/usr/share/acl2-8.0dfsg/books/ihs/logops-lemmas.lisp is in acl2-books-source 8.0dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 | ; logops-lemmas.lisp -- lemma support for logical operations on integers
; Copyright (C) 1997 Computational Logic, Inc.
; License: A 3-clause BSD license. See the LICENSE file distributed with ACL2.
;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
;;;
;;; logops-lemmas.lisp
;;;
;;; This book, along with "logops-definitions", includes a theory of the
;;; Common Lisp logical operations on numbers, a portable implementation
;;; of the Common Lisp byte operations, and extensions to those theories.
;;; This book contains a few definitions (of induction schemes) in
;;; addition to the lemmas.
;;;
;;; Bishop Brock
;;; Computational Logic, Inc.
;;; 1717 West Sixth Street, Suite 290
;;; Austin, Texas 78703
;;; (512) 322-9951
;;; brock@cli.com
;;;
;;; Modified for ACL2 Version_2.6 by:
;;; Jun Sawada, IBM Austin Research Lab. sawada@us.ibm.com
;;; Matt Kaufmann, kaufmann@cs.utexas.edu
;;;
;;; Modified for ACL2 Version_2.7 by:
;;; Matt Kaufmann, kaufmann@cs.utexas.edu
;;;
;;; Modified October 2014 by Jared Davis <jared@centtech.com>
;;; Ported documentation to XDOC
;;;
;;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(in-package "ACL2")
;;;****************************************************************************
;;;
;;; ENVIRONMENT -- All of the rules necessary to prove the theorems of this
;;; book.
;;;
;;;****************************************************************************
;;; Global rules.
(include-book "ihs-init")
(include-book "ihs-theories")
(local (include-book "math-lemmas"))
(local (include-book "quotient-remainder-lemmas"))
(include-book "logops-definitions")
(include-book "std/util/defrule" :dir :system)
(local (in-theory nil))
; From ihs-theories.
(local (in-theory (enable basic-boot-strap)))
; From math-lemmas
(local (in-theory (enable ihs-math)))
; From quotient-remainder-lemmas
(local (in-theory (enable quotient-remainder-rules)))
; From logops-definitions
(local (in-theory (enable logops-definitions-theory)))
;;;****************************************************************************
;;;
;;; Introduction
;;;
;;;****************************************************************************
(defxdoc logops-lemmas
:parents (logops)
:short "A book of lemmas about logical operations on numbers.")
(deflabel begin-logops-lemmas)
;;;****************************************************************************
;;;
;;; Local Lemmas
;;;
;;;****************************************************************************
; The rules that show (EXPT r i) <= (EXPT r j) in the general case aren't
; useful as linear rules due to the free variable problem.
(local
(defthm <-mod-expt-2-crock
(implies
(and (not (< size1 size))
(not (< size 0))
(integerp size1)
(integerp size)
(integerp i))
(< (mod i (expt 2 size))
(expt 2 size1)))
:hints
(("Goal"
:in-theory (disable expt-is-weakly-increasing-for-base>1)
:use ((:instance expt-is-weakly-increasing-for-base>1
(r 2) (i size) (j size1)))))))
; We need this as several special rules because we need to be able to satisfy
; the hypotheses by `type reasoning'.
(local
(defthm integerp-expt/expt
(implies
(and (>= i j)
(not (equal r 0))
(integerp i)
(integerp j)
(integerp r))
(integerp (* (/ (expt r j)) (expt r i))))
:rule-classes
((:type-prescription)
(:type-prescription :corollary
(implies (and (< j i)
(not (equal r 0))
(integerp r)
(integerp i)
(integerp j))
(integerp (* (expt r i) (/ (expt r j))))))
(:type-prescription :corollary
(implies (and (not (< i j))
(not (equal r 0))
(integerp r)
(integerp i)
(integerp j))
(integerp (* (expt r i) (/ (expt r j))))))
(:type-prescription :corollary
(implies (and (< j i)
(not (equal r 0))
(integerp r)
(integerp i)
(integerp j))
(integerp (* (/ (expt r j)) (expt r i))))))
:hints (("Goal" :in-theory (disable expt-type-prescription-integerp)
:use ((:instance expt-type-prescription-integerp
(r r) (i (- i j))))))))
;;; Fri Feb 10 15:10:05 1995 bb -- Something VERY fishy is going on here.
;;; Why was this suddenly needed?
(local
(defthm integerp-expt-minus
(implies
(and (integerp size1)
(not (< size1 0))
(integerp size)
(< size1 size))
(integerp (expt 2 (+ size (- size1)))))
:rule-classes :type-prescription))
(local
(defthm not-integerp-/x
(implies
(> x 1)
(not (integerp (/ x))))
:rule-classes :type-prescription
:hints
(("Goal"
:in-theory (disable <-*-right-cancel
<-unary-/-positive-right
<-*-y-x-y
<-y-*-y-x)
:use ((:instance <-unary-/-positive-right (y 1) (x (/ x))))))))
(local
(defthm not-integerp-expt
(implies
(and (< 0 i)
(< 1 r)
(integerp r)
(integerp i))
(not (integerp (/ (expt r i)))))
:rule-classes :type-prescription
:hints
(("Goal"
:induct (expt r i)
:in-theory (enable expt ifix)))))
; We leave these local here because we don't want to swamp linear with every
; variant of inequalties about FLOOR and MOD.
(local
(defthm mod-bounds-x
(implies
(and (>= x 0)
(> y 0)
(qr-guard x y))
(<= (mod x y) x))
:rule-classes
((:linear :trigger-terms ((mod x y))))
:hints
(("Goal"
:in-theory (enable linearize-mod)))))
(local
(defthm floor-bounds-x
(implies
(and (>= x 0)
(>= y 1)
(qr-guard x y))
(<= (floor x y) x))
:hints
(("Goal"
:in-theory (disable floor-recursion)
:use ((:instance floor-recursion))))))
; DISABLE theories implicated in :LINEAR thrashing.
(local (in-theory (disable floor-type-linear mod-type-linear floor-bounded-by-/)))
; Some very useful results
(local
(defthm loghead-logapp-expansion-lemma
(implies
(and (integerp i) (integerp j)
(integerp size1) (not (< size1 0))
(integerp size) (not (< size 0))
(<= size size1))
(and
(equal (mod (+ (* j (expt 2 size))
(mod i (expt 2 size)))
(expt 2 size1))
(+ (mod i (expt 2 size))
(* (expt 2 size) (mod j (expt 2 (- size1 size))))))
(equal (mod (+ (mod i (expt 2 size))
(* (expt 2 size) j))
(expt 2 size1))
(+ (mod i (expt 2 size))
(* (expt 2 size) (mod j (expt 2 (- size1 size))))))))
:hints
(("Goal"
:in-theory (disable mod-x+i*k-i*j)
:use ((:instance mod-x+i*k-i*j
(x (mod i (expt 2 size))) (i (expt 2 size))
(k j) (j (expt 2 (- size1 size)))))))))
(local
(defthm logtail-logapp-expansion-lemma
(implies
(and (integerp i) (integerp j)
(integerp size1) (not (< size1 0))
(integerp size) (not (< size 0))
(<= size size1))
(and
(equal (floor (+ (* j (expt 2 size))
(mod i (expt 2 size)))
(expt 2 size1))
(floor j (expt 2 (- size1 size))))))
:hints
(("Goal"
:in-theory (disable floor-x+i*k-i*j)
:use ((:instance floor-x+i*k-i*j
(x (mod i (expt 2 size))) (i (expt 2 size))
(k j) (j (expt 2 (- size1 size)))))))))
(local
(defthm integerp-*-2-fact
(implies
(and (integerp (* i j))
(integerp k))
(integerp (* i j k)))
:rule-classes :type-prescription
:hints
(("Goal"
:use ((:instance integerp-+-minus-* (i (* i j)) (j k)))))))
(local
(defthm logtail-loghead-expansion-lemma
(implies
(and (real/rationalp x)
(integerp i)
(integerp j)
(>= i 0)
(>= j 0))
(equal (floor (mod x (expt 2 i)) (expt 2 j))
(if (< j i)
(mod (floor x (expt 2 j))
(expt 2 (- i j)))
0)))
:hints
(("Goal"
:do-not '(eliminate-destructors)
:in-theory (set-difference-theories
(enable mod)
'(rewrite-floor-mod mod-bounded-by-modulus mod-type
expt-is-weakly-increasing-for-base>1))
:use ((:instance mod-bounded-by-modulus (x x) (y (expt 2 i)))
(:instance (:linear mod-type . 4) ;(MOD x y) >= 0.
(x x) (y (expt 2 i)))
(:instance expt-is-weakly-increasing-for-base>1
(r 2) (i i) (j j)))))))
;;;****************************************************************************
;;;
;;; Lemmas, Round 1 -- A simple theory of ASH, LOGNOT, LOGAND, and LOGIOR.
;;; Also a lemma about the LOGOPS-BIT-FUNCTIONS.
;;;
;;;****************************************************************************
(local (in-theory (enable ash lognot lognotu logand logior logxor logeqv
logorc1 ifix nfix)))
;;; ASH
(defsection ihs/ash-lemmas
:parents (ash logops-lemmas)
:short "Lemmas about @(see ash) from the @(see logops-lemmas) book."
