtail)."

  (defmacro logtail-guard (pos i)
    `(and (force (integerp ,pos))
          (force (>= ,pos 0))
          (force (integerp ,i)))))

(defsection logapp-guard
  :parents (logops-definitions)
  :short "@(call logapp-guard) is a macro form of the guards for @(see logapp)."

  (defmacro logapp-guard (size i j)
    `(and (force (integerp ,size))
          (force (>= ,size 0))
          (force (integerp ,i))
          (force (integerp ,j)))))

(defsection logrpl-guard
  :parents (logops-definitions)
  :short "@(call logrpl-guard) is a macro form of the guards for @(see logrpl)."

  (defmacro logrpl-guard (size i j)
    `(and (force (integerp ,size))
          (force (>= ,size 0))
          (force (integerp ,i))
          (force (integerp ,j)))))

(defsection logext-guard
  :parents (logops-definitions)
  :short "@(call logext-guard) is a macro form of the guards for @(see logext)."

  (defmacro logext-guard (size i)
    `(and (force (integerp ,size))
          (force (> ,size 0))
          (force (integerp ,i)))))

(defsection logrev-guard
  :parents (logops-definitions)
  :short "@(call logrev-guard) is a macro form of the guards for @(see logrev)."

  (defmacro logrev-guard (size i)
    `(and (force (integerp ,size))
          (force (>= ,size 0))
          (force (integerp ,i)))))

(defsection logextu-guard
  :parents (logops-definitions)
  :short "@(call logextu-guard) is a macro form of the guards for @(see logextu)."

  (defmacro logextu-guard (final-size ext-size i)
    `(and (force (integerp ,final-size))
          (force (>= ,final-size 0))
          (force (integerp ,ext-size))
          (force (> ,ext-size 0))
          (force (integerp ,i)))))

(defsection lognotu-guard
  :parents (logops-definitions)
  :short "@(call lognotu-guard) is a macro form of the guards for @(see lognotu)."

  (defmacro lognotu-guard (size i)
    `(and (force (integerp ,size))
          (force (>= ,size 0))
          (force (integerp ,i)))))

(defsection ashu-guard
  :parents (logops-definitions)
  :short "@(call ashu-guard) is a macro form of the guards for @(see ashu)."

  (defmacro ashu-guard (size i cnt)
    `(and (force (integerp ,size))
          (force (> ,size 0))
          (force (integerp ,i))
          (force (integerp ,cnt)))))

(defsection lshu-guard
  :parents (logops-definitions)
  :short "@(call lshu-guard) is a macro form of the guards for @(see lshu)."

  (defmacro lshu-guard (size i cnt)
    `(and (force (integerp ,size))
          (force (>= ,size 0))
          (force (integerp ,i))
          (force (integerp ,cnt)))))

;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;;    Type Lemmas for the new LOGOPS.  Each function is DISABLEd after we
;;;    have enough information about it (except for IFLOOR, IMOD, and EXPT2,
;;;    which are considered abbreviations).  We prove even the most obvious
;;;    type lemmas because you never know what theory this book will be
;;;    loaded into, and unless the theory is strong enough you may not get
;;;    everthing you need.
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

(local (in-theory (disable logcar)))

(defsection logcdr-basics
  :parents (logcdr)

  (defthm logcdr-<-0
    (equal (< (logcdr i) 0)
           (and (integerp i)
                (< i 0))))

  (defthm justify-logcdr-induction
    (and (implies (> i 0)
                  (< (logcdr i) i))
         (implies (< i -1)
                  (< i (logcdr i))))
    :hints (("Goal" :in-theory (enable logcdr)))))

(local (in-theory (disable logcdr)))


(defsection logcons-basics
  :parents (logcons)

  (defthm logcons-<-0
    (equal (< (logcons b i) 0)
           (and (integerp i)
                (< i 0)))
    :hints (("Goal" :in-theory (enable bfix)))))

(local (in-theory (disable logcons)))


(local (in-theory (disable logmaskp)))

;;;  LOGHEAD

(defsection loghead-basics
  :parents (loghead)

  (defthm unsigned-byte-p-loghead
    (implies (and (>= size1 size)
                  (integerp size)
                  (>= size 0)
                  (integerp size1))
             (unsigned-byte-p size1 (loghead size i)))
    :hints (("Goal" :in-theory (e/d (unsigned-byte-p)
                                    (expt-is-weakly-increasing-for-base>1))
             :use ((:instance expt-is-weakly-increasing-for-base>1
                    (r 2) (i size) (j size1))))))

  (defthm loghead-upper-bound
    (< (loghead size i) (expt 2 size))
    :rule-classes (:linear :rewrite)))


(defmacro lloghead (n x)
  ;; bozo maybe should be a function?
  ;; Useful for guard of (unsigned-byte-p n x).
  `(mbe :logic (loghead ,n ,x)
        :exec ,x))


(local (in-theory (disable loghead)))

(local (in-theory (disable logtail)))

(defsection logapp-basics
  :parents (logapp)

  (defthm logapp-<-0
    (implies (logapp-guard size i j)
             (equal (< (logapp size i j) 0)
                    (< j 0)))
    :hints (("Goal"
             :in-theory (e/d (loghead) (x-<-y*z))
             :use ((:instance x-<-y*z
                    (x (mod i (expt 2 size)))
                    (y (expt 2 size)) (z (abs j))))))))

(local (in-theory (disable logapp)))

(local (in-theory (disable logrpl)))