(defthm ash-0
(implies (zip i)
(equal (ash i count)
0))))
(defsection ihs/lognot-lemmas
:parents (lognot logops-lemmas)
:short "Lemmas about @(see lognot) from the @(see logops-lemmas) book."
(defthm lognot-lognot
(implies (case-split (integerp i))
(equal (lognot (lognot i))
i)))
(defthm cancel-equal-lognot
(equal (equal (lognot i) (lognot j))
(equal (ifix i) (ifix j)))
:rule-classes
((:rewrite)
(:rewrite :corollary (implies (and (syntaxp (constant-syntaxp j))
(integerp j))
(equal (equal (lognot i) j)
(equal (ifix i) (lognot j)))))))
(theory-invariant
(implies
(active-runep '(:rewrite cancel-equal-lognot . 2))
(active-runep '(:executable-counterpart lognot)))))
(defsection ihs/lognotu-lemmas
:parents (lognotu logops-lemmas)
:short "Lemmas about @(see lognotu) from the @(see logops-lemmas) book."
(defthm lognotu-lognotu
(implies (and (<= size1 size)
(>= size1 0)
(integerp size1)
(lognotu-guard size i))
(equal (lognotu size1 (lognotu size i))
(loghead size1 i)))
:hints (("Goal" :in-theory (enable loghead))))
(defthm cancel-equal-lognotu
(implies (and (unsigned-byte-p size i)
(unsigned-byte-p size j))
(equal (equal (lognotu size i) (lognotu size j))
(equal i j)))
:hints
(("Goal" :in-theory (enable unsigned-byte-p integer-range-p lognot loghead)))))
(defsection ihs/logand-lemmas
:parents (logand logops-lemmas)
:short "Lemmas about @(see logand) from the @(see logops-lemmas) book."
(defthm commutativity-of-logand
(equal (logand i j)
(logand j i)))
(defthm simplify-logand
(and (equal (logand 0 i) 0)
(equal (logand -1 i) (ifix i)))))
(defsection ihs/logior-lemmas
:parents (logior logops-lemmas)
:short "Lemmas about @(see logior) from the @(see logops-lemmas) book."
(defthm commutativity-of-logior
(equal (logior i j)
(logior j i)))
(defthm simplify-logior
(and (equal (logior 0 i) (ifix i))
(equal (logior -1 i) -1))))
(defsection ihs/logxor-lemmas
:parents (logxor logops-lemmas)
:short "Lemmas about @(see logxor) from the @(see logops-lemmas) book."
(defthm commutativity-of-logxor
(equal (logxor i j) (logxor j i)))
(defthm simplify-logxor
(and (equal (logxor 0 i) (ifix i))
(equal (logxor -1 i) (lognot i)))))
(defsection ihs/logite-lemmas
:parents (logite logops-lemmas)
:short "Lemmas about @(see logite) from the @(see logops-lemmas) book."
(defthm simplify-logite
(and (equal (logite 0 then else) (ifix else))
(equal (logite -1 then else) (ifix then)))))
(local (in-theory (disable ash lognot lognotu logand logior logxor logeqv logorc1)))
(defrule simplify-bit-functions
:parents (logops-bit-functions)
:short "Rewrite: Simplification rules for all binary @('b-') functions
including commutative rules, reductions with 1 explicit value, and reductions
for identical agruments and complemented arguments."
(and (equal (b-and x y) (b-and y x))
(equal (b-and 0 x) 0)
(equal (b-and 1 x) (bfix x))
(equal (b-and x x) (bfix x))
(equal (b-and x (b-not x)) 0)
(equal (b-ior x y) (b-ior y x))
(equal (b-ior 0 x) (bfix x))
(equal (b-ior 1 x) 1)
(equal (b-ior x x) (bfix x))
(equal (b-ior x (b-not x)) 1)
(equal (b-xor x y) (b-xor y x))
(equal (b-xor 0 x) (bfix x))
(equal (b-xor 1 x) (b-not x))
(equal (b-xor x x) 0)
(equal (b-xor x (b-not x)) 1)
(equal (b-eqv x y) (b-eqv y x))
(equal (b-eqv 0 x) (b-not x))
(equal (b-eqv 1 x) (bfix x))
(equal (b-eqv x x) 1)
(equal (b-eqv x (b-not x)) 0)
(equal (b-nand x y) (b-nand y x))
(equal (b-nand 0 x) 1)
(equal (b-nand 1 x) (b-not x))
(equal (b-nand x x) (b-not x))
(equal (b-nand x (b-not x)) 1)
(equal (b-nor x y) (b-nor y x))
(equal (b-nor 0 x) (b-not x))
(equal (b-nor 1 x) 0)
(equal (b-nor x x) (b-not x))
(equal (b-nor x (b-not x)) 0)
(equal (b-andc1 0 x) (bfix x))
(equal (b-andc1 x 0) 0)
(equal (b-andc1 1 x) 0)
(equal (b-andc1 x 1) (b-not x))
(equal (b-andc1 x x) 0)
(equal (b-andc1 x (b-not x)) (b-not x))
(equal (b-andc1 (b-not x) x) (bfix x))
(equal (b-andc2 0 x) 0)
(equal (b-andc2 x 0) (bfix x))
(equal (b-andc2 1 x) (b-not x))
(equal (b-andc2 x 1) 0)
(equal (b-andc2 x x) 0)
(equal (b-andc2 x (b-not x)) (bfix x))
(equal (b-andc2 (b-not x) x) (b-not x))
(equal (b-orc1 0 x) 1)
(equal (b-orc1 x 0) (b-not x))
(equal (b-orc1 1 x) (bfix x))
(equal (b-orc1 x 1) 1)
(equal (b-orc1 x x) 1)
(equal (b-orc1 x (b-not x)) (b-not x))
(equal (b-orc1 (b-not x) x) (bfix x))
(equal (b-orc2 0 x) (b-not x))
(equal (b-orc2 x 0) 1)
(equal (b-orc2 1 x) 1)
(equal (b-orc2 x 1) (bfix x))
(equal (b-orc2 x x) 1)
(equal (b-orc2 x (b-not x)) (bfix x))
(equal (b-orc2 (b-not x) x) (b-not x))
(equal (b-ite 1 then else) (bfix then))
(equal (b-ite 0 then else) (bfix else))
(equal (b-ite test 1 0) (bfix test))
(equal (b-ite test 0 1) (b-not test))
(equal (b-ite test then then) (bfix then))
(equal (b-ite test then 0) (b-and test then))
(equal (b-ite test then 1) (b-ior (b-not test) then))
(equal (b-ite test then test) (b-and test then))
(equal (b-ite test 1 else) (b-ior test else))
(equal (b-ite test 0 else) (b-and (b-not test) else))
(equal (b-ite test test else) (b-ior test else)))
:enable (bitp b-and b-ior b-xor b-not b-eqv b-nand b-nor
b-andc1 b-andc2 b-orc1 b-orc2 b-ite))
;;;****************************************************************************
;;;
;;; Lemmas, Round 2 -- UNSIGNED-BYTE-P, SIGNED-BYTE-P, LOGHEAD, LOGTAIL,
;;; LOGAPP, LOGRPL
;;;
;;;****************************************************************************
(local (in-theory (enable unsigned-byte-p
integer-range-p ; added by Matt K. for Version_2.7
signed-byte-p loghead logtail
logapp logrpl logextu)))
(defsection ihs/unsigned-byte-p-lemmas
:parents (unsigned-byte-p logops-lemmas)
:short "Lemmas about @(see unsigned-byte-p) from the @(see logops-lemmas) book."
(defthm unsigned-byte-p-base-case
(equal (unsigned-byte-p size 0)
(and (integerp size)
(<= 0 size))))
(defthm unsigned-byte-p-0
(equal (unsigned-byte-p 0 x)
(equal x 0)))
(defthm unsigned-byte-p-plus
(implies (and (unsigned-byte-p size i)
(>= j 0)
(integerp j))
(and (unsigned-byte-p (+ size j) i)
(unsigned-byte-p (+ j size) i)))
:hints (("Goal" :in-theory (disable expt-is-weakly-increasing-for-base>1)
:use ((:instance expt-is-weakly-increasing-for-base>1
(r 2) (i size) (j (+ size j)))))))
(defthm difference-unsigned-byte-p
(implies (and (unsigned-byte-p size i)
(<= j i)
(>= j 0)
(integerp j))
(and (unsigned-byte-p size (- i j))
(unsigned-byte-p size (+ (- j) i)))))
; Make JFR a linear rule?
(defthm floor-unsigned-byte-p
;; [Jared] BOZO I suspect it'd be better to have the (unsigned-byte-p size i)
;; hyp first
(implies (and (> x 1)
(force (real/rationalp x))
(unsigned-byte-p size i))
(unsigned-byte-p size (floor i x)))
:hints (("Goal" :in-theory (disable floor-recursion)
:use ((:instance floor-recursion (x i) (y x)))))))
(defsection ihs/signed-byte-p-lemmas
:parents (signed-byte-p logops-lemmas)
:short "Lemmas about @(see signed-byte-p) from the @(see logops-lemmas) book."
(defthm signed-byte-p-base-cases
(and (equal (signed-byte-p size 0)
(and (integerp size)
(< 0 size)))
(equal (signed-byte-p size -1)
(and (integerp size)
(< 0 size))))
:hints (("Goal" :in-theory (enable signed-byte-p))))
(defthm backchain-signed-byte-p-to-unsigned-byte-p
(implies (and (syntaxp (constant-syntaxp size))
(< 0 size)
(unsigned-byte-p (1- size) i))
(signed-byte-p size i))
:hints (("Goal" :in-theory (enable signed-byte-p unsigned-byte-p)))))
(defsection ihs/loghead-lemmas
:parents (loghead logops-lemmas)
:short "Lemmas about @(see loghead) from the @(see logops-lemmas) book."
(defthm loghead-identity
(implies (unsigned-byte-p size i)
(equal (loghead size i)
i)))
(defthm loghead-loghead
(implies (and (>= size1 0)
(integerp size1)
(loghead-guard size i))
(equal (loghead size1 (loghead size i))
(if (< size1 size)
(loghead size1 i)
(loghead size i))))
:hints (("Goal" :in-theory (disable mod-bounded-by-modulus mod-bounds-x))))
(defthm loghead-0-i
(implies (integerp i)
(equal (loghead 0 i)
0)))
(defthm loghead-size-0
(implies (and (integerp size)
(>= size 0))
(equal (loghead size 0)
0)))
(defthm loghead-leq
(implies (and (>= i 0)
(loghead-guard size i))
(<= (loghead size i) i))
:rule-classes ((:linear :trigger-terms ((loghead size i)))))
(defthm loghead-logapp
(implies (and (<= size1 size)
(force (>= size1 0))
(force (integerp size1))
(logapp-guard size i j))
(equal (loghead size1 (logapp size i j))
(loghead size1 i))))
(defthm loghead-logrpl
(implies (and (logrpl-guard size1 i j)
(force (integerp size))
(force (>= size 0)))
(equal (loghead size (logrpl size1 i j))
(if (< size1 size)
(logrpl size1 i (loghead size j))
(loghead size i))))
:hints (("Goal" :in-theory (disable exponents-add mod-bounded-by-modulus))))
(defthm bitp-loghead-1
(bitp (loghead 1 i))
;; [Jared] 2016-04-08: changing this to a type-prescription now that bitp
;; is a good type-prescription
:rule-classes :type-prescription
:hints (("Goal" :in-theory (enable bitp loghead)))))
(defsection ihs/logtail-lemmas
:parents (logtail logops-lemmas)
:short "Lemmas about @(see logtail) from the @(see logops-lemmas) book."
(defthm logtail-identity
(implies (unsigned-byte-p size i)
(equal (logtail size i) 0)))
(defthm logtail-logtail
(implies (and (force (>= pos1 0))
(force (integerp pos1))
(logtail-guard pos i))
(equal (logtail pos1 (logtail pos i))
(logtail (+ pos pos1) i))))
(defthm logtail-0-i
(implies (integerp i)
(equal (logtail 0 i)
i)))
(defthm logtail-size-0
(implies (and (integerp size)
(>= size 0))
(equal (logtail size 0)
0)))
(defthm logtail-leq
(implies (and (>= i 0)
(logtail-guard pos i))
(<= (logtail pos i) i))
:rule-classes ((:linear :trigger-terms ((logtail pos i)))))
(defthm logtail-equal-0
(implies (logtail-guard pos i)
(equal (equal (logtail pos i) 0)
(unsigned-byte-p pos i))))
(defthm logtail-lessp
(implies (and (logtail-guard pos i)
(force (integerp j)))
(equal (< (logtail pos i) j)
(< i (* j (expt 2 pos)))))
:hints (("Goal"
:in-theory (set-difference-theories (enable logtail)
'(<-*-left-cancel
floor-bounded-by-/
<-*-/-left))
:use ((:instance <-*-left-cancel
(z (/ (expt 2 pos))) (x i) (y (* j (expt 2 pos))))
(:instance floor-bounded-by-/ (x i) (y (expt 2 pos)))))))
(defthm logtail-unsigned-byte-p
(implies (and (>= size1 0)
(integerp size1)
(logtail-guard size i))
(equal (unsigned-byte-p size1 (logtail size i))
(unsigned-byte-p (+ size size1) i)))
:hints(("Goal" :in-theory (disable logtail))))
(defthm logtail-loghead
(implies (and (>= size1 0)
(force (integerp size1))
(loghead-guard size i))
(equal (logtail size1 (loghead size i))
(loghead (max 0 (- size size1)) (logtail size1 i))))
:hints (("Goal" :in-theory (disable exponents-add mod-bounded-by-modulus
mod-bounds-x))))
(defthm logtail-logapp
(implies (and (logapp-guard size1 i j)
(force (integerp size))
(force (>= size 0)))
(equal (logtail size (logapp size1 i j))
(if (< size size1)
(logapp (- size1 size) (logtail size i) j)
(logtail (- size size1) j))))
:hints (("Goal" :in-theory (disable mod-x-i*j-of-positives))))
(defthm logtail-logrpl
(implies (and (logrpl-guard size1 i j)
(force (integerp size))
(force (>= size 0)))
(equal (logtail size (logrpl size1 i j))
(if (< size size1)
(logrpl (- size1 size) (logtail size i) (logtail size j))
(logtail size j))))
:hints (("Goal" :in-theory (disable logapp logtail)))))
(defsection ihs/logapp-lemmas
:parents (logapp logops-lemmas)
:short "Lemmas about @(see logapp) from the @(see logops-lemmas) book."
(defthm logapp-0
(and (implies (logapp-guard size i 0)
(equal (logapp size i 0)
(loghead size i)))
(implies (logapp-guard size 0 i)
(equal (logapp size 0 i)
(* i (expt 2 size))))
(implies (logapp-guard 0 i j)
(equal (logapp 0 i j)
j))))
(defsection unsigned-byte-p-logapp
;; The following comment and lemma were replaced for Version 2.6 by the
;; lemmas below that lead up to (and include) the new crock0 below.
#|
;; !!!! AXIOM !!! Fri Feb 10 15:11:06 1995 bb -- Why won't this prove
;; anymore !!!
(local
(skip-proofs
(defthm crock0
(implies (and (not (< size size1))
(not (< j 0))
(integerp i)
(integerp size1)
(not (< size1 0))
(integerp j)
(integerp size)
(not (< size 0))
(< (* j (expt 2 size1)) (expt 2 size)))
(< (+ (* j (expt 2 size1))
(mod i (expt 2 size1)))
(expt 2 size)))
:hints (("Goal"
:do-not '(eliminate-destructors)
:in-theory (disable <-*-left-cancel <-*-/-left)
:use ((:instance <-*-left-cancel
(z (/ (expt 2 size1)))
(y (+ (* j (expt 2 size1))
(loghead size1 i)))
(x (expt 2 size)))))))))
|#
(local
(defthm crock0-0
(implies (and (<= size1 size)
(<= 0 j)
(integerp size1)
(<= 0 size1)
(integerp j)
(integerp size)
(<= 0 size)
(> (expt 2 size)
(* j (expt 2 size1))))
(> (expt 2 (- size size1))
j))
:rule-classes nil))
(local
(defthm integerp-expt-2
(implies (and (force (integerp i))
(force (<= 0 i)))
(and (integerp (expt 2 i))
(<= 0 (expt 2 i))))
:rule-classes :type-prescription))
(local
(defthm crock0-1
(implies (and (<= size1 size)
(<= 0 j)
(integerp size1)
(<= 0 size1)
(integerp j)
(integerp size)
(<= 0 size)
(> (expt 2 size)
(* j (expt 2 size1))))
(>= (expt 2 (- size size1))
(+ 1 j)))
:rule-classes nil
:hints (("Goal" :use crock0-0
:in-theory (disable exponents-add)))))
(local
(defthm distrib-left
(equal (* (+ a b) c)
(+ (* a c) (* b c)))))
(local
(defthm crock0
(implies (and (<= size1 size)
(<= 0 j)
(integerp size1)
(<= 0 size1)
(integerp i)
(integerp j)
(integerp size)
(<= 0 size)
(> (expt 2 size)
(* j (expt 2 size1))))
(> (expt 2 size)
(+ (* j (expt 2 size1))
(mod i (expt 2 size1)))))
:hints (("Goal" :use crock0-1))))
(defthm unsigned-byte-p-logapp
(implies (and (<= size1 size)
(>= j 0)
(logapp-guard size1 i j)
(force (integerp size))
(force (>= size 0)))
(equal (unsigned-byte-p size (logapp size1 i j))
(unsigned-byte-p (- size size1) j)))
:hints (("Goal"
:do-not '(eliminate-destructors)
:in-theory
(union-theories (disable <-*-left-cancel <-*-/-left)
'(logapp unsigned-byte-p
rewrite-linear-equalities-to-iff))))))
(defthm associativity-of-logapp
(implies (and (logapp-guard size1 j k)
(logapp-guard size i (logapp size1 j k)))
(equal (logapp size i (logapp size1 j k))
(logapp (+ size size1) (logapp size i j) k))))
(defthm logapp-loghead-logtail
(implies (logapp-guard size i i)
(equal (logapp size (loghead size i) (logtail size i))
i))
:hints (("Goal" :in-theory (enable logapp loghead logtail))))
;; Candidate for crock -- Used only to prove READ-WRITE-MEM2.