;;;4 Misplaced Lemmas
(defthm expt-with-violated-guards
  (and (implies (not (integerp i))
                (equal (expt r i) 1))
       (implies (not (acl2-numberp r))
                (equal (expt r i)
                       (expt 0 i))))
  :hints (("Goal" :in-theory (enable expt))))

(defthm reduce-integerp-+-constant
  (implies (and (syntaxp (constant-syntaxp i))
                (integerp i))
           (iff (integerp (+ i j))
                (integerp (fix j)))))

(defthm how-could-this-have-been-left-out??
  (equal (* 0 x) 0))

(defthm this-needs-to-be-added-to-quotient-remainder-lemmas
  (implies (zerop y)
           (equal (mod x y)
                  (fix x)))
  :hints (("Goal" :in-theory (enable mod))))

(defsection logext-basics
  :parents (logext)

  (defthm logext-bounds
    (implies (< 0 size)
             (and (>= (logext size i) (- (expt 2 (1- size))))
                  (< (logext size i) (expt 2 (1- size)))))
    :rule-classes ((:linear :trigger-terms ((logext size i)))
                   (:rewrite))
    :hints (("Goal"
             :in-theory (e/d (logapp loghead)
                             (expt-is-increasing-for-base>1 exponents-add))
             :use ((:instance expt-is-increasing-for-base>1
                    (r 2) (i (1- size)) (j size))))))

  (defthm signed-byte-p-logext
    (implies (and (>= size1 size)
                  (> size 0)
                  (integerp size1)
                  (integerp size))
             (signed-byte-p size1 (logext size i)))
    :hints (("Goal"
             :in-theory (e/d (signed-byte-p logapp loghead)
                             (expt-is-weakly-increasing-for-base>1 exponents-add))
             :do-not '(eliminate-destructors)
             :use ((:instance expt-is-weakly-increasing-for-base>1
                    (r 2) (i (1- size)) (j (1- size1))))))))

(local (in-theory (disable logext)))


(defsection logrev-basics
  :parents (logrev)

  (local
   (defun crock-induction (size size1 i j)
     (cond
      ((zp size) (+ size1 i j))		;To avoid irrelevance
      (t (crock-induction (1- size) (1+ size1) (logcdr i)
			  (logcons (logcar i) j))))))

  ;; This lemma could have used one of the deleted Type-Prescriptions, I
  ;; think the one for LOGCDR.

  (local
   (defthm unsigned-byte-p-logrev1
     (implies
      (and (unsigned-byte-p size1 j)
	   (integerp size)
	   (>= size 0))
      (unsigned-byte-p (+ size size1) (logrev1 size i j)))
     :rule-classes nil
     :hints
     (("Goal"
       :in-theory (e/d (expt logcar logcons unsigned-byte-p) (exponents-add))
       :induct (crock-induction size size1 i j)))))

  (defthm unsigned-byte-p-logrev
    (implies
     (and (>= size1 size)
	  (>= size 0)
	  (integerp size)
	  (integerp size1))
     (unsigned-byte-p size1 (logrev size i)))
    :hints
    (("Goal"
      :use ((:instance unsigned-byte-p-logrev1
		       (size size) (size1 0) (i i) (j 0))
	    (:instance unsigned-byte-p-unsigned-byte-p
		       (size size) (size1 size1) (i (logrev size i))))))))

(local (in-theory (disable logrev)))


(defsection logsat-basics
  :parents (logsat)

  ;; Added for Version_2.6.  Without it the following defthm appears to loop,
  ;; though not within a single goal -- rather, by creating subgoal after subgoal
  ;; after ....
  (local (in-theory (enable exponents-add-unrestricted)))

  (defthm logsat-bounds
    (implies (< 0 size)
             (and (>= (logsat size i) (- (expt 2 size)))
                  (< (logsat size i) (expt 2 size))))
    :rule-classes ((:linear :trigger-terms ((logsat size i)))
                   (:rewrite)))

  ;; Now we disable this rule; necessary for signed-byte-p-logsat.
  (local (in-theory (disable exponents-add-unrestricted)))

  (defthm signed-byte-p-logsat
    (implies (and (>= size1 size)
                  (> size 0)
                  (integerp size1)
                  (integerp size))
             (signed-byte-p size1 (logsat size i)))
    :hints (("Goal" :in-theory (e/d (signed-byte-p)
                                    (expt-is-weakly-increasing-for-base>1 exponents-add))
             :do-not '(eliminate-destructors)
             :use ((:instance expt-is-weakly-increasing-for-base>1
                    (r 2) (i (1- size)) (j (1- size1))))))))

(local (in-theory (disable logsat)))


(defsection logextu-basics
  :parents (logextu)

  (defthm unsigned-byte-p-logextu
    (implies (and (>= size1 final-size)
                  (>= final-size 0)
                  (integerp final-size)
                  (integerp size1))
             (unsigned-byte-p size1 (logextu final-size ext-size i)))))

(local (in-theory (disable logextu)))



(defsection lognotu-basics
  :parents (lognotu)

  (defthm unsigned-byte-p-lognotu
    (implies (and (>= size1 size)
                  (>= size 0)
                  (integerp size)
                  (integerp size1))
             (unsigned-byte-p size1 (lognotu size i)))))

(local (in-theory (disable lognotu)))


(defsection ashu-basics
  :parents (ashu)

  (defthm unsigned-byte-p-ashu
    (implies (and (>= size1 size)
                  (>= size 0)
                  (integerp size)
                  (integerp size1))
             (unsigned-byte-p size1 (ashu size i cnt)))))