(defthm loghead-logapp-loghead-logtail
(implies (and (loghead-guard size i)
(loghead-guard size1 i))
(equal (logapp size (loghead size i) (loghead size1 (logtail size i)))
(loghead (+ size size1) i)))
:hints
(("Goal"
:in-theory (disable loghead logtail logapp logapp-loghead-logtail)
:use ((:instance logapp-loghead-logtail (size size)
(i (loghead (+ size size1) i))))))))
(defsection ihs/logrpl-lemmas
:parents (logrpl logops-lemmas)
:short "Lemmas about @(see logrpl) from the @(see logops-lemmas) book."
(defthm logrpl-0
(and (implies (logrpl-guard 0 i j)
(equal (logrpl 0 i j)
j))
(implies (logrpl-guard size i 0)
(equal (logrpl size i 0)
(loghead size i)))
(implies (and (unsigned-byte-p size j)
(integerp i))
(equal (logrpl size i j)
(loghead size i)))))
(defthm unsigned-byte-p-logrpl
(implies (and (<= size1 size)
(>= j 0)
(logrpl-guard size1 i j)
(force (integerp size))
(force (>= size 0)))
(equal (unsigned-byte-p size (logrpl size1 i j))
(unsigned-byte-p size j)))
:hints (("Goal"
:in-theory (union-theories (disable <-*-left-cancel
<-*-right-cancel
<-*-/-left
<-*-/-right
floor-bounded-by-/
logapp)
'(rewrite-linear-equalities-to-iff))
:use ((:instance <-*-right-cancel
(z (/ (expt 2 size1))) (y j) (x (expt 2 size)))
(:instance floor-bounded-by-/ (x j) (y (expt 2 size1)))))))
(defthm logrpl-i-i
(implies (logrpl-guard size i i)
(equal (logrpl size i i)
i)))
(defthm logrpl-loghead-i-i
(implies (and (<= size size1)
(loghead-guard size1 i)
(force (integerp size))
(force (>= size 0)))
(equal (logrpl size (loghead size1 i) i)
i)))
;; [Jared] BOZO somehow ACL2's definition rule gets stored differently
;; because of define's binding of __function__. The old rule is stored as
;; class DEFINITION but the new rule is stored as class ABBREVIATION. This
;; difference somehow screws up the proof of logrpl-logrpl-right. Blaaaaah.
;; This was painful to track down.
(local (defthm old-definition-of-logrpl
(equal (logrpl size i j)
(LOGAPP SIZE I (LOGTAIL SIZE J)))
:rule-classes :definition))
(local (in-theory (disable (:definition logrpl))))
(defthm logrpl-logrpl-right
(implies (and (logrpl-guard size1 j k)
(logrpl-guard size i (logrpl size1 j k))
(<= size1 size))
(equal (logrpl size i (logrpl size1 j k))
(logrpl size i k)))
:hints (("Goal" :in-theory (disable logapp)
:do-not '(eliminate-destructors generalize fertilize)
:do-not-induct t)))
(defthm logrpl-logrpl-left
(implies (and (logrpl-guard size1 i j)
(logrpl-guard size (logrpl size1 i j) k)
(<= size size1))
(equal (logrpl size (logrpl size1 i j) k)
(logrpl size i k)))))
(defsection ihs/logextu-lemmas
:parents (logextu logops-lemmas)
:short "Lemmas about @(see logextu) from the @(see logops-lemmas) book."
(defthm logextu-0
(implies (logextu-guard 0 ext-size i)
(equal (logextu 0 ext-size i)
0))))
(local (in-theory (disable unsigned-byte-p signed-byte-p loghead logtail
logapp logrpl logextu)))
;;;****************************************************************************
;;;
;;; Lemmas, Round 3 -- The theory of LOGCAR, LOGCDR, and LOGCONS. A few
;;; lemmas are kept local, as they are only useful to prove others.
;;;
;;;****************************************************************************
(local (in-theory (enable logcar logcdr logcons bitp)))
(defsection ihs/logcons-lemmas
:parents (logcons logops-lemmas)
:short "Basic lemmas relating @(see logcons) to @(see logcar) and @(see
logcdr), from the @(see logops-lemmas) book."
(defthm logcar-logcons
(implies (and (bitp b)
(integerp i))
(equal (logcar (logcons b i))
b)))
(defthm logcdr-logcons
(implies (and (bitp b)
(integerp i))
(equal (logcdr (logcons b i))
i)))
(defthm equal-logcons
(implies (and (integerp i)
(integerp logcdr)
(bitp logcar))
(equal (equal (logcons logcar logcdr) i)
(and (equal (logcar i) logcar)
(equal (logcdr i) logcdr)))))
(defthm logcar-logcdr-elim
(implies (integerp i)
(equal (logcons (logcar i) (logcdr i))
i))
:rule-classes (:rewrite :elim)))
(local (defthm evenp-and-oddp-as-logcar
(implies (integerp i)
(and (equal (evenp i)
(equal (logcar i) 0))
(equal (oddp i)
(equal (logcar i) 1))))
:hints (("Goal"
:in-theory (e/d (evenp oddp) (bitp-mod-2))
:use bitp-mod-2))))
(defsection ihs/logcar-lemmas
:parents (logcar logops-lemmas)
:short "Lemmas about @(see logcar) from the @(see logops-lemmas) book."
(defthm logcar-2*i
(implies (integerp i)
(equal (logcar (* 2 i))
0)))
(defthm logcar-i+2*j
(implies (and (integerp i)
(integerp j))
(and (equal (logcar (+ i (* 2 j))) (logcar i))
(equal (logcar (+ (* 2 j) i)) (logcar i)))))
(defthm logcdr-2*i
(implies (integerp i)
(equal (logcdr (* 2 i))
i)))
(defthm logcdr-i+2*j
(implies (and (integerp i)
(integerp j))
(and (equal (logcdr (+ i (* 2 j))) (+ (logcdr i) j))
(equal (logcdr (+ (* 2 j) i)) (+ (logcdr i) j)))))
(defthm logcar-loghead
(implies (loghead-guard size i)
(equal (logcar (loghead size i))
(if (equal size 0) 0 (logcar i))))
:hints (("Goal" :in-theory (e/d (ifix loghead)
(expt mod-bounded-by-modulus mod-bounds-x
loghead-upper-bound
exponents-add
mod-x-y-=-x+y-for-rationals
rewrite-mod-mod))
:expand (expt 2 size))))
(defthm logcar-logapp
(implies (logapp-guard size i j)
(equal (logcar (logapp size i j))
(if (equal size 0) (logcar j) (logcar i))))
:hints (("Goal" :in-theory (e/d (ifix logapp)
(expt logcar mod-bounded-by-modulus mod-bounds-x
exponents-add))
:expand (expt 2 size))))
(defthm logcar-logrpl
(implies (logrpl-guard size i j)
(equal (logcar (logrpl size i j))
(if (equal size 0) (logcar j) (logcar i))))
:hints (("Goal" :in-theory (e/d (ifix logrpl)
(expt logcar mod-bounded-by-modulus exponents-add))
:expand (expt 2 size)))))
(local (in-theory (disable logcar logcdr logcons bitp)))
(local (in-theory (enable logbitp logbit)))
(defsection ihs/logbitp-lemmas
:parents (logbitp logbit logops-lemmas)
:short "Lemmas about @(see logbitp) and @(see logbit) from the @(see
logops-lemmas) book."
:long "<p>We prove a set of lemmas about @(see logbitp), then prove the
analogous lemmas about @(see logbit), which is defined in terms of @(see
logbitp).</p>"
(defthm logbitp-0-minus-1
(implies (and (integerp pos)
(>= pos 0))
(and (not (logbitp pos 0))
(logbitp pos -1)))
:hints (("Goal" :cases ((equal pos 0)))))
(defthm logbit-0-minus-1
(implies (and (integerp pos)
(>= pos 0)
(integerp i))
(and (equal (logbit pos 0) 0)
(equal (logbit pos -1) 1)))
:hints(("Goal" :in-theory (disable logbitp))))
;; For the following, we provide an alternate definition of LOGBITP.
(local (defthm alt-logbitp
(implies (and (integerp pos)
(>= pos 0)
(integerp i))
(equal (logbitp pos i)
(equal (logcar (logtail pos i)) 1)))
:hints (("Goal" :in-theory (e/d (logcar logtail) (mod-bounded-by-modulus mod-bounds-x))))
:rule-classes :definition))
(local (in-theory (disable logbitp)))
(defthm logbitp-loghead
(implies (and (loghead-guard size i)
(force (integerp pos))
(force (>= pos 0)))
(equal (logbitp pos (loghead size i))
(if (< pos size)
(logbitp pos i)
nil))))
(defthm logbit-loghead
(implies (and (loghead-guard size i)
(force (integerp pos))
(force (>= pos 0))
(< pos size))
(equal (logbit pos (loghead size i))
(if (< pos size)
(logbit pos i)
0)))
:hints (("Goal" :in-theory (disable alt-logbitp))))
(defthm logbitp-logtail
(implies (and (logtail-guard pos i)
(force (integerp pos1))
(force (>= pos1 0)))
(equal (logbitp pos1 (logtail pos i))
(logbitp (+ pos pos1) i))))
(defthm logbit-logtail
(implies (and (logtail-guard pos i)
(force (integerp pos1))
(force (>= pos1 0)))
(equal (logbit pos1 (logtail pos i))
(logbit (+ pos pos1) i)))
:hints (("Goal" :in-theory (disable alt-logbitp))))
(defthm logbitp-logapp
(implies (and (logapp-guard size i j)
(force (integerp pos))
(force (>= pos 0)))
(equal (logbitp pos (logapp size i j))
(if (< pos size)
(logbitp pos i)
(logbitp (- pos size) j)))))
(defthm logbit-logapp
(implies (and (logapp-guard size i j)
(force (integerp pos))
(force (>= pos 0)))
(equal (logbit pos (logapp size i j))
(if (< pos size)
(logbit pos i)
(logbit (- pos size) j))))
:hints (("Goal" :in-theory (disable alt-logbitp))))
(defthm logbitp-logrpl
(implies (and (logrpl-guard size i j)
(force (integerp pos))
(force (>= pos 0)))
(equal (logbitp pos (logrpl size i j))
(if (< pos size)
(logbitp pos i)
(logbitp pos j)))))
(defthm logbit-logrpl
(implies (and (logrpl-guard size i j)
(force (integerp pos))
(force (>= pos 0)))
(equal (logbit pos (logrpl size i j))
(if (< pos size)
(logbit pos i)
(logbit pos j))))))
(local (in-theory (disable logbitp logbit)))
;;;****************************************************************************
;;;
;;; Lemmas, Round 4 -- Inductive proofs about LOGNOT, LOGAND, LOGIOR,
;;; LOGXOR, UNSIGNED-BYTE-P, LOGHEAD, and LOGMASKP.
;;;
;;; There are certain properties of the above functions that have nice
;;; inductive proofs. However, of the above only LOGAND has a recursive
;;; definition in ACL2. (Its probably arguable that it's simpler to do
;;; many of the previous proofs, which involve complicated facts about
;;; FLOOR and MOD, as inductive proofs.)
;;;
;;; At first I tried defining recursive versions of LOGNOT, LOGIOR, and
;;; LOGXOR to get these proofs. This was a disaster. No matter what I
;;; tried I could not get the prover to open up the recursive definitions
;;; in what I thought was an efficient manner. The proofs were long and
;;; tedious, e.g., LOGAND-LOGXOR took over 10 minutes on a SPARCStation
;;; 20!
;;;
;;; So, what I have done in this section is defined a number of
;;; :DEFINITION lemmas that give selected functions a `recursive'
;;; definition. This allows me to do proofs by induction on the integers
;;; for these functions. This works surprisingly well. These proofs are
;;; quite fast, with minimal case splitting.
;;;
;;; Originally, all of the recursive definitions were LOCAL to this book.
;;; However, we occasionally had to prove new rules that had nice
;;; inductive proofs, but didn't have these recursive definitions around.
;;; So, all of the recursive definitions and a couple of supporting lemmas
;;; ara available as the theory LOGOPS-RECURSIVE-DEFINITIONS-THEORY. If
;;; this theory is ENABLEd, then potentially every logical operation in
;;; sight is going to be treated as if it were a recursive function.
;;;
;;; A number of induction schemes are exported as well.
;;;
;;;****************************************************************************
(defxdoc logops-recursive-definitions-theory
:parents (logops-lemmas)
:short "Recursive equivalents of logical operations."
:long "<p>The logical operations on numbers, e.g., @(see LOGHEAD), @(see
LOGAPP), etc., are defined in terms of modular arithmetic. It is often useful,
however, to consider these functions as if they were recursive in terms of
@(see LOGCAR) and @(see LOGCDR). This theory provides that alternate view of
the functions. When this theory is @(see ENABLE)d, lemmas are enabled that
rewrite all of the logical operations listed above into an equivalent recursive
form. It is then possible to do inductive proofs using these definitions.
Note, however, that you will have to explicitly select an induction scheme.</p>
<p>Note that this theory is @(see disable)d by default. It should only be
@(see enable)d during proofs about logical operations where their recursive
counterparts are to be used.</p>")
;; Be mindful that everything is DISABLEd at this point.
(defsection basic-logops-induction-schemes
:parents (logops-recursive-definitions-theory)
:short "Some typical ways to induct when proving theorems about logical
operations."
(defun logcdr-induction-1 (i)
(declare (xargs :guard (integerp i)))
(cond ((zip i) t)
((equal i -1) t)
(t (logcdr-induction-1 (logcdr i)))))
(defun logcdr-induction-2 (i j)
(declare (xargs :guard (and (integerp i)
(integerp j))))
(cond ((zip i) t)
((zip j) t)
((equal i -1) t)
((equal j -1) t)
(t (logcdr-induction-2 (logcdr i) (logcdr j)))))
(defun logcdr-induction-3 (i j k)
(declare (xargs :guard (and (integerp i)
(integerp j)
(integerp k))))
(cond ((zip i) t)
((equal i -1) t)
(t (logcdr-induction-3 (logcdr i) (logcdr j) (logcdr k)))))
(defun sub1-logcdr-induction-1 (size i)
"The elaborate base case is for the benefit of UNSIGNED-BYTE-P, which has no guards."
(cond ((or (not (integerp size))
(< size 0)
(not (integerp i)))
t)
((equal size 0) t)
(t (sub1-logcdr-induction-1 (1- size) (logcdr i)))))
(defun sub1-logcdr-induction-2 (size i j)
"The elaborate base case is for the benefit of UNSIGNED-BYTE-P, which has no guards."
(cond ((or (not (integerp size))
(< size 0)
(not (integerp i))
(not (integerp j)))
t)
((equal size 0) t)
(t (sub1-logcdr-induction-2 (1- size) (logcdr i) (logcdr j)))))
(defun sub1-logcdr-induction-2-w/carry (size i j c)
"The elaborate base case is for the benefit of SIGNED-BYTE-P, which has no guards."
(cond ((or (not (integerp size))
(<= size 0)
(not (integerp i))
(not (integerp j))
(not (bitp c)))
t)
((equal size 1) t)
(t (sub1-logcdr-induction-2-w/carry
(1- size) (logcdr i) (logcdr j) (b-and c (logcar i))))))
(defun sub1-logcdr-induction-3 (size i j k)
"The elaborate base case is for the benefit of SIGNED-BYTE-P, which has no guards."
(cond ((or (not (integerp size))
(<= size 0)
(not (integerp i))
(not (integerp j))
(not (integerp k)))
t)
((equal size 1) t)
(t (sub1-logcdr-induction-3 (1- size) (logcdr i) (logcdr j) (logcdr k))))))
(defsection logops-recursive-helpers
:parents (logops-recursive-definitions-theory)
:short "Some additional lemmas that are included in @(see
logops-recursive-definitions-theory) to help with inducting over the
definitions of logical operations."
(defthm falsify-unsigned-byte-p
(implies (or (not (integerp size))
(< size 0)
(not (integerp i)))
(not (unsigned-byte-p size i)))
:hints (("Goal" :in-theory (enable unsigned-byte-p))))
(defthm falsify-signed-byte-p
(implies (or (not (integerp size))
(not (> size 0))
(not (integerp i)))
(not (signed-byte-p size i)))
:hints (("Goal" :in-theory (enable signed-byte-p)))))
(local (defthm eliminate-logical-masks-forward
(implies (and (equal mask (+ -1 (expt 2 n)))
(force (integerp n))
(> n 0))
(and (equal (logcar mask) 1)
(equal (logcdr mask) (+ -1 (expt 2 (1- n))))))
:rule-classes :forward-chaining
:hints (("Goal" :expand (expt 2 n)
:in-theory (union-theories (disable exponents-add) '(ifix))))))
; Recursive :DEFINITION rules.
(defrule lognot*
:parents (lognot logops-recursive-definitions-theory)
:short "Recursive definition of @(see lognot)."
(implies (force (integerp i))
(equal (lognot i)
(logcons (b-not (logcar i)) (lognot (logcdr i)))))
:rule-classes ((:definition
:clique (lognot)
:controller-alist ((lognot t))))
:hints (("Goal" :in-theory (enable lognot logcons b-not))))
(defrule logand*
:parents (logand logops-recursive-definitions-theory)
:short "Recursive definition of @(see logand)."
(implies (and (force (integerp i))
(force (integerp j)))
(equal (logand i j)
(logcons (b-and (logcar i) (logcar j))
(logand (logcdr i) (logcdr j)))))
:rule-classes ((:definition
:clique (binary-logand)
:controller-alist ((binary-logand t t))))
:hints (("Goal"
:expand (logand i j)
:in-theory (enable b-and ifix logcdr))))
(defrule logior*
:parents (logior logops-recursive-definitions-theory)
:short "Recursive definition of @(see logior)."
(implies (and (force (integerp i))
(force (integerp j)))
(equal (logior i j)
(logcons (b-ior (logcar i) (logcar j))
(logior (logcdr i) (logcdr j)))))
:rule-classes ((:definition
:clique (binary-logior)
:controller-alist ((binary-logior t t))))
:enable logior)
(defrule logxor*
:parents (logxor logops-recursive-definitions-theory)
:short "Recursive definition of @(see logxor)."
(implies (and (force (integerp i))
(force (integerp j)))
(equal (logxor i j)
(logcons (b-xor (logcar i) (logcar j))
(logxor (logcdr i) (logcdr j)))))
:rule-classes ((:definition
:clique (binary-logxor)
:controller-alist ((binary-logxor t t))))
:enable (logxor logeqv logorc1))
(defrule unsigned-byte-p*
:parents (unsigned-byte-p logops-recursive-definitions-theory)
:short "Recursive definition of @(see unsigned-byte-p)."