(local (in-theory (disable ashu)))


(defsection lshu-basics
  :parents (lshu)

  (defthm unsigned-byte-p-lshu
    (implies (and (>= size1 size)
                  (>= size 0)
                  (integerp size)
                  (integerp size1))
             (unsigned-byte-p size1 (lshu size i cnt)))))

(local (in-theory (disable lshu)))


;;;****************************************************************************
;;;
;;;    DEFINITIONS -- Round 3.
;;;
;;;    A portable implementation and extension of the CLTL byte operations.
;;;    After the function definitions, we introduce a guard macro for those
;;;    with non-trivial guards.
;;;
;;;  BSP size pos
;;;  BSPP bsp
;;;  BSP-SIZE bsp
;;;  BSP-POS bsp
;;;  RDB bsp i
;;;  WRB i bsp j
;;;  RDB-TEST bsp i
;;;  RDB-FIELD bsp i
;;;  WRB-FIELD i bsp j
;;;
;;;****************************************************************************

(defxdoc logops-byte-functions
  :parents (logops-definitions)
  :short "A portable implementation and extension of Common Lisp byte
  functions."

  :long "<p>The proposed Common Lisp standard [<a
href='http://en.wikipedia.org/wiki/X3J13'>X3J13</a> Draft 14.10] defines a
number of functions that operate on subfields of integers.  These subfields are
specified by @('(BYTE size position)'), which \"indicates a byte of width size
and whose bits have weights @($2^{position+size-1}$) through @($2^{pos}$), and
whose representation is implementation dependent\".  Unfortunately, the
standard does not specify what BYTE returns, only that whatever is returned is
understood by the byte manipulation functions LDB, DPB, etc.</p>

<p>This lack of complete specification makes it impossible for ACL2 to specify
the byte manipulation functions of Common Lisp in a portable way.  For example
AKCL uses @('(cons size position)') as a byte specifier, whereas another
implementation might use a special data structure to represent @('(byte size
position)').  Since any theorem about the ACL2 built-ins is meant to be a
theorem for all Common Lisp implementations, ACL2 cannot define BYTE.</p>

<p>Therefore, we have provided a portable implementation of the byte operations
specified by the draft standard.  This behavior of this implementation should
be consistent with every Common Lisp that provides the standard byte
operations.  Our byte specifier @('(bsp size pos)') is analogous to CLTL's
@('(byte size pos)'), where size and pos are nonnegative integers.  Note that
the standard indicates that reading a byte of size 0 returns 0, and writing a
byte of size 0 leaves the destination unchanged.</p>

<p>This table indicates the correspondance between the Common Lisp byte
operations and our portable implementation:</p>

@({
  Common Lisp                               This Implementation
  ------ ----                               ---- --------------

  (BYTE size position)                      (BSP size position)
  (BYTE-SIZE bytespec)                      (BSP-SIZE bsp)
  (BYTE-POSITION bytespec)                  (BSP-POSITION bsp)
  (LDB bytespec integer)                    (RDB bsp integer)
  (DPB newbyte bytespec integer)            (WRB newbyte bsp integer)
  (LDB-TEST bytespec integer)               (RDB-TEST bsp integer)
  (MASK-FIELD bytespec integer)             (RDB-FIELD bsp integer)
  (DEPOSIT-FIELD newbyte bytespec integer)  (WRB-FIELD newbyte bsp integer)
})

<p>For more information, see the documentation for the functions listed above.
If you are concerned about the efficiency of this implementation, see the file
@('ihs/logops-efficiency-hack.lsp') for some notes.</p>")

(defsection bsp
  :parents (logops-byte-functions)
  :short "@(call bsp) returns a byte-specifier."
  :long "<p>This specifier designates a byte whose width is size and whose bits have
weights 2^(pos) through 2^(pos+size-1). Both size and pos must be
nonnegative integers.</p>

<p>BSP is mnemonic for Byte SPecifier or Byte Size and Position, and is
analogous to Common Lisp's @('(byte size position)').</p>

<p>BSP is implemented as a macro for simplicity and convenience.  One should
always use BSP in preference to CONS, however, to ensure compatibility with
future releases.</p>

@(def bsp)"

  (defmacro bsp (size pos)
    `(cons ,size ,pos)))

(define bspp (bsp)
  :parents (logops-byte-functions)
  :short "@(call bspp) recognizes objects produced by @(see bsp)."
  :returns bool
  :enabled t
  (and (consp bsp)
       (integerp (car bsp))
       (>= (car bsp) 0)
       (integerp (cdr bsp))
       (>= (cdr bsp) 0))
  ///
  (defthm bspp-bsp
    (implies (and (integerp size)
                  (>= size 0)
                  (integerp pos)
                  (>= pos 0))
             (bspp (bsp size pos)))
    :hints (("Goal" :in-theory (enable bspp)))))

(define bsp-size ((bsp bspp))
  :returns (size (and (integerp size)
                      (>= size 0))
                 :rule-classes :type-prescription
                 :hyp (bspp bsp) ;; BOZO not good for type prescription
                 :name bsp-size-type)
  :parents (logops-byte-functions)
  :short "@('(bsp-size (bsp size pos)) = size')"
  :long "<p>This is analogous to Common Lisp's @('(byte-size bytespec)').</p>"
  :enabled t
  (car bsp))