(implies (and (integerp size)
(> size 0))
(equal (unsigned-byte-p size i)
(and (integerp size)
(>= size 0)
(integerp i)
(>= i 0)
(unsigned-byte-p (1- size) (logcdr i)))))
:rule-classes ((:definition
:clique (unsigned-byte-p)
:controller-alist ((unsigned-byte-p t t))))
:expand (expt 2 size)
:enable (ifix logcdr unsigned-byte-p floor-bounded-by-/ rewrite-linear-equalities-to-iff)
:disable exponents-add)
(defrule signed-byte-p*
:parents (signed-byte-p logops-recursive-definitions-theory)
:short "Recursive definition of @(see signed-byte-p)."
(equal (signed-byte-p size i)
(and (integerp size)
(> size 0)
(integerp i)
(or (equal i 0)
(equal i -1)
(signed-byte-p (1- size) (logcdr i)))))
:rule-classes ((:definition
:clique (signed-byte-p)
:controller-alist ((signed-byte-p t t))))
:expand (expt 2 (+ -1 size))
:enable (ifix logcons signed-byte-p fold-consts-in-+ rewrite-linear-equalities-to-iff)
:disable (exponents-add)
:prep-lemmas
((defthm crock0
(implies (and (integerp size)
(< 0 size)
(not (equal 1 size)))
(integerp (expt 2 (+ -2 size))))
:rule-classes :type-prescription
:hints (("Goal" :in-theory (disable expt-type-prescription-integerp)
:use ((:instance expt-type-prescription-integerp
(r 2) (i (+ -2 size)))))))))
(defrule integer-length*
:parents (integer-length logops-recursive-definitions-theory)
:short "Recursive definition of @(see integer-length)."
(equal (integer-length i)
(cond ((zip i) 0)
((equal i -1) 0)
(t (1+ (integer-length (logcdr i))))))
:rule-classes ((:definition
:clique (integer-length)
:controller-alist ((integer-length t))))
:enable (integer-length logcdr))
(defrule loghead*
:parents (loghead logops-recursive-definitions-theory)
:short "Recursive definition of @(see loghead)."
(implies (loghead-guard size i)
(equal (loghead size i)
(if (equal size 0)
0
(logcons (logcar i) (loghead (1- size) (logcdr i))))))
:rule-classes ((:definition
:clique (loghead$inline)
:controller-alist ((loghead$inline t t))))
:expand (expt 2 size)
:enable (ifix loghead logcar logcdr logcons)
:disable (exponents-add mod-bounded-by-modulus mod-bounds-x))
(defrule logtail*
:parents (logtail logops-recursive-definitions-theory)
:short "Recursive definition of @(see logtail)."
(implies (logtail-guard pos i)
(equal (logtail pos i)
(cond ((equal pos 0) i)
(t (logtail (1- pos) (logcdr i))))))
:rule-classes ((:definition
:clique (logtail$inline)
:controller-alist ((logtail$inline t t))))
:disable (exponents-add)
:enable (ifix expt logtail logcdr))
(defrule logmaskp*
:parents (logmaskp logops-recursive-definitions-theory)
:short "Recursive definition of @(see logmaskp)."
(equal (logmaskp i)
(cond ((not (integerp i)) nil)
((equal i 0) t)
((equal i -1) nil)
(t (and (equal (logcar i) 1)
(logmaskp (logcdr i))))))
:rule-classes ((:definition
:clique (logmaskp)
:controller-alist ((logmaskp t))))
:expand (expt 2 (+ 1 (integer-length (logcdr i))))
:enable (logmaskp))
(defrule logbitp*
:parents (logbitp logops-recursive-definitions-theory)
:short "Recursive definition of @(see logbitp)."
(implies (and (integerp pos)
(>= pos 0)
(integerp i))
(equal (logbitp pos i)
(cond ((equal pos 0) (equal (logcar i) 1))
(t (logbitp (1- pos) (logcdr i))))))
:rule-classes ((:definition
:clique (logbitp)
:controller-alist ((logbitp t t))))
:enable (ifix expt logbitp logcar logcdr)
:disable (exponents-add mod-bounded-by-modulus mod-bounds-x
floor-type-1 floor-type-2 floor-type-3
floor-type-4))
(defrule logapp*
:parents (logapp logops-recursive-definitions-theory)
:short "Recursive definition of @(see logapp)."
(implies (logapp-guard size i j)
(equal (logapp size i j)
(cond
((equal size 0) j)
(t (logcons (logcar i) (logapp (1- size) (logcdr i) j))))))
:rule-classes ((:definition
:clique (logapp)
:controller-alist ((logapp t t nil))))
:enable (ifix expt logapp)
:disable (exponents-add))
(defrule logext*
:parents (logext logops-recursive-definitions-theory)
:short "Recursive definition of @(see logext)."
(implies (logext-guard size i)
(equal (logext size i)
(cond
((equal size 1) (if (equal (logcar i) 0) 0 -1))
(t (logcons (logcar i) (logext (1- size) (logcdr i)))))))
:rule-classes ((:definition
:clique (logext)
:controller-alist ((logext t t))))
:enable (logext))
;;; The trick to this recursive definition of ASH is to rearrange the term
;;; so that the lemma FLOOR-FLOOR-INTEGER will fire.
(encapsulate ()
(local (in-theory (disable exponents-add expt-minus))) ;!@#$^%
(local
(defthm crock0
(equal (/ (expt 2 n))
(expt 2 (- n)))
:hints
(("Goal"
:in-theory (enable expt-minus)))))
(local
(defthm crock1
(implies
(and (integerp i)
(integerp count)
(< count 0))
(equal (floor (* 1/2 i (expt 2 (+ 1 count))) 1)
(floor (* i (expt 2 (+ 1 count))) 2)))
:hints
(("goal"
:in-theory (enable rewrite-floor-x*y-z-left)))))
(local
(defthm crock2
(implies
(and (integerp i)
(real/rationalp j)
(not (equal j 0)))
(equal (floor (* i (expt 2 (+ 1 count))) j)
(floor i (/ j (expt 2 (+ 1 count))))))
:hints
(("goal"
:in-theory (enable rewrite-floor-x*y-z-right)))))
(defrule ash*
:parents (ash logops-recursive-definitions-theory)
:short "Recursive definition of @(see ash)."
(equal (ash i count)
(cond ((zip count) (ifix i))
((< count 0) (ash (logcdr i) (1+ count)))
(t (logcons 0 (ash i (1- count))))))
:rule-classes ((:definition
:clique (ash)
:controller-alist ((ash nil t))))
:enable (ash logcdr)
:expand (expt 2 count)))
(deftheory logops-recursive-definitions-theory
'(falsify-unsigned-byte-p
falsify-unsigned-byte-p
unsigned-byte-p* signed-byte-p*
lognot* logand* logior* logior* logxor*
integer-length* loghead* logtail* logmaskp* logbitp*
logapp* logext* ash*))
;;; Lemmas for LOGNOT
(local (defthm signed-byte-p-lognot
(implies (signed-byte-p size i)
(signed-byte-p size (lognot i)))
:hints (("Goal" :induct (sub1-logcdr-induction-1 size i)))))
;;; Lemmas for LOGAND
(local (defthm equal-logand-0
(implies (or (not (integerp i))
(not (integerp j)))
(equal (logand i j) 0))
:hints (("Goal" :in-theory (enable logand)))))
(defsection more-logand-lemmas
:extension ihs/logand-lemmas
(defthm logand-=-minus-1
(equal (equal (logand i j) -1)
(and (equal i -1) (equal j -1)))
:hints (("Goal"
:induct (logcdr-induction-2 i j)
:in-theory (enable ifix))))
(defthm unsigned-byte-p-logand
(implies (and (or (unsigned-byte-p size i)
(unsigned-byte-p size j))
(force (integerp i))
(force (integerp j)))
(unsigned-byte-p size (logand i j)))
:hints (("Goal"
:expand (expt 2 size)
:induct (sub1-logcdr-induction-2 size i j)
:in-theory (disable exponents-add)))))
(local (defthm signed-byte-p-logand
(implies (and (signed-byte-p size i)
(signed-byte-p size j))
(signed-byte-p size (logand i j)))
:hints (("Goal" :induct (sub1-logcdr-induction-2 size i j)))))
(defsection more-logand-lemmas
:extension ihs/logand-lemmas
(defthm logand-upper-bound
(implies (and (>= i 0)
(integerp j))
(<= (logand i j) i))
:rule-classes ((:linear :corollary (implies (and (>= i 0)
(integerp j))
(<= (logand i j) i)))
(:linear :corollary (implies (and (>= i 0)
(integerp j))
(<= (logand j i) i))))
:hints (("Goal"
:in-theory (enable ifix logcons)
:induct (logcdr-induction-2 i j))))
(encapsulate ()
(local (defthm logand-logior-lemma
(implies (and (bitp i) (bitp j) (bitp k))
(equal (b-and i (b-ior j k))
(b-ior (b-and i j) (b-and i k))))
:hints (("Goal" :in-theory (enable b-and b-ior)))))
(defthm logand-logior
(implies (and (integerp x)
(integerp y)
(integerp z))
(equal (logand x (logior y z))
(logior (logand x y) (logand x z))))
:hints (("Goal" :induct (logcdr-induction-3 x y z)
:in-theory (enable ifix bfix)))))
(encapsulate ()
(local (defthm logand-logxor-lemma
(implies (and (bitp i) (bitp j) (bitp k))
(equal (b-and i (b-xor j k))
(b-xor (b-and i j) (b-and i k))))
:hints (("Goal" :in-theory (enable b-and b-xor)))))
(defthm logand-logxor
(implies (and (force (integerp i))
(force (integerp j))
(force (integerp k)))
(equal (logand i (logxor j k))
(logxor (logand i j) (logand i k))))
:hints (("Goal"
:induct (logcdr-induction-3 i j k)
:in-theory (enable ifix))))))
;;; Lemmas for LOGIOR
(defsection more-logior-lemmas
:extension ihs/logior-lemmas
(defthm logior-=-0
(implies (and (force (integerp i))
(force (integerp j)))
(equal (equal (logior i j) 0)
(and (equal i 0)
(equal j 0))))
:hints (("Goal" :induct (logcdr-induction-2 i j))))
(defthm unsigned-byte-p-logior
(implies (and (force (integerp i))
(force (integerp j)))
(equal (unsigned-byte-p size (logior i j))
(and (unsigned-byte-p size i)
(unsigned-byte-p size j))))
:hints (("Goal" :expand (expt 2 size)
:induct (sub1-logcdr-induction-2 size i j)))))
;;; Lemmas for LOGXOR
(defsection more-logxor-lemmas
:extension ihs/logxor-lemmas
(defthm logxor-=-0
(implies (and (force (integerp i))
(force (integerp j)))
(equal (equal (logxor i j) 0)
(equal i j)))
:hints (("Goal"
:induct (logcdr-induction-2 i j)
:in-theory (enable ifix))))
(defthm unsigned-byte-p-logxor
(implies (and (unsigned-byte-p size i)
(unsigned-byte-p size j)
(force (integerp i))
(force (integerp j)))
(unsigned-byte-p size (logxor i j)))
:hints (("Goal"
:expand (expt 2 size)
:induct (sub1-logcdr-induction-2 size i j)
:in-theory (disable exponents-add)))))
;;; Lemmas for INTEGER-LENGTH
(defsection ihs/integer-length-lemmas
:parents (integer-length logops-lemmas)
:short "Lemmas about @(see integer-length) from the @(see logops-lemmas) book."