(define bsp-position ((bsp bspp))
  :returns (pos (and (integerp pos)
                     (>= pos 0))
                :rule-classes :type-prescription
                :hyp (bspp bsp) ;; BOZO not good for type prescription
                :name bsp-position-type)
  :parents (logops-byte-functions)
  :short "@('(bsp-position (bsp size pos)) = pos')"
  :long "<p>This is analogous to Common Lisp's @('(byte-position bytespec)').</p>"
  :enabled t
  (cdr bsp))

(define rdb ((bsp bspp)
             (i   integerp))
  :returns (nat (and (integerp nat)
                     (>= nat 0))
                :rule-classes :type-prescription
                :name rdb-type)
  :parents (logops-byte-functions)
  :short "@(call rdb) returns the byte of @('i') specified by @('bsp')."
  :long "<p>This is analogous to Common Lisp's @('(ldb bytespec integer)').</p>"
  :enabled t
  (loghead (bsp-size bsp) (logtail (bsp-position bsp) i))
  ///
  (defthm unsigned-byte-p-rdb
    (implies (and (>= size (bsp-size bsp))
                  (force (>= size 0))
                  (force (integerp size))
                  (force (bspp bsp)))
             (unsigned-byte-p size (rdb bsp i))))

  (defthm rdb-upper-bound
    (implies (force (bspp bsp))
             (< (rdb bsp i) (expt 2 (bsp-size bsp))))
    :rule-classes (:linear :rewrite))

  (defthm bitp-rdb-bsp-1
    (implies (equal (bsp-size bsp) 1)
             (bitp (rdb bsp i)))
    :hints (("Goal" :in-theory (enable bitp loghead)))))

(define wrb ((i   integerp)
             (bsp bspp)
             (j   integerp))
  :returns (int integerp
                :rule-classes :type-prescription
                :name wrb-type)
  :parents (logops-byte-functions)
  :short "@(call wrb) writes the @('(bsp-size bsp)') low-order bits of @('i')
into the byte of @('j') specified by @('bsp')."
  :long "<p>This is analogous to Common Lisp's @('(dpb newbyte bytespec
integer)').</p>"
  :enabled t
  (logapp (bsp-position bsp)
          (loghead (bsp-position bsp) j)
          (logapp (bsp-size bsp)
                  i
                  (logtail (+ (bsp-size bsp) (bsp-position bsp)) j))))

(define rdb-test ((bsp bspp)
                  (i   integerp))
  :returns bool
  :parents (logops-byte-functions)
  :short "@(call rdb-test) is true iff the field of @('i') specified by
  @('bsp') is nonzero."
  :long "<p>This is analogous to Common Lisp's @('(ldb-test bytespec
  integer)').</p>"
  :enabled t
  (not (eql (rdb bsp i) 0)))

(define rdb-field ((bsp bspp)
                   (i   integerp))
  :returns nat
  :parents (logops-byte-functions)
  :short "@(call rdb-field) is analogous to Common Lisp's @('(mask-field bytespec integer)')."
  :enabled t
  (logand i (wrb -1 bsp 0)))

(define wrb-field ((i   integerp)
                   (bsp bspp)
                   (j   integerp))
  :returns (int integerp
                :rule-classes :type-prescription
                :name wrb-field-type)
  :parents (logops-byte-functions)
  :short "@(call wrb-field) is analogous to Common Lisp's @('(deposit-field
  newbyte bytespec integer)')."
  :enabled t
  (wrb (rdb bsp i) bsp j))

;  Guard macros.

(defsection rdb-guard
  :parents (logops-byte-functions)
  :short "@(call rdb-guard) is a macro form of the guards for @(see rdb), @(see
  rdb-test), and @(see rdb-field)."
  :long "@(def rdb-guard)"

  (defmacro rdb-guard (bsp i)
    `(and (force (bspp ,bsp))
          (force (integerp ,i)))))

(defsection wrb-guard
  :parents (logops-byte-functions)
  :short "@(call wrb-guard) is a macro form of the guards for @(see wrb) and @(see wrb-field)."
  :long "@(def wrb-guard)"

  (defmacro wrb-guard (i bsp j)
    `(and (force (integerp ,i))
          (force (bspp ,bsp))
          (force (integerp ,j)))))


;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
;;;
;;;  Type lemmas for the byte functions.  Each function is DISABLED after we
;;;  have enough information about it.
;;;
;;;++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

(local (in-theory (disable bspp)))
(local (in-theory (disable bsp-size)))
(local (in-theory (disable bsp-position)))
(local (in-theory (disable rdb)))
(local (in-theory (disable wrb)))
(local (in-theory (disable rdb-test)))          ;An obvious predicate.

;;;  RDB-FIELD

#|

Need Type-Prescriptions to prove this.  I don't think we ever use this
function.

(defthm rdb-field-type
  (and (integerp (rdb-field bsp i))
       (>= (rdb-field bsp i) 0))
  :rule-classes :type-prescription)

|#

(local (in-theory (disable rdb-field)))
(local (in-theory (disable wrb-field)))


;; [Jared]: I moved the bit functions like B-NOT into basic-definitions.lisp.


;;;****************************************************************************
;;;
;;;    Theories
;;;
;;;****************************************************************************

(defval *logops-functions*
  :parents (logops-definitions)
  :short "A list of all functions considered to be part of the theory of logical
          operations on numbers."
  '(binary-LOGIOR
    binary-LOGXOR binary-LOGAND binary-LOGEQV LOGNAND LOGNOR LOGANDC1
    LOGANDC2 LOGORC1 LOGORC2 LOGNOT LOGTEST LOGBITP ASH
    LOGCOUNT INTEGER-LENGTH
    BITP
    SIGNED-BYTE-P
    UNSIGNED-BYTE-P
    LOGCAR$inline
    LOGCDR$inline
    LOGCONS$inline
    LOGBIT$inline
    LOGMASK$inline
    LOGMASKP
    LOGHEAD$inline
    LOGTAIL$inline
    LOGAPP
    LOGRPL
    LOGEXT
    LOGREV1
    LOGREV$inline
    LOGSAT
    LOGNOTU$inline
    LOGEXTU$inline
    ASHU
    LSHU
    BSPP BSP-SIZE BSP-POSITION RDB WRB RDB-TEST RDB-FIELD WRB-FIELD
    B-NOT$inline
    B-AND$inline
    B-IOR$inline
    B-XOR$inline
    B-EQV$inline
    B-NAND$inline
    B-NOR$inline
    B-ANDC1$inline
    B-ANDC2$inline
    B-ORC1$inline
    B-ORC2$inline
    ))

(defsection logops-functions
  :parents (logops-definitions)
  :short "A theory consisting of all function names of functions considered to
          be logical operations on numbers."
  :long "<p>If you are using the book @('logops-lemmas'), you will need to
  DISABLE this theory in order to use the lemmas contained therein, as most of
  the logical operations on numbers are non-recursive.</p>"

  (deftheory logops-functions *logops-functions*))

(defsection logops-definitions-theory
  :parents (logops-definitions)
  :short "The \"minimal\" theory for the book \"logops-definitions\"."
  :long "<p>This theory contains the DEFUN-TYPE/EXEC-THEORY (which see) of all
functions considered to be logical operations on numbers, and all
lemmas (predominately `type lemmas') proved in this book.  All functions in the
list *LOGOPS-FUNCTIONS* are DISABLEd.</p>"

  (deftheory logops-definitions-theory
    (union-theories
     (set-difference-theories
      (set-difference-theories            ;Everything in this book ...
       (universal-theory :here)
       (universal-theory 'begin-logops-definitions))
      *logops-functions*)                 ;Minus all of the definitions.
     (defun-type/exec-theory *logops-functions*))        ;Plus basic type info
    ))



;;;****************************************************************************
;;;
;;;  DEFBYTETYPE name size s/u &key saturating-coercion doc.
;;;
;;;****************************************************************************

(defsection defbytetype
  :parents (logops-definitions)
  :short "A macro for defining integer subrange types."
  :long "<p>The \"byte types\" defined by DEFBYTETYPE correspond to the Common
Lisp concept of a \"byte\", that is, an integer with a fixed number of bits.
We extend the Common Lisp concept to allow signed bytes.</p>

<p>Example:</p>

@({
    (DEFBYTETYPE WORD 32 :SIGNED)
})

<p>Defines a new integer type of 32-bit signed integers, recognized by
@('(WORD-P i)').</p>

<p>General Form:</p>

@({
   (DEFBYTETYPE name size s/u &key saturating-coercion)
})

<p>The argument name should be a symbol, size should be a constant
expression (suitable for DEFCONST) for a positive integer, s/u is
either :SIGNED or :UNSIGNED, saturating-coercion should be a symbol (default
NIL).</p>

<p>Each data type defined by DEFBYTETYPE produces a number of events:</p>

<ul>

<li>A constant @('*<name>-MAX*'), set to the maximum value of the type.</li>

<li>A constant @('*<name>-MIN*'), set to the minimum value of the type.</li>

<li>A predicate, @('(<pred> x)'), that recognizes either @('(UNSIGNED-BYTE-P
size x)') or @('(SIGNED-BYTE-P size x)'), depending on whether s/u
was :UNSIGNED or :SIGNED respectively. This predicate is DISABLED.  The name of
the predicate will be @('<name>-p').</li>

<li>A coercion function, @('(<name> i)'), that coerces any object @('i') to the
correct type by LOGHEAD and LOGEXT for unsigned and signed integers
respectively.  This function is DISABLED.</li>

<li>A lemma showing that the coercion function actually does the correct
coercion.</li>

<li>A lemma that reduces calls of the coercion function when its argument
satisfies the predicate.</li>

<li>A forward chaining lemma from the predicate to the appropriate type
information.</li>

<li>If :SATURATING-COERCION is specified, the value of this keyword argument
should be a symbol.  A function of this name will be defined to provide a
saturating coercion.  `Saturation' in this context means that values outside of
the legal range for the type are coerced to the type by setting them to the
nearest legal value, which will be either the minimum or maximum value of the
type. This function will be DISABLEd, and a lemma will be generated that proves
that this function returns the correct type.  Note that
the :SATURATING-COERCION option is only valid for :SIGNED types.</li>

<li>A theory named @('<name>')-THEORY that includes the lemmas and the
DEFUN-TYPE/EXEC-THEORY of the functions.</li>

</ul>")

(defmacro defbytetype (name size s/u &key saturating-coercion doc)
  (declare (xargs :guard (and (symbolp name)
                              ;; How to say that SIZE is a constant expression?
                              (or (eq s/u :SIGNED) (eq s/u :UNSIGNED))
                              (implies saturating-coercion
				       (and (symbolp saturating-coercion)
					    (eq s/u :SIGNED)))
                              (implies doc (stringp doc)))))