(defthm equal-integer-length-0
(equal (equal (integer-length i) 0)
(or (zip i)
(equal i -1)))
:hints (("Goal" :induct (logcdr-induction-1 i)))))
;;; Lemmas for LOGMASKP
(defsection ihs/logmaskp-lemmas
:parents (logmaskp logops-lemmas)
:short "Lemmas about @(see logmaskp) from the @(see logops-lemmas) book."
(local
(defthm logmaskp-expt-2-n-minus-1-crock
(implies
(and (force (integerp n))
(>= n 0)
(equal mask (+ -1 (expt 2 n))))
(logmaskp mask))
:rule-classes nil
:hints (("Goal" :expand (expt 2 n)
:induct (sub1-logcdr-induction-1 n mask)
:in-theory (disable exponents-add)))))
(defthm logmaskp-expt-2-n-minus-1
(implies (and (force (integerp n))
(>= n 0))
(logmaskp (+ -1 (expt 2 n))))
:hints (("Goal" :use ((:instance logmaskp-expt-2-n-minus-1-crock
(mask (+ -1 (expt 2 n))))))))
(defthm logmaskp-logmask
(implies (logmask-guard n)
(logmaskp (logmask n)))
:hints (("Goal" :in-theory (enable logmask)
:use ((:instance logmaskp-expt-2-n-minus-1-crock
(mask (+ -1 (expt 2 n))))))))
(defthm logand-with-mask
(implies (and (logmaskp mask)
(equal size (integer-length mask))
(force (integerp i)))
(equal (logand mask i)
(loghead size i)))
:hints (("Goal" :induct (sub1-logcdr-induction-2 size mask i)))))
;;; Lemmas for LOGBITP and LOGBIT
(defsection more-logbitp-lemmas
:extension ihs/logbitp-lemmas
(defthm logbitp-lognot
(implies (and (integerp pos)
(>= pos 0)
(integerp i))
(equal (logbitp pos (lognot i))
(not (logbitp pos i))))
:hints (("Goal"
:in-theory (enable logbitp*)
:induct (sub1-logcdr-induction-1 pos i))))
(defthm logbit-lognot
(implies (and (integerp pos)
(>= pos 0)
(integerp i))
(equal (logbit pos (lognot i))
(b-not (logbit pos i))))
:hints (("Goal" :in-theory (enable logbit))))
(defthm logbitp-lognotu
(implies (and (integerp pos)
(>= pos 0)
(integerp i)
(force (integerp size))
(force (>= size 0)))
(equal (logbitp pos (lognotu size i))
(if (< pos size)
(not (logbitp pos i))
nil)))
:hints (("Goal" :in-theory (enable lognotu))))
(defthm logbit-lognotu
(implies (and (integerp pos)
(>= pos 0)
(integerp i)
(force (integerp size))
(force (>= size 0)))
(equal (logbit pos (lognotu size i))
(if (< pos size)
(b-not (logbit pos i))
0)))
:hints (("Goal" :in-theory (enable logbit)))))
;;; Lemmas for LOGEXT
(defsection ihs/logext-lemmas
:parents (logext logops-lemmas)
:short "Lemmas about @(see logext) from the @(see logops-lemmas) book."
(defthm logext-identity
(implies (signed-byte-p size i)
(equal (logext size i)
i))
:hints (("Goal" :induct (sub1-logcdr-induction-1 size i)))))
;;; Lemmas for LOGEXTU
(defsection more-logextu-lemmas
:extension ihs/logextu-lemmas
(local (defun logextu-induction (final-size ext-size i)
(declare (xargs :guard (and (integerp final-size)
(>= final-size 0)
(integerp ext-size)
(> ext-size 0)
(integerp i))))
(cond ((zp final-size) t)
((equal ext-size 1) t)
(t (logextu-induction (1- final-size) (1- ext-size) (logcdr i))))))
(defthm logextu-as-loghead
(implies (and (logextu-guard final-size ext-size i)
(<= final-size ext-size))
(equal (loghead final-size (logext ext-size i))
(loghead final-size i)))
:hints (("Goal" :in-theory (disable loghead-upper-bound logext-bounds)
:induct (logextu-induction final-size ext-size i))))
(defthm loghead-logextu
(implies (and (<= ext-size final-size)
(<= size ext-size)
(logextu-guard final-size ext-size i)
(force (integerp size))
(force (>= size 0)))
(equal (loghead size (logextu final-size ext-size i))
(loghead size i)))
:hints (("Goal" :in-theory (e/d (logextu)
(loghead-upper-bound logext-bounds))))))
;;; Lemmas for UN/SIGNED-BYTE-P and INTEGER-LENGTH.
(defsection more-integer-length-lemmas
:extension ihs/integer-length-lemmas
(defthm unsigned-byte-p-integer-length
(implies (and (integerp i)
(>= i 0)
(equal size (integer-length i)))
(unsigned-byte-p size i))
:rule-classes nil
:hints (("Goal" :induct (sub1-logcdr-induction-1 size i))))
(defthm integer-length-unsigned-byte
(implies (unsigned-byte-p size i)
(<= (integer-length i) size))
:rule-classes nil
:hints (("Goal" :induct (sub1-logcdr-induction-1 size i))))
(defthm signed-byte-p-integer-length
(implies (and (integerp i)
(integerp size)
(> size 0)
(equal size (+ (integer-length i) 1)))
(signed-byte-p size i))
:rule-classes nil
:hints (("Goal" :induct (sub1-logcdr-induction-1 size i))))
(local (defun integer-length-size-i-induction (size i)
(declare (xargs :guard (and (integerp size)
(integerp i))))
(if (zip i)
0
(if (= i -1)
0
(integer-length-size-i-induction (1- size) (logcdr i))))))
(defthm integer-length-signed-byte
(implies (signed-byte-p size i)
(<= (+ (integer-length i) 1) size))
:rule-classes nil
:hints (("Goal" :induct (integer-length-size-i-induction size i)))))
;;; Lemmas for ASH
(defsection more-ash-lemmas
:extension ihs/ash-lemmas
(local (defun ash-goes-to-0-induction (size count i)
(cond ((or (not (integerp size)) ; This is for the benefit of
(< size 0) ; UNSIGNED-BYTE-P, which has no guards.
(not (integerp i)))
t)
((equal size 0) t)
((zip count) t)
(t (ash-goes-to-0-induction (1- size) (1+ count) (logcdr i))))))
;; Added for Version_2.6:
(local (in-theory (enable exponents-add-unrestricted)))
(local (defthm unsigned-byte-p-1-crock
(implies (unsigned-byte-p (+ -1 size) i)
(unsigned-byte-p size i))
:hints (("Goal" :in-theory (enable unsigned-byte-p)))))
(defthm unsigned-byte-p-ash
(implies (and (unsigned-byte-p size i)
(integerp count)
(<= count 0))
(unsigned-byte-p size (ash i count)))
:hints (("Goal" :induct (ash-goes-to-0-induction size count i))))
(defthm ash-goes-to-0
(implies (and (unsigned-byte-p size i)
(integerp count)
(<= count 0)
(<= size (- count)))
(equal (ash i count)
0))
:hints (("Goal" :induct (ash-goes-to-0-induction size count i)))))
(in-theory (disable logops-recursive-definitions-theory))
; We can now use lemmas about LOGAND and LOGNOT to characterize all of the
; LOGOPS.