  (let*
    ((max-constant (pack-intern name "*" name "-MAX*"))
     (min-constant (pack-intern name "*" name "-MIN*"))
     (predicate (pack-intern name name "-P"))
     (predicate-lemma (pack-intern name predicate "-" name))
     (coercion-lemma (pack-intern name "REDUCE-" name))
     (forward-lemma (pack-intern predicate predicate "-FORWARD"))
     (sat-lemma (pack-intern name predicate "-" saturating-coercion))
     (theory (pack-intern name name "-THEORY")))

    `(ENCAPSULATE ()
       (LOCAL (IN-THEORY (THEORY 'BASIC-BOOT-STRAP)))
       (LOCAL (IN-THEORY (ENABLE LOGOPS-DEFINITIONS-THEORY)))

       ;;  NB! These two ENABLEs mean that we have to have "logops-lemmas"
       ;;  loaded to do a DEFBYTETYPE.

       (LOCAL (IN-THEORY (ENABLE LOGHEAD-IDENTITY LOGEXT-IDENTITY)))

       (DEFCONST ,max-constant ,(case s/u
                                  (:SIGNED `(- (EXPT2 (- ,size 1)) 1))
                                  (:UNSIGNED `(- (EXPT2 ,size) 1))))
       (DEFCONST ,min-constant ,(case s/u
                                  (:SIGNED `(- (EXPT2 (- ,size 1))))
                                  (:UNSIGNED 0)))
       (DEFUN ,predicate (X)
	 (DECLARE (XARGS :GUARD T))
         ,(case s/u
            (:SIGNED `(SIGNED-BYTE-P ,size X))
            (:UNSIGNED `(UNSIGNED-BYTE-P ,size X))))
       (DEFUN ,name (I)
         ,@(when$ doc (list doc))
         (DECLARE (XARGS :GUARD (INTEGERP I)))
         ,(case s/u
            (:SIGNED `(LOGEXT ,size I))
            (:UNSIGNED `(LOGHEAD ,size I))))
       (DEFTHM ,predicate-lemma
	 (,predicate (,name I)))
       (DEFTHM ,coercion-lemma
	 (IMPLIES
	  (,predicate I)
	  (EQUAL (,name I) I)))
       (DEFTHM ,forward-lemma
         (IMPLIES
          (,predicate X)
          ,(case s/u
             (:SIGNED `(INTEGERP X))
             (:UNSIGNED `(AND (INTEGERP X)
			      (>= X 0)))))
         :RULE-CLASSES :FORWARD-CHAINING)
       ,@(when$ saturating-coercion
           (list
            `(DEFUN ,saturating-coercion (I)
               (DECLARE (XARGS :GUARD (INTEGERP I)))
	       (LOGSAT ,size I))
            `(DEFTHM ,sat-lemma
	       (,predicate (,saturating-coercion I)))))
       (IN-THEORY (DISABLE ,predicate ,name ,@(when$ saturating-coercion
                                                (list saturating-coercion))))
       (DEFTHEORY ,theory
         (UNION-THEORIES
          (DEFUN-TYPE/EXEC-THEORY
            '(,predicate ,name ,@(when$ saturating-coercion
                                   (list saturating-coercion))))
          '(,predicate-lemma ,coercion-lemma ,forward-lemma
			     ,@(when$ saturating-coercion
				 (list sat-lemma))))))))

;;;****************************************************************************
;;;
;;;  DEFWORD
;;;
;;;****************************************************************************

;;;  Recognizers for valid structure definitions and code generators.  See
;;;  the grammar in the :DOC for DEFWORD.

(defun defword-tuple-p (tuple)
  (or (and (true-listp tuple)
	   (or (equal (length tuple) 3)
	       (equal (length tuple) 4))
	   (symbolp (first tuple))
	   (integerp (second tuple))
	   (> (second tuple) 0)
	   (integerp (third tuple))
	   (>= (third tuple) 0)
	   (implies (fourth tuple) (stringp (fourth tuple))))
      (er hard 'defword
	  "A field designator for DEFWORD must be a list, the first ~
             element of which is a symbol, the second a positive integer, ~
             and the third a non-negative integer.  If a fouth element is ~
             provided it must be a string.  This object violates these ~
             constraints: ~p0" tuple)))

(defun defword-tuple-p-listp (struct)
  (cond
   ((null struct) t)
   (t (and (defword-tuple-p (car struct))
	   (defword-tuple-p-listp (cdr struct))))))

(defun defword-struct-p (struct)
  (cond
   ((true-listp struct) (defword-tuple-p-listp struct))
   (t (er hard 'defword
	  "The second argument of DEFWORD must be a true list. ~
           This object is not a true list: ~p0" struct))))

(defun defword-guards (name struct conc-name set-conc-name keyword-updater
			    doc)
  (and
   (or (symbolp name)
       (er hard 'defword
	   "The name must be a symbol.  This is not a symbol: ~p0" name))
   (defword-struct-p struct)
   (or (symbolp conc-name)
       (er hard 'defword
	   "The :CONC-NAME must be a symbol. This is not a symbol: ~
            ~p0" conc-name))
   (or (symbolp set-conc-name)
       (er hard 'defword
	   "The :SET-CONC-NAME must be a symbol. This is not a symbol: ~
            ~p0" conc-name))
   (or (symbolp keyword-updater)
       (er hard 'defword
	   "The :KEYWORD-UPDATER must be a symbol. This is not a symbol: ~
            ~p0" conc-name))
   (or (implies doc (stringp doc))
       (er hard 'defword
	   "The :DOC must be a string.  This is not a string: ~p0" doc))))

(defun defword-accessor-name (name conc-name field)
  (pack-intern name conc-name field))

(defun defword-updater-name (name set-conc-name field)
  (pack-intern name set-conc-name field))

(defun defword-accessor-definitions (rdb name conc-name tuples)
  (cond ((consp tuples)
	 (let*
	   ((tuple (car tuples))
	    (field (first tuple))
	    (size (second tuple))
	    (pos (third tuple))
	    (doc (fourth tuple))
	    (accessor (defword-accessor-name name conc-name field)))
	   (cons
	    `(DEFMACRO ,accessor (WORD)
	       ,@(if doc (list doc) nil)
	       (LIST ',rdb (LIST 'BSP ,size ,pos) WORD))
	    (defword-accessor-definitions rdb name conc-name (cdr tuples)))))
	(t ())))

(defun defword-updater-definitions (wrb name set-conc-name tuples)
  (cond ((consp tuples)
	 (let*
	   ((tuple (car tuples))
	    (field (first tuple))
	    (size (second tuple))
	    (pos (third tuple))
	    (updater (defword-updater-name name set-conc-name field)))
	   (cons
	    `(DEFMACRO ,updater (VAL WORD)
	       (LIST ',wrb VAL (LIST 'BSP ,size ,pos) WORD))
	    (defword-updater-definitions wrb name set-conc-name
	      (cdr tuples)))))
	(t ())))

(defloop defword-keyword-field-alist (name set-conc-name field-names)
  (for ((field-name in field-names))
    (collect (cons (intern-in-package-of-symbol (string field-name) :keyword)
		   (defword-updater-name name set-conc-name field-name)))))

(defun defword-keyword-updater-body (val args keyword-field-alist)
  (cond
   ((atom args) val)
   (t `(,(cdr (assoc (car args) keyword-field-alist)) ,(cadr args)
	,(defword-keyword-updater-body val (cddr args) keyword-field-alist)))))

(defun defword-keyword-updater-fn (form val args keyword-updater
					keyword-field-alist)
  (declare (xargs :mode :program))
  (let*
    ((keyword-field-names (strip-cars keyword-field-alist)))
    (cond
     ((not (keyword-value-listp args))
      (er hard keyword-updater
	  "The argument list in the macro invocation ~p0 ~
           does not match the syntax of a keyword argument ~
           list because ~@1."
	  form (reason-for-non-keyword-value-listp args)))
     ((not (subsetp (evens args) keyword-field-names))
      (er hard keyword-updater
	  "The argument list in the macro invocation ~p0 is not ~
           a valid keyword argument list because it contains the ~
           ~#1~[keyword~/keywords~] ~&1, which ~#1~[is~/are~] ~
            not the keyword ~#1~[form~/forms~] of any of the ~
            field names ~&2."
	  FORM (set-difference-equal (evens args) keyword-field-names)
	  keyword-field-names))
     (t (defword-keyword-updater-body val args keyword-field-alist)))))

(defun defword-keyword-updater (name keyword-updater set-conc-name
				     field-names)
  `(DEFMACRO ,keyword-updater (&WHOLE FORM VAL &REST ARGS)
     (DEFWORD-KEYWORD-UPDATER-FN
       FORM VAL ARGS ',keyword-updater
       ',(defword-keyword-field-alist name set-conc-name field-names))))


(defsection defword
  :parents (logops-definitions)
  :short "A macro to define packed integer data structures."
  :long "<p>Example:</p>

@({
    (DEFWORD FM9001-INSTRUCTION-WORD
      ((RN-A 4 0) (MODE-A 2 4) (IMMEDIATE 9 0) (A-IMMEDIATE 1 9)
       (RN-B 4 10) (MODE-B 2 14)
       (SET-FLAGS 4 16) (STORE-CC 4 20) (OP-CODE 4 24))
      :CONC-NAME ||
      :SET-CONC-NAME SET-)
})

<p>The above example defines the instruction word layout for the FM9001.  The
macro defines accessing macros (RN-A i), ... ,(OP-CODE i), updating
macros (SET-RN-A val i), ... ,(SET-OP-CODE val i), and a keyword updating
macro @('(UPDATE-FM9001-INSTRUCTION-WORD val &rest args)').</p>

<p>General form:</p>

@({
    (DEFWORD name struct &key conc-name set-conc-name keyword-updater)
})

<p>The DEFWORD macro defines a packed integer data structure, for example an
instruction word for a programmable processor or a status word.  DEFWORD is a
simple macro that defines accessing and updating macros for the fields of the
data structure. The utility of DEFWORD is mainly to simplify the specification
of packed integer data structures, and to improve the readability of code
manipulating these data structures without affecting performance. As long as
the book \"logops-lemmas\" is loaded all of the important facts about the macro
expansions should be available to the theorem prover.</p>

<p>Arguments</p>

@({
  name:  The name of the data structure, a symbol.

  struct : The field structure of the word. The form of this argument is
  given by the following grammar:

  <tuple>  := (<field> <size> <pos> [ <doc> ])
  <struct> := () | (<tuple> . <struct>)

  where:

  (SYMBOLP <field>)
  (AND (INTEGERP <size>) (> <size> 0))
  (AND (INTEGERP <pos>) (>= <pos> 0))
  (STRINGP <doc>)
})

<p>In other words, a list of tuples, the first element being a symbol, the
second a positive integer, the third a nonnegative integer, and the optional
fourth a string.</p>