(defrule signed-byte-p-logops
:parents (signed-byte-p logops-lemmas)
:short "Lemmas showing the basic preservation of @(see signed-byte-p) by
operations like @(see logand), @(see logior), etc."
(and (implies (signed-byte-p size i)
(signed-byte-p size (lognot i)))
(implies (and (signed-byte-p size i)
(signed-byte-p size j))
(and (signed-byte-p size (logior i j))
(signed-byte-p size (logxor i j))
(signed-byte-p size (logand i j))
(signed-byte-p size (logeqv i j))
(signed-byte-p size (lognand i j))
(signed-byte-p size (lognor i j))
(signed-byte-p size (logandc1 i j))
(signed-byte-p size (logandc2 i j))
(signed-byte-p size (logorc1 i j))
(signed-byte-p size (logorc2 i j)))))
:enable (logior logxor logeqv lognand lognor logandc1 logandc2
logorc1 logorc2))
;;;****************************************************************************
;;;
;;; Lemmas, round 5. Byte functions.
;;;
;;;****************************************************************************
(defsection ihs/wrb-lemmas
:parents (wrb logops-lemmas)
(defthm unsigned-byte-p-wrb
(implies (and (unsigned-byte-p n j)
(<= (+ (bsp-size bsp) (bsp-position bsp)) n)
(integerp i)
(integerp n)
(bspp bsp))
(unsigned-byte-p n (wrb i bsp j)))
:hints (("Goal" :in-theory (enable wrb bspp bsp-size bsp-position)))))
;;;****************************************************************************
;;;
;;; Theory of truncation and extension of addition.
;;;
;;;****************************************************************************
; We first prove the LOCAL lemma MOD-+-CASES, a very important lemma for
; reasoning about truncating addition.
(local
(encapsulate ()
(local
(defun local-sub (x y)
(declare (xargs :guard (and (real/rationalp x)
(real/rationalp y))))
(- x y)))
(local
(defthm local-sub-type-crock
(implies (and (real/rationalp x)
(real/rationalp y))
(real/rationalp (local-sub x y)))))
(local
(defthm crock0
(implies
(and (real/rationalp x)
(real/rationalp y))
(equal (equal (local-sub x y) (- x y))
t))
:hints
(("Goal"
:in-theory (enable local-sub)))))
(local
(defthm crock1
(implies
(and (>= (+ x y) z)
(syntaxp (eq x 'x))
(syntaxp (eq y 'y))
(real/rationalp x)
(real/rationalp y)
(real/rationalp z))
(equal (mod (+ x y) z) (mod (+ z (local-sub (+ x y) z)) z)))))
(local
(defthm crock2
(implies
(and (< x z)
(< y z)
(>= (+ x y) z)
(real/rationalp x)
(real/rationalp y)
(real/rationalp z))
(and (>= (local-sub (+ x y) z) 0)
(< (local-sub (+ x y) z) z)))))
(local (in-theory (disable local-sub)))
(local
(defthm crock3
(implies
(and (< x z)
(< y z)
(real/rationalp x)
(>= x 0)
(real/rationalp y)
(>= y 0)
(real/rationalp z)
(> z 0))
(equal (mod (+ x y) z)
(if (< (+ x y) z)
(+ x y)
(- (+ x y) z))))
:hints
(("Goal" :in-theory (disable associativity-of-+
commutativity-of-+
associativity-of-*
commutativity-of-*)))))
(local
(defthm crock4
(implies
(and (syntaxp (eq x 'x))
(syntaxp (eq y 'y))
(force (real/rationalp x))
(force (real/rationalp y))
(force (real/rationalp z))
(force (not (equal z 0))))
(equal (mod (+ x y) z)
(mod (+ (mod x z) (mod y z)) z)))
:hints
(("Goal"
:use mod-+))))
(defthm mod-+-cases
(implies (and (real/rationalp x)
(real/rationalp y)
(real/rationalp z)
(> z 0))
(equal (mod (+ x y) z)
(if (< (+ (mod x z) (mod y z)) z)
(+ (mod x z) (mod y z))
(- (+ (mod x z) (mod y z)) z)))))))
(local (in-theory (disable mod-+-cases)))
(defsection more-loghead-lemmas
:extension ihs/loghead-lemmas
(defthm loghead-+-cancel-0
(implies (and (force (integerp j))
(loghead-guard size i))
(equal (equal (loghead size (+ i j)) (loghead size i))
(equal (loghead size j) 0)))
:hints (("Goal" :in-theory (enable loghead mod-+-cases))))
(defthm loghead-+-cancel
(implies (and (force (integerp size))
(>= size 0)
(force (integerp i))
(force (integerp j))
(force (integerp k)))
(equal (equal (loghead size (+ i j)) (loghead size (+ i k)))
(equal (loghead size j) (loghead size k))))
:hints (("Goal" :in-theory (enable loghead mod-+-cases))))
(defthm loghead-+-loghead
(implies (and (force (integerp size))
(>= size 0)
(force (integerp i))
(force (integerp j)))
(equal (loghead size (+ i (loghead size j)))
(loghead size (+ i j))))))
; Now the analogous lemmas for LOGEXT. These are hideous proofs! Can you do
; better?
(defsection more-logext-lemmas
:extension ihs/logext-lemmas
(local (defthm sum-constants
(implies (and (syntaxp (constant-syntaxp x))
(syntaxp (constant-syntaxp y))
(equal sum (+ x y)))
(equal (+ x y z) (+ sum z)))))
(local (defthm open-logcons
(implies (syntaxp (constant-syntaxp b))
(equal (logcons b i)
(let ((b (bfix b)) (i (ifix i)))
(+ b (* 2 i)))))
:hints (("Goal" :in-theory (enable logcons)))))
(local (defthm logcar-i+j+2*k
(implies (and (integerp i)
(integerp j)
(integerp k))
(equal (logcar (+ i j (* 2 k)))
(logcar (+ i j))))
:hints (("Goal" :use ((:instance logcar-i+2*j (i (+ i j)) (j k)))))))
(local (defthm logcar-+
(implies (and (integerp i)
(integerp j))
(equal (logcar (+ i j))
(b-xor (logcar i) (logcar j))))
:hints (("Goal" :in-theory (enable b-xor)))))
(local (defthm distributivity-reverse
(equal (+ (* i j) (* i k))
(* i (+ j k)))))
(local (in-theory (disable distributivity)))
(local (defthm logext-+
(implies (and (integerp size)
(< 0 size)
(integerp i)
(integerp j))
(equal (logext size (+ i j))
(cond ((equal size 1)
(if (equal (b-xor (logcar i) (logcar j)) 0)
0
-1))
(t (logcons (b-xor (logcar i) (logcar j))
(logext (1- size)
(+ (logcdr i) (logcdr j)
(b-and (logcar i) (logcar j)))))))))
:hints (("Goal" :in-theory (enable logext* b-and b-xor)))))
(local (defthm not-equal-1+2*/2*
(implies (and (integerp i)
(integerp j))
(not (equal (+ 1 (* 2 i)) (* 2 j))))
:hints (("Goal" :in-theory (disable logcar-i+2*j)
:use ((:instance logcar-i+2*j (i 1) (j i))
(:instance logcar-i+2*j (i 0) (j j)))))))
(local (defthm logext-+-cancel-bit
(implies (and (integerp size)
(> size 0)
(integerp i)
(integerp j)
(bitp c))
(equal (equal (logext size (+ c i)) (logext size (+ c j)))
(equal (logext size i) (logext size j))))
:hints (("Goal"
:in-theory (e/d (logext* bitp) ())
:restrict ((logext-+ ((size size) (i 2) (j (* 2 l)))
((size size) (i 2) (j (* 2 m)))))
:induct (sub1-logcdr-induction-2-w/carry size i j c)))))
(defthm logext-+-cancel
(implies (and (integerp size)
(> size 0)
(integerp i)
(integerp j)
(integerp k))
(equal (equal (logext size (+ i j)) (logext size (+ i k)))
(equal (logext size j) (logext size k))))
:hints (("Goal"
:in-theory (e/d (bitp b-and b-xor logext*)
; Modified April 2016 by Matt K. with addition of type-set bit for {1}.
((:t b-not$inline)))
:restrict ((logext-+ ((size size) (i i) (j j))
((size size) (i i) (j k))
((size size) (i 1) (j (* 2 l)))
((size size) (i 1) (j (* 2 m)))))
:induct (sub1-logcdr-induction-3 size i j k))))
(defthm logext-+-logext
(implies (and (integerp size)
(> size 0)
(integerp i)
(integerp j))
(equal (logext size (+ i (logext size j)))
(logext size (+ i j))))
:hints (("Goal"
:in-theory (e/d (logext*) (logext-+))
:induct (sub1-logcdr-induction-3 size i j j)))))
;;;****************************************************************************
;;;
;;; Theories
;;;
;;;****************************************************************************
(defsection logops-lemmas-theory
:parents (logops-lemmas)
:short "The \"minimal\" theory for the @(see logops-lemmas) book."
:long "<p>This theory contains the theory @(see logops-definitions-theory),
plus all of the lemmas meant to be exported by the @(see logops-lemmas)
book.</p>"
(deftheory logops-lemmas-theory
(union-theories
(theory 'logops-definitions-theory)
(set-difference-theories (current-theory :here)
(current-theory 'begin-logops-lemmas)))))
|