<p>Note that there are few other requirements on the @('<struct>') other than
the syntactic ones above.  For example, the FM9001 DEFWORD shows that a word
may have more than one possible structure - the first 9 bits of the FM9001
instruction word are either an immediate value, or they include the RN-A and
MODE-A fields.</p>

<p>conc-name, set-conc-name: These are symbols whose print names will be
concatenated with the field names to produce the name of the accessors and
updaters respectively.  The default is @('<name>')- and @('SET-<name>')-
respectively.  The access and update macro names will be interned in the
package of name.</p>

<p>keyword-updater:  This is a symbol, and specifies the name of the keyword
updating macro (see below).  The default is @('UPDATE-<name>').</p>


<h3>Interpretation</h3>

<p>DEFWORD creates an ACL2 DEFLABEL event named @('<name>').</p>

<p>Each tuple @('(<field> <size> <pos>)') represents a @('<size>')-bit field of
a word at the bit position indicated.  Each field tuple produces an accessor
macro</p>

@({
  (<accessor> word)
})

<p>where @('<accessor>') is computed from the :conc-name (see above).  This
accessor will expand into:</p>

@({
  (RDB (BSP <size> <pos>) word).
})

<p>DEFWORD also generates an updating macro</p>

@({
  (<updater> val word)
})

<p>where @('<updater>') is computed from the :set-conc-name (see above).  This
macro will expand to</p>

@({
     (WRB val (BSP <size> <pos>) word)
})

<p>The keyword updater</p>

@({
  (<keyword-updater> word &rest args)
})

<p>is equivalent to multiple nested calls of the updaters on the initial word.
 For example,</p>

@({
  (UPDATE-FM9001-INSTRUCTION-WORD WORD :RN-A 10 :RN-B 12)
})

<p>is the same as @('(SET-RN-A 10 (SET-RN-B 12 WORD))').</p>")

(defmacro defword (name struct &key conc-name set-conc-name keyword-updater doc)
  (cond
   ((not
     (defword-guards name struct conc-name set-conc-name keyword-updater doc)))
   (t
    (let*
      ((conc-name (if conc-name
                      conc-name
                    (pack-intern name name "-")))
       (set-conc-name (if set-conc-name
                          set-conc-name
                        (pack-intern name "SET-" name "-")))
       (keyword-updater (if keyword-updater
			    keyword-updater
			  (pack-intern name "UPDATE-" name)))
       (accessor-definitions
        (defword-accessor-definitions 'RDB name conc-name struct))
       (updater-definitions
        (defword-updater-definitions 'WRB name set-conc-name struct))
       (field-names (strip-cars struct)))

      `(ENCAPSULATE ()                  ;Only to make macroexpansion pretty.
         (DEFLABEL ,name ,@(if doc `(:DOC ,doc) nil))
         ,@accessor-definitions
         ,@updater-definitions
         ,(defword-keyword-updater
	    name keyword-updater set-conc-name field-names))))))

#||
Example:

(DEFWORD FM9001-INSTRUCTION
  ((RN-A 4 0) (MODE-A 2 4) (IMMEDIATE 9 0) (A-IMMEDIATE 1 9)
   (RN-B 4 10) (MODE-B 2 14)
   (SET-FLAGS 4 16) (STORE-CC 4 20) (OP-CODE 4 24))
  :CONC-NAME ||
  :SET-CONC-NAME SET-
  :DOC "Instruction word layout for the FM9001.")

||#

;;;****************************************************************************
;;;
;;;  Word/Bit Macros
;;;
;;;****************************************************************************

(defxdoc word/bit-macros
  :parents (logops-definitions)
  :short "Macros for manipulating integer words defined as contiguous bits."
  :long "<p>These macros were defined to support the functions produced by
  translating SPW .eqn files to ACL2 functions.</p>")

(defun bind-word-to-bits-fn (bit-names n word)
  (cond
   ((endp bit-names) ())
   (t (cons `(,(car bit-names) (LOGBIT ,n ,word))
	    (bind-word-to-bits-fn (cdr bit-names) (1+ n) word)))))

(defsection bind-word-to-bits
  :parents (word/bit-macros)
  :short "Bind variables to the contiguous low-order bits of word."
  :long "<p>Example:</p>

@({
  (BIND-WORD-TO-BITS (A B C) I (B-AND A (B-IOR B C)))
})

<p>The above macro call will bind A, B, and C to the 0th, 1st, and 2nd bit of
I, and then evaluate the logical expression under those bindings.  The list of
bit names is always interpreted from low to high order.</p>"

  (defmacro bind-word-to-bits (bit-names word &rest forms)
    (declare (xargs :guard (and (symbol-listp bit-names)
                                (no-duplicatesp bit-names))))
    `(LET ,(bind-word-to-bits-fn bit-names 0 word) ,@forms)))

(defsection make-word-from-bits
  :parents (word/bit-macros)
  :short "Update the low-order bits of word with the indicated values."
  :long "<p>Example:</p>

@({
    (MAKE-WORD-FROM-BITS A B C)
})

<p>The above macro call will build an unsigned integer from the bits A B, and
C.  The list of bits is always interpreted from low to high order. Note that
the expression generated by this macro will coerce the values to bits before
building the word.</p>"

  (defmacro make-word-from-bits (&rest bits)
    (cond
     ((endp bits) 0)
     (t `(LOGAPP 1 ,(car bits) (MAKE-WORD-FROM-BITS ,@(cdr bits)))))